未验证 提交 37216a8f 编写于 作者: H Haohongxiang 提交者: GitHub

[Dygraph] Support new apis in ProcessGroupNCCL (#43918)

* fix conflict

* new pg apis

* add docs of new apis

* update

* fix coverage

* update

* fix bug

* fix reduce scatter

* fix api

* update
Co-authored-by: NForFishes <2282912238@qq.com>
上级 02e4f1f8
...@@ -46,6 +46,7 @@ enum class CommType : std::uint8_t { ...@@ -46,6 +46,7 @@ enum class CommType : std::uint8_t {
SEND = 9, SEND = 9,
RECV = 10, RECV = 10,
BARRIER = 11, BARRIER = 11,
ALLTOALL_SINGLE = 12,
UNKNOWN = 100, UNKNOWN = 100,
}; };
...@@ -143,6 +144,15 @@ class ProcessGroup { ...@@ -143,6 +144,15 @@ class ProcessGroup {
"ProcessGroup%s does not support AllToAll", GetBackendName())); "ProcessGroup%s does not support AllToAll", GetBackendName()));
} }
virtual std::shared_ptr<ProcessGroup::Task> AllToAll_Single(
std::vector<phi::DenseTensor>&, // NOLINT
std::vector<phi::DenseTensor>&, // NOLINT
std::vector<int64_t>&,
std::vector<int64_t>&) {
PADDLE_THROW(platform::errors::InvalidArgument(
"ProcessGroup%s does not support AllToAll_Single", GetBackendName()));
}
virtual std::shared_ptr<ProcessGroup::Task> Reduce( virtual std::shared_ptr<ProcessGroup::Task> Reduce(
std::vector<phi::DenseTensor>&, // NOLINT std::vector<phi::DenseTensor>&, // NOLINT
std::vector<phi::DenseTensor>&, // NOLINT std::vector<phi::DenseTensor>&, // NOLINT
...@@ -159,6 +169,14 @@ class ProcessGroup { ...@@ -159,6 +169,14 @@ class ProcessGroup {
"ProcessGroup%s does not support Scatter", GetBackendName())); "ProcessGroup%s does not support Scatter", GetBackendName()));
} }
virtual std::shared_ptr<ProcessGroup::Task> _ReduceScatterBase(
phi::DenseTensor&, // NOLINT
phi::DenseTensor&, // NOLINT
const ReduceScatterOptions&) { // NOLINT
PADDLE_THROW(platform::errors::InvalidArgument(
"ProcessGroup%s does not support ReduceScatter", GetBackendName()));
}
protected: protected:
const int rank_; const int rank_;
const int size_; const int size_;
......
...@@ -85,6 +85,34 @@ bool ProcessGroupNCCL::NCCLTask::IsCompleted() { ...@@ -85,6 +85,34 @@ bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
return true; return true;
} }
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>& split_sizes,
std::vector<int64_t> tensor_shape) {
int64_t len_size = split_sizes.size();
if (len_size == 0) {
PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
true,
platform::errors::InvalidArgument(
"Tensor's dim[0] must be divisible by group size "
"when split_sizes not given."));
split_sizes.insert(split_sizes.end(),
size_,
static_cast<int64_t>(tensor_shape[0] / size_));
} else {
PADDLE_ENFORCE_EQ(
len_size == size_,
true,
platform::errors::InvalidArgument(
"The length of split_sizes must be equal to group size."));
auto sum_size = std::accumulate(
split_sizes.begin(), split_sizes.end(), static_cast<int64_t>(0));
PADDLE_ENFORCE_EQ(
sum_size == tensor_shape[0],
true,
platform::errors::InvalidArgument(
"The sum of split_sizes must be equal to tensor's dim[0]."));
}
}
// TODO(sheniang03): Add timeout for wait, now timeout unused // TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) { bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
SynchronizeStreams(); SynchronizeStreams();
...@@ -637,7 +665,69 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll( ...@@ -637,7 +665,69 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
} }
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}, },
CommType::ALLREDUCE); CommType::ALLTOALL);
}
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
std::vector<phi::DenseTensor>& in_tensors,
std::vector<phi::DenseTensor>& out_tensors,
std::vector<int64_t>& in_sizes,
std::vector<int64_t>& out_sizes) {
PADDLE_ENFORCE_EQ(
CheckTensorsInCudaPlace(in_tensors),
true,
platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
PADDLE_ENFORCE_EQ(
CheckTensorsInCudaPlace(out_tensors),
true,
platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
return Collective(
in_tensors,
out_tensors,
[&](phi::DenseTensor& input,
phi::DenseTensor& output,
ncclComm_t comm,
const gpuStream_t& stream) {
PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
true,
platform::errors::InvalidArgument(
"The dtypes of input and output must be equal."));
