Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
383de295
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
383de295
编写于
2月 10, 2022
作者:
F
fwenguang
提交者:
GitHub
2月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add mlu kernel for accuracy op (#39337)
* [MLU] add mlu kernel for accuracy op * fix license format * fix error message
上级
2b8b16d7
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
303 addition
and
0 deletion
+303
-0
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
+167
-0
python/paddle/fluid/tests/unittests/mlu/test_accuracy_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_accuracy_op_mlu.py
+136
-0
未找到文件。
paddle/fluid/operators/metrics/accuracy_op_mlu.cc
0 → 100644
浏览文件 @
383de295
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
AccuracyMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
indices
=
ctx
.
Input
<
Tensor
>
(
"Indices"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
accuracy
=
ctx
.
Output
<
Tensor
>
(
"Accuracy"
);
auto
*
correct
=
ctx
.
Output
<
Tensor
>
(
"Correct"
);
auto
*
total
=
ctx
.
Output
<
Tensor
>
(
"Total"
);
int
num_samples
=
indices
->
dims
()[
0
];
if
(
num_samples
==
0
)
{
return
;
}
// cast `indices` or `label` if their type is not INT32
Tensor
indices_int32
(
VT
::
INT32
);
Tensor
label_int32
(
VT
::
INT32
);
if
(
indices
->
type
()
!=
VT
::
INT32
)
{
PADDLE_ENFORCE_EQ
(
MLUSupportsCast
(
indices
->
type
(),
VT
::
INT32
),
true
,
platform
::
errors
::
Unavailable
(
"In accuracy mlu kernel, cast indices from [%s] to "
"[%s] is not supported."
,
framework
::
DataTypeToString
(
indices
->
type
()),
framework
::
DataTypeToString
(
VT
::
INT32
)));
indices_int32
.
Resize
(
indices
->
dims
());
indices_int32
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
org_indices_desc
(
*
indices
);
MLUCnnlTensorDesc
indices_int32_desc
(
indices_int32
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
indices
->
type
(),
VT
::
INT32
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
org_indices_desc
.
get
(),
GetBasePtr
(
indices
),
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
));
}
else
{
indices_int32
.
ShareDataWith
(
*
indices
);
}
if
(
label
->
type
()
!=
VT
::
INT32
)
{
PADDLE_ENFORCE_EQ
(
MLUSupportsCast
(
label
->
type
(),
VT
::
INT32
),
true
,
platform
::
errors
::
Unavailable
(
"In accuracy mlu kernel, cast label from [%s] to [%s] "
"is not supported."
,
framework
::
DataTypeToString
(
label
->
type
()),
framework
::
DataTypeToString
(
VT
::
INT32
)));
label_int32
.
Resize
(
label
->
dims
());
label_int32
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
org_label_desc
(
*
label
);
MLUCnnlTensorDesc
label_int32_desc
(
label_int32
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
label
->
type
(),
VT
::
INT32
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
org_label_desc
.
get
(),
GetBasePtr
(
label
),
label_int32_desc
.
get
(),
GetBasePtr
(
&
label_int32
));
}
else
{
label_int32
.
ShareDataWith
(
*
label
);
}
// equal
MLUCnnlTensorDesc
indices_int32_desc
(
indices_int32
);
MLUCnnlTensorDesc
label_int32_desc
(
label_int32
);
Tensor
equal_tensor
(
VT
::
BOOL
);
equal_tensor
.
Resize
(
indices
->
dims
());
equal_tensor
.
mutable_data
<
bool
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
equal_tensor_desc
(
equal_tensor
);
MLUCnnl
::
Logic
(
ctx
,
CNNL_LOGIC_OP_EQ
,
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
),
label_int32_desc
.
get
(),
GetBasePtr
(
&
label_int32
),
equal_tensor_desc
.
get
(),
GetBasePtr
(
&
equal_tensor
));
// cast equal
Tensor
equal_fp32
(
VT
::
FP32
);
equal_fp32
.
