Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
384372f5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
384372f5
编写于
7月 27, 2021
作者:
W
wuhuachaocoding
提交者:
GitHub
7月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix concat bug (#34319) (#34396)
上级
862e81ef
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
111 addition
and
48 deletion
+111
-48
paddle/fluid/operators/math/concat_and_split.cc
paddle/fluid/operators/math/concat_and_split.cc
+9
-9
paddle/fluid/operators/math/concat_and_split.cu
paddle/fluid/operators/math/concat_and_split.cu
+102
-39
未找到文件。
paddle/fluid/operators/math/concat_and_split.cc
浏览文件 @
384372f5
...
...
@@ -40,18 +40,18 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
const
std
::
vector
<
framework
::
Tensor
>&
input
,
int
axis
,
framework
::
Tensor
*
output
)
{
// TODO(zcd): Add input data validity checking
in
t
num
=
input
.
size
();
size_
t
num
=
input
.
size
();
int
rows
=
1
;
int
64_t
rows
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
int
64_t
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int64_t
>
input_cols
(
input
.
size
());
for
(
in
t
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
rows
;
for
(
size_
t
i
=
0
;
i
<
num
;
++
i
)
{
int
64_t
t_cols
=
input
[
i
].
numel
()
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
...
...
@@ -59,11 +59,11 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
// computation
auto
output_data
=
output
->
data
<
T
>
();
int
col_idx
=
0
;
for
(
in
t
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
int
64_t
col_idx
=
0
;
for
(
size_
t
j
=
0
;
j
<
num
;
++
j
)
{
int
64_t
col_len
=
input_cols
[
j
];
auto
input_data
=
input
[
j
].
data
<
T
>
();
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
for
(
int
64_t
k
=
0
;
k
<
out_rows
;
++
k
)
{
memory
::
Copy
(
cpu_place
,
output_data
+
k
*
out_cols
+
col_idx
,
cpu_place
,
input_data
+
k
*
col_len
,
sizeof
(
T
)
*
col_len
);
}
...
...
paddle/fluid/operators/math/concat_and_split.cu
浏览文件 @
384372f5
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <algorithm>
#include <vector>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
...
...
@@ -25,9 +26,9 @@ namespace operators {
namespace
math
{
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs
,
const
int
*
input_cols
,
int
col_size
,
const
int
output_rows
,
const
int
output_cols
,
T
*
output
)
{
__global__
void
ConcatKernel
(
const
T
**
inputs
,
const
int
64_t
*
input_cols
,
int
col_size
,
const
int
64_t
output_rows
,
const
int
64_t
output_cols
,
T
*
output
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_offset
=
input_cols
[
0
];
...
...
@@ -69,8 +70,8 @@ __device__ void ConcatKernelDetail(const T** inputs_data,
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
2
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
...
...
@@ -80,8 +81,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
in
t
out_cols
,
const
T
*
input_addr2
,
const
int
64_t
fixed_in_col
,
const
int
64_t
out_rows
,
const
int64_
t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
3
];
inputs_data
[
0
]
=
input_addr0
;
...
...
@@ -94,8 +95,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
*
input_addr0
,
const
T
*
input_addr1
,
const
T
*
input_addr2
,
const
T
*
input_addr3
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
64_t
out_cols
,
T
*
output_data
)
{
const
T
*
inputs_data
[
4
];
inputs_data
[
0
]
=
input_addr0
;
inputs_data
[
1
]
=
input_addr1
;
...
...
@@ -107,8 +108,8 @@ __global__ void ConcatKernel(const T* input_addr0, const T* input_addr1,
template
<
typename
T
>
__global__
void
ConcatKernel
(
const
T
**
inputs_data
,
const
int
in_num
,
const
int
fixed_in_col
,
const
in
t
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
const
int
64_t
fixed_in_col
,
const
int64_
t
out_rows
,
const
int
64_t
out_cols
,
T
*
output_data
)
{
ConcatKernelDetail
<
T
>
(
inputs_data
,
fixed_in_col
,
out_rows
,
out_cols
,
output_data
);
}
...
...
@@ -234,21 +235,41 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
framework
::
Tensor
*
output
)
{
// TODO(zcd): Add input data validity checking
int
in_num
=
input
.
size
();
int
in_row
=
1
;
int
64_t
in_row
=
1
;
auto
dim_0
=
input
[
0
].