std::vector<int64_t> in_dims = phi::vectorize(input.dims());
std::vector<int64_t> out_dims = phi::vectorize(output.dims());
CheckSplitSizes(in_sizes, in_dims);
CheckSplitSizes(out_sizes, out_dims);
size_t in_offset = 0, out_offset = 0;
size_t in_length = 0, out_length = 0;
size_t in_row_size = input.numel() / in_dims[0];
size_t out_row_size = output.numel() / out_dims[0];
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
for (auto i = 0; i < size_; i++) {
in_length = in_sizes[i] * in_row_size;
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
GetPointerByOffset(input.data(), in_offset, input.dtype()),
in_length,
platform::ToNCCLDataType(input.dtype()),
i,
comm,
stream));
in_offset += in_length;
out_length = out_sizes[i] * out_row_size;
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
GetPointerByOffset(output.data(), out_offset, input.dtype()),
out_length,
platform::ToNCCLDataType(input.dtype()),
i,
comm,
stream));
out_offset += out_length;
}
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
},
CommType::ALLTOALL_SINGLE);
} }
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce( std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
...@@ -721,5 +811,57 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter( ...@@ -721,5 +811,57 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
CommType::SCATTER); CommType::SCATTER);
} }
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
phi::DenseTensor& out_tensor,
phi::DenseTensor& in_tensor,
const ReduceScatterOptions& opts) {
// auto tensor = out_tensors.back();
PADDLE_ENFORCE_EQ(
out_tensor.dtype(),
in_tensor.dtype(),
platform::errors::InvalidArgument(
"Input tensor and output tensor should be same dtype."));
PADDLE_ENFORCE_EQ(
out_tensor.numel() * size_,
in_tensor.numel(),
platform::errors::InvalidArgument("input tensor must be the same size as "
"output tensor size times world_size"));
auto inputs = std::vector<phi::DenseTensor>{in_tensor};
auto outputs = std::vector<phi::DenseTensor>{out_tensor};
return Collective(
inputs,
outputs,
[&](phi::DenseTensor& input,
phi::DenseTensor& output,
ncclComm_t comm,
const gpuStream_t& stream) {
if (FLAGS_use_stream_safe_cuda_allocator) {
platform::CUDADeviceGuard cuda_guard;
cuda_guard.SetDevice(output.place());
memory::RecordStream(output.Holder(), stream);
}
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
input.data(),
output.data(),
output.numel(),
platform::ToNCCLDataType(input.dtype()),
ToNCCLRedType(opts.reduce_op),
comm,
stream));
},
CommType::REDUCE_SCATTER);
}
void ProcessGroupNCCL::GroupStart() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}
void ProcessGroupNCCL::GroupEnd() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}
} // namespace distributed } // namespace distributed
} // namespace paddle } // namespace paddle
...@@ -129,6 +129,12 @@ class ProcessGroupNCCL : public ProcessGroup { ...@@ -129,6 +129,12 @@ class ProcessGroupNCCL : public ProcessGroup {
std::vector<phi::DenseTensor>& in, std::vector<phi::DenseTensor>& in,
std::vector<phi::DenseTensor>& out) override; std::vector<phi::DenseTensor>& out) override;
std::shared_ptr<ProcessGroup::Task> AllToAll_Single(
std::vector<phi::DenseTensor>& in,
std::vector<phi::DenseTensor>& out,
std::vector<int64_t>& in_sizes,
std::vector<int64_t>& out_sizes) override;
std::shared_ptr<ProcessGroup::Task> Reduce( std::shared_ptr<ProcessGroup::Task> Reduce(
std::vector<phi::DenseTensor>& tensors, std::vector<phi::DenseTensor>& tensors,
std::vector<phi::DenseTensor>& out_tensors, std::vector<phi::DenseTensor>& out_tensors,
...@@ -139,6 +145,15 @@ class ProcessGroupNCCL : public ProcessGroup { ...@@ -139,6 +145,15 @@ class ProcessGroupNCCL : public ProcessGroup {
std::vector<phi::DenseTensor>& out_tensors, std::vector<phi::DenseTensor>& out_tensors,
const ScatterOptions&) override; const ScatterOptions&) override;
std::shared_ptr<ProcessGroup::Task> _ReduceScatterBase(
phi::DenseTensor&, // NOLINT
phi::DenseTensor&, // NOLINT
const ReduceScatterOptions&) override;
static void GroupStart();
static void GroupEnd();
protected: protected:
virtual std::shared_ptr<ProcessGroupNCCL::NCCLTask> CreateTask( virtual std::shared_ptr<ProcessGroupNCCL::NCCLTask> CreateTask(