Resize
(
indices
->
dims
());
equal_fp32
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
equal_fp32_desc
(
equal_fp32
);
cnnlCastDataType_t
equal_cast_type
=
GetCastDataType
(
VT
::
BOOL
,
VT
::
FP32
);
MLUCnnl
::
Cast
(
ctx
,
equal_cast_type
,
equal_tensor_desc
.
get
(),
GetBasePtr
(
&
equal_tensor
),
equal_fp32_desc
.
get
(),
GetBasePtr
(
&
equal_fp32
));
// [correct]
// reduce_max
Tensor
correct_max
(
VT
::
FP32
);
correct_max
.
Resize
(
framework
::
make_ddim
({
num_samples
}));
correct_max
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
correct_max_desc
(
correct_max
);
MLUCnnlReduceDesc
reduce_max_desc
(
{
1
},
CNNL_REDUCE_MAX
,
ToCnnlDataType
<
float
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduce_max_desc
.
get
(),
nullptr
,
equal_fp32_desc
.
get
(),
GetBasePtr
(
&
equal_fp32
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
correct_max_desc
.
get
(),
GetBasePtr
(
&
correct_max
));
// reduce_sum
Tensor
correct_sum
(
VT
::
FP32
);
correct_sum
.
Resize
(
correct
->
dims
());
correct_sum
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
correct_sum_desc
(
correct_sum
);
MLUCnnlReduceDesc
reduce_sum_desc
(
{
0
},
CNNL_REDUCE_ADD
,
ToCnnlDataType
<
float
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_NO_INDICES
,
CNNL_32BIT_INDICES
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduce_sum_desc
.
get
(),
nullptr
,
correct_max_desc
.
get
(),
GetBasePtr
(
&
correct_max
),
0
/*indices_size*/
,
nullptr
,
nullptr
,
correct_sum_desc
.
get
(),
GetBasePtr
(
&
correct_sum
));
// cast to int
correct
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
correct_desc
(
*
correct
);
cnnlCastDataType_t
correct_cast_type
=
GetCastDataType
(
VT
::
FP32
,
VT
::
INT32
);
MLUCnnl
::
Cast
(
ctx
,
correct_cast_type
,
correct_sum_desc
.
get
(),
GetBasePtr
(
&
correct_sum
),
correct_desc
.
get
(),
GetBasePtr
(
correct
));
// [total]
total
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
total_desc
(
*
total
);
MLUCnnl
::
Fill
(
ctx
,
num_samples
,
total_desc
.
get
(),
GetBasePtr
(
total
));
// use `total` of type `float32` for calculating accuracy
Tensor
total_fp32
(
VT
::
FP32
);
total_fp32
.
Resize
(
total
->
dims
());
total_fp32
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
total_fp32_desc
(
total_fp32
);
MLUCnnl
::
Fill
(
ctx
,
static_cast
<
float
>
(
num_samples
),
total_fp32_desc
.
get
(),
GetBasePtr
(
&
total_fp32
));
// [accuracy]
accuracy
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
accuracy_desc
(
*
accuracy
);
MLUCnnl
::
Div
(
ctx
,
CNNL_COMPUTATION_HIGH_PRECISION
,
correct_sum_desc
.
get
(),
GetBasePtr
(
&
correct_sum
),
total_fp32_desc
.
get
(),
GetBasePtr
(
&
total_fp32
),
accuracy_desc
.
get
(),
GetBasePtr
(
accuracy
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
accuracy
,
ops
::
AccuracyMLUKernel
<
float
>
,
ops
::
AccuracyMLUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
AccuracyMLUKernel
<
int16_t
>
,
ops
::
AccuracyMLUKernel
<
int64_t
>
,
ops
::
AccuracyMLUKernel
<
uint8_t
>
,
ops
::
AccuracyMLUKernel
<
int
>
);
python/paddle/fluid/tests/unittests/mlu/test_accuracy_op_mlu.py
0 → 100755
浏览文件 @
383de295
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
class
TestAccuracyOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"accuracy"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
dtype
=
np
.
float32
self
.
init_dtype
()
n
=
8192
infer
=
np
.
random
.
random
((
n
,
1
)).
astype
(
self
.
dtype
)
indices
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int32'
)
label
=
np
.
random
.
randint
(
0
,
2
,
(
n
,
1
)).
astype
(
'int32'
)
self
.