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
in_row
*=
dim_0
[
i
];
}
int
in_col
=
input
[
0
].
numel
()
/
in_row
;
int
out_row
=
in_row
,
out_col
=
0
;
std
::
vector
<
const
T
*>
inputs_data
(
in_num
);
std
::
vector
<
int
>
inputs_col
(
in_num
+
1
);
int64_t
in_col
=
input
[
0
].
numel
()
/
in_row
;
int64_t
out_row
=
in_row
,
out_col
=
0
;
int
inputs_col_num
=
in_num
+
1
;
std
::
vector
<
const
T
*>
inputs_data_vec
(
in_num
);
std
::
vector
<
int64_t
>
inputs_col_vec
(
inputs_col_num
);
const
T
**
inputs_data
=
inputs_data_vec
.
data
();
int64_t
*
inputs_col
=
inputs_col_vec
.
data
();
// There are some differences between hip runtime and NV runtime.
// In NV, when the pageable memory data less than 64K is transferred from
// hosttodevice, it will be automatically asynchronous.
// However, only pinned memory in hip can copy asynchronously
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-execution-host-device
// 3.2.6.1. Concurrent Execution between Host and Device
// Memory copies from host to device of a memory block of 64 KB or less
#ifdef PADDLE_WITH_HIP
memory
::
AllocationPtr
data_alloc
,
col_alloc
;
data_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
in_num
*
sizeof
(
T
*
));
inputs_data
=
reinterpret_cast
<
const
T
**>
(
data_alloc
->
ptr
());
col_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
inputs_col_num
*
sizeof
(
int
));
inputs_col
=
reinterpret_cast
<
int64_t
*>
(
col_alloc
->
ptr
());
#endif
inputs_col
[
0
]
=
0
;
bool
has_same_shape
=
true
;
for
(
int
i
=
0
;
i
<
in_num
;
++
i
)
{
int
t_cols
=
input
[
i
].
numel
()
/
in_row
;
int
64_t
t_cols
=
input
[
i
].
numel
()
/
in_row
;
if
(
has_same_shape
)
{
if
(
t_cols
!=
in_col
)
has_same_shape
=
false
;
}
...
...
@@ -264,12 +285,11 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
memory
::
allocation
::
AllocationPtr
tmp_dev_ins_data
;
const
T
**
dev_ins_data
=
nullptr
;
if
(
!
has_same_shape
||
in_num
<
2
||
in_num
>
4
)
{
tmp_dev_ins_data
=
memory
::
Alloc
(
context
,
inputs_data
.
size
()
*
sizeof
(
T
*
));
tmp_dev_ins_data
=
memory
::
Alloc
(
context
,
in_num
*
sizeof
(
T
*
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_ins_data
->
ptr
(),
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
inputs_data
.
data
()
),
inputs_data
.
size
()
*
sizeof
(
T
*
),
context
.
stream
());
static_cast
<
void
*>
(
inputs_data
),
in_num
*
sizeof
(
T
*
),
context
.
stream
());
dev_ins_data
=
reinterpret_cast
<
const
T
**>
(
tmp_dev_ins_data
->
ptr
());
}
...
...
@@ -292,17 +312,31 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
}
}
else
{
auto
tmp_dev_ins_col_data
=
memory
::
Alloc
(
context
,
inputs_col
.
size
()
*
sizeof
(
in
t
));
memory
::
Alloc
(
context
,
inputs_col
_num
*
sizeof
(
int64_
t
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
inputs_col
.
data
()),
inputs_col
.
size
()
*
sizeof
(
int
),
context
.
stream
());
int
*
dev_ins_col_data
=
static_cast
<
int
*>
(
tmp_dev_ins_col_data
->
ptr
());
static_cast
<
void
*>
(
inputs_col
),
inputs_col_num
*
sizeof
(
int64_t
),
context
.
stream
());
int64_t
*
dev_ins_col_data
=
static_cast
<
int64_t
*>
(
tmp_dev_ins_col_data
->
ptr
());
ConcatKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
.
size
()
),
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
_num
),
out_row
,
out_col
,
output
->
data
<
T
>
());
}
#ifdef PADDLE_WITH_HIP
// Prevent the pinned memory value from being covered and release the memory
// after the launch kernel of the stream is executed (reapply pinned memory
// next time)
auto
*
data_alloc_released
=
data_alloc
.
release
();
auto
*
col_alloc_released
=
col_alloc
.
release
();
context
.
AddStreamCallback
([
data_alloc_released
,
col_alloc_released
]
{
memory
::
allocation
::
AllocationDeleter
deleter
;
deleter
(
data_alloc_released
);
deleter
(
col_alloc_released
);
});
#endif
}
};
...