std::vector<Place> places, std::vector<Place> places,
...@@ -162,8 +177,8 @@ class ProcessGroupNCCL : public ProcessGroup { ...@@ -162,8 +177,8 @@ class ProcessGroupNCCL : public ProcessGroup {
std::set<int> used_place_ids_; std::set<int> used_place_ids_;
private: private:
void BcastNCCLId(std::vector<ncclUniqueId>& nccl_ids, void BcastNCCLId(std::vector<ncclUniqueId>& nccl_ids, // NOLINT
int root, // NOLINT int root, // NOLINT
int server_fd); int server_fd);
void BroadcastUniqueNCCLID(std::vector<ncclUniqueId>& nccl_ids); // NOLINT void BroadcastUniqueNCCLID(std::vector<ncclUniqueId>& nccl_ids); // NOLINT
...@@ -190,6 +205,9 @@ class ProcessGroupNCCL : public ProcessGroup { ...@@ -190,6 +205,9 @@ class ProcessGroupNCCL : public ProcessGroup {
void CreateNCCLManagerCache(const std::string& places_key, void CreateNCCLManagerCache(const std::string& places_key,
const std::vector<Place>& places); const std::vector<Place>& places);
void CheckSplitSizes(std::vector<int64_t>& split_sizes,
std::vector<int64_t> tensor_shape);
}; };
} // namespace distributed } // namespace distributed
......
...@@ -45,5 +45,9 @@ struct ScatterOptions { ...@@ -45,5 +45,9 @@ struct ScatterOptions {
int root_rank = 0; int root_rank = 0;
}; };
struct ReduceScatterOptions {
ReduceOp reduce_op = ReduceOp::SUM;
};
} // namespace distributed } // namespace distributed
} // namespace paddle } // namespace paddle
...@@ -225,6 +225,30 @@ void BindDistributed(py::module *m) { ...@@ -225,6 +225,30 @@ void BindDistributed(py::module *m) {
py::arg("out"), py::arg("out"),
py::call_guard<py::gil_scoped_release>()) py::call_guard<py::gil_scoped_release>())
.def(
"alltoall_single",
[](distributed::ProcessGroup &self,
py::handle py_in_tensor,
py::handle py_out_tensor,
std::vector<int64_t> in_sizes,
std::vector<int64_t> out_sizes) {
auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
in_tensor.impl());
auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
out_tensor.impl());
std::vector<phi::DenseTensor> in_tensors = {*in_dense};
std::vector<phi::DenseTensor> out_tensors = {*out_dense};
return self.AllToAll_Single(
in_tensors, out_tensors, in_sizes, out_sizes);
},
py::arg("in"),
py::arg("out"),
py::arg("in_sizes"),
py::arg("out_sizes"),
py::call_guard<py::gil_scoped_release>())
.def( .def(
"reduce", "reduce",
[](distributed::ProcessGroup &self, [](distributed::ProcessGroup &self,
...@@ -244,7 +268,6 @@ void BindDistributed(py::module *m) { ...@@ -244,7 +268,6 @@ void BindDistributed(py::module *m) {
py::arg("dst"), py::arg("dst"),
py::arg("op") = distributed::ReduceOp::SUM, py::arg("op") = distributed::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>()) py::call_guard<py::gil_scoped_release>())
.def( .def(
"scatter", "scatter",
[](distributed::ProcessGroup &self, [](distributed::ProcessGroup &self,
...@@ -266,23 +289,50 @@ void BindDistributed(py::module *m) { ...@@ -266,23 +289,50 @@ void BindDistributed(py::module *m) {
py::arg("in"), py::arg("in"),
py::arg("out"), py::arg("out"),
py::arg("src"), py::arg("src"),
py::call_guard<py::gil_scoped_release>())
.def(
"_reduce_scatter_base",
[](distributed::ProcessGroup &self,
py::handle py_out_tensor,
py::handle py_in_tensor,
distributed::ReduceOp op) {
auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
distributed::ReduceScatterOptions opts;
opts.reduce_op = op;
auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(
out_tensor.impl());
auto dense_in = std::dynamic_pointer_cast<phi::DenseTensor>(
in_tensor.impl());
return self._ReduceScatterBase(*dense_out, *dense_in, opts);
},
py::arg("out_tensor"),
py::arg("in_tensor"),
py::arg("op") = distributed::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>()); py::call_guard<py::gil_scoped_release>());
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL) #if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
py::class_<distributed::ProcessGroupNCCL, auto processGroupNCCL =
std::shared_ptr<distributed::ProcessGroupNCCL>>( py::class_<distributed::ProcessGroupNCCL,
*m, "ProcessGroupNCCL", ProcessGroup) std::shared_ptr<distributed::ProcessGroupNCCL>>(
.def(py::init<const std::shared_ptr<distributed::Store> &, *m, "ProcessGroupNCCL", ProcessGroup)