inputs
=
{
'Out'
:
infer
,
'Indices'
:
indices
,
"Label"
:
label
}
num_correct
=
0
for
rowid
in
range
(
n
):
for
ele
in
indices
[
rowid
]:
if
ele
==
label
[
rowid
]:
num_correct
+=
1
break
self
.
outputs
=
{
'Accuracy'
:
np
.
array
([
num_correct
/
float
(
n
)]).
astype
(
self
.
dtype
),
'Correct'
:
np
.
array
([
num_correct
]).
astype
(
"int32"
),
'Total'
:
np
.
array
([
n
]).
astype
(
"int32"
)
}
def
init_dtype
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestAccuracyOpFp16
(
TestAccuracyOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-3
)
class
TestAccuracyOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# The input type of accuracy_op must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([[
-
1
]]),
[[
1
]],
fluid
.
MLUPlace
(
0
))
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
accuracy
,
x1
,
label
)
self
.
assertRaises
(
TypeError
,
paddle
.
metric
.
accuracy
,
x1
,
label
)
# The input dtype of accuracy_op must be float32 or float64.
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
accuracy
,
x2
,
label
)
self
.
assertRaises
(
TypeError
,
paddle
.
metric
.
accuracy
,
x2
,
label
)
x3
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
[
-
1
,
2
],
dtype
=
"float16"
)
fluid
.
layers
.
accuracy
(
input
=
x3
,
label
=
label
)
paddle
.
metric
.
accuracy
(
input
=
x3
,
label
=
label
)
class
TestAccuracyAPI1
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
predictions
=
paddle
.
static
.
data
(
shape
=
[
2
,
5
],
name
=
"predictions"
,
dtype
=
"float32"
)
self
.
label
=
paddle
.
static
.
data
(
shape
=
[
2
,
1
],
name
=
"labels"
,
dtype
=
"int32"
)
self
.
result
=
paddle
.
static
.
accuracy
(
input
=
self
.
predictions
,
label
=
self
.
label
,
k
=
1
)
self
.
input_predictions
=
np
.
array
(
[[
0.2
,
0.1
,
0.4
,
0.1
,
0.1
],
[
0.2
,
0.3
,
0.1
,
0.15
,
0.25
]],
dtype
=
"float32"
)
self
.
input_labels
=
np
.
array
([[
2
],
[
0
]],
dtype
=
"int32"
)
self
.
expect_value
=
np
.
array
([
0.5
],
dtype
=
'float32'
)
def
test_api
(
self
):
exe
=
paddle
.
static
.
Executor
()
result
,
=
exe
.
run
(
feed
=
{
"predictions"
:
self
.
input_predictions
,
'labels'
:
self
.
input_labels
},
fetch_list
=
[
self
.
result
.
name
])
self
.
assertEqual
((
result
==
self
.
expect_value
).
all
(),
True
)
class
TestAccuracyAPI2
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
predictions
=
paddle
.
to_tensor
(
[[
0.2
,
0.1
,
0.4
,
0.1
,
0.1
],
[
0.2
,
0.3
,
0.1
,
0.15
,
0.25
]],
dtype
=
'float32'
)
label
=
paddle
.
to_tensor
([[
2
],
[
0
]],
dtype
=
"int32"
)
result
=
paddle
.
static
.
accuracy
(
input
=
predictions
,
label
=
label
,
k
=
1
)
expect_value
=
np
.
array
([
0.5
],
dtype
=
'float32'
)
self
.
assertEqual
((
result
.
numpy
()
==
expect_value
).
all
(),
True
)
class
TestAccuracyAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
predictions
=
paddle
.
to_tensor
(
[[
0.2
,
0.1
,
0.4
,
0.1
,
0.1
],
[
0.2
,
0.3
,
0.1
,
0.15
,
0.25
]],
dtype
=
'float32'
)
label
=
paddle
.
to_tensor
([[
2
],
[
0
]],
dtype
=
"int32"
)
result
=
paddle
.
metric
.
accuracy
(
input
=
predictions
,
label
=
label
,
k
=
1
)
expect_value
=
np
.
array
([
0.5
],
dtype
=
'float32'
)
self
.
assertEqual
((
result
.
numpy
()
==
expect_value
).
all
(),
True
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录