...
@@ -313,6 +347,7 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
template
<
typename
T
>
class
SplitFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
SplitFunctor
();
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
...
...
@@ -329,8 +364,27 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
int64_t
in_col
=
0
,
in_row
=
out_row
;
bool
has_same_shape
=
true
;
std
::
vector
<
T
*>
outputs_data
(
o_num
);
std
::
vector
<
int64_t
>
outputs_cols
(
o_num
+
1
);
int
outputs_cols_num
=
o_num
+
1
;
std
::
vector
<
T
*>
outputs_data_vec
(
o_num
);
std
::
vector
<
int64_t
>
outputs_cols_vec
(
outputs_cols_num
);
T
**
outputs_data
=
outputs_data_vec
.
data
();
int64_t
*
outputs_cols
=
outputs_cols_vec
.
data
();
// There are some differences between hip runtime and NV runtime.
// In NV, when the pageable memory data less than 64K is transferred from
// hosttodevice, it will be automatically asynchronous.
// However, only pinned memory in hip can copy asynchronously
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-execution-host-device
// 3.2.6.1. Concurrent Execution between Host and Device
// Memory copies from host to device of a memory block of 64 KB or less
#ifdef PADDLE_WITH_HIP
memory
::
AllocationPtr
data_alloc
,
cols_alloc
;
data_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
o_num
*
sizeof
(
T
*
));
outputs_data
=
reinterpret_cast
<
T
**>
(
data_alloc
->
ptr
());
cols_alloc
=
memory
::
Alloc
(
platform
::
CUDAPinnedPlace
(),
(
outputs_cols_num
)
*
sizeof
(
int64_t
));
outputs_cols
=
reinterpret_cast
<
int64_t
*>
(
cols_alloc
->
ptr
());
#endif
outputs_cols
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
...
...
@@ -354,12 +408,11 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
memory
::
allocation
::
AllocationPtr
tmp_dev_outs_data
;
T
**
dev_out_gpu_data
=
nullptr
;
if
(
!
has_same_shape
||
o_num
<
2
||
o_num
>
4
)
{
tmp_dev_outs_data
=
memory
::
Alloc
(
context
,
outputs_data
.
size
()
*
sizeof
(
T
*
));
tmp_dev_outs_data
=
memory
::
Alloc
(
context
,
o_num
*
sizeof
(
T
*
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_outs_data
->
ptr
(),
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
outputs_data
.
data
()
),
outputs_data
.
size
()
*
sizeof
(
T
*
),
context
.
stream
());
reinterpret_cast
<
void
*>
(
outputs_data
),
o_num
*
sizeof
(
T
*
),
context
.
stream
());
dev_out_gpu_data
=
reinterpret_cast
<
T
**>
(
tmp_dev_outs_data
->
ptr
());
}
...
...
@@ -382,20 +435,30 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
}
}
else
{
auto
tmp_dev_ins_col_data
=
memory
::
Alloc
(
context
,
outputs_cols
.
size
()
*
sizeof
(
int64_t
));
memory
::
Alloc
(
context
,
outputs_cols_num
*
sizeof
(
int64_t
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
outputs_cols
.
data
()
),
outputs_cols
.
size
()
*
sizeof
(
int64_t
),
context
.
stream
());
reinterpret_cast
<
void
*>
(
outputs_cols
),
outputs_cols
_num
*
sizeof
(
int64_t
),
context
.
stream
());
int64_t
*
dev_outs_col_data
=
reinterpret_cast
<
int64_t
*>
(
tmp_dev_ins_col_data
->
ptr
());
SplitKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
dev_outs_col_data
,
static_cast
<
int
>
(
outputs_cols
.
size
()
),
dev_out_gpu_data
);
static_cast
<
int
>
(
outputs_cols
_num
),
dev_out_gpu_data
);
}
#ifdef PADDLE_WITH_HIP
// Prevent the pinned memory value from being covered and release the memory
// after the launch kernel of the stream is executed (reapply pinned memory
// next time)
auto
*
data_alloc_released
=
data_alloc
.
release
();
auto
*
cols_alloc_released
=
cols_alloc
.
release
();
context
.
AddStreamCallback
([
data_alloc_released
,
cols_alloc_released
]
{
memory
::
allocation
::
AllocationDeleter
deleter
;
deleter
(
data_alloc_released
);
deleter
(
cols_alloc_released
);
});
#endif
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录