int, .def(py::init<const std::shared_ptr<distributed::Store> &,
int, int,
const platform::CUDAPlace &, int,
int>(), const platform::CUDAPlace &,
py::arg("store"), int>(),
py::arg("rank"), py::arg("store"),
py::arg("world_size"), py::arg("rank"),
py::arg("place"), py::arg("world_size"),
py::arg("group_id") = 0, py::arg("place"),
py::call_guard<py::gil_scoped_release>()); py::arg("group_id") = 0,
py::call_guard<py::gil_scoped_release>());
processGroupNCCL.def_static(
"group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
processGroupNCCL.def_static(
"group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });
#endif #endif
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \ #if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
......
...@@ -41,6 +41,14 @@ from .collective import recv # noqa: F401 ...@@ -41,6 +41,14 @@ from .collective import recv # noqa: F401
from .collective import get_group # noqa: F401 from .collective import get_group # noqa: F401
from .collective import send # noqa: F401 from .collective import send # noqa: F401
from .collective import wait # noqa: F401 from .collective import wait # noqa: F401
from .collective import is_initialized # noqa: F401
from .collective import destroy_process_group # noqa: F401
from .collective import alltoall_single # noqa: F401
from .collective import isend # noqa: F401
from .collective import irecv # noqa: F401
from .collective import batch_isend_irecv # noqa: F401
from .collective import P2POp # noqa: F401
from .collective import reduce_scatter # noqa: F401
from .auto_parallel import shard_op # noqa: F401 from .auto_parallel import shard_op # noqa: F401
from .auto_parallel import shard_tensor # noqa: F401 from .auto_parallel import shard_tensor # noqa: F401
...@@ -59,33 +67,11 @@ from . import utils # noqa: F401 ...@@ -59,33 +67,11 @@ from . import utils # noqa: F401
from .sharding import * # noqa: F401 from .sharding import * # noqa: F401
__all__ = [ # noqa __all__ = [ # noqa
"spawn", "spawn", "launch", "scatter", "broadcast", "ParallelEnv", "new_group",
"launch", "init_parallel_env", "gloo_init_parallel_env", "gloo_barrier",
"scatter", "gloo_release", "QueueDataset", "split", "CountFilterEntry",
"broadcast", "ShowClickEntry", "get_world_size", "get_group", "all_gather",
"ParallelEnv", "InMemoryDataset", "barrier", "all_reduce", "alltoall", "send", "reduce",
"new_group", "recv", "ReduceOp", "wait", "get_rank", "ProbabilityEntry", "ParallelMode",
"init_parallel_env", "is_initialized", "isend", "irecv", "reduce_scatter"
"gloo_init_parallel_env",
"gloo_barrier",
"gloo_release",
"QueueDataset",
"split",
"CountFilterEntry",
"ShowClickEntry",
"get_world_size",
"get_group",
"all_gather",
"InMemoryDataset",
"barrier",
"all_reduce",
"alltoall",
"send",
"reduce",
"recv",
"ReduceOp",
"wait",
"get_rank",
"ProbabilityEntry",
"ParallelMode",
] ]
...@@ -36,6 +36,7 @@ import paddle.fluid as fluid ...@@ -36,6 +36,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle import _C_ops from paddle import _C_ops
import paddle.fluid.dygraph_utils as dygraph_utils import paddle.fluid.dygraph_utils as dygraph_utils
import contextlib
__all__ = [] __all__ = []
...@@ -136,6 +137,10 @@ _group_map = {} ...@@ -136,6 +137,10 @@ _group_map = {}
# Dict[name, Group] # Dict[name, Group]
_group_map_by_name = {} _group_map_by_name = {}
# backend map by group : the map of all backend from their groups
# Dict[group, backend]
_group_map_backend = {}
# Name of the default group for init_parallel_env # Name of the default group for init_parallel_env
_default_group_name = "_default_pg" _default_group_name = "_default_pg"
...@@ -175,9 +180,8 @@ def _get_group_map_by_name(): ...@@ -175,9 +180,8 @@ def _get_group_map_by_name():
def _get_default_group(): def _get_default_group():
global _group_map_by_name global _group_map_by_name
assert _default_group_name in _group_map_by_name, ( assert is_initialized(), ("Call paddle.distributed.init_parallel_env first "
"Call paddle.distributed.init_parallel_env first " "to initialize the distributed environment.")
"to initialize the distributed environment.")
return _get_group_map_by_name()[_default_group_name] return _get_group_map_by_name()[_default_group_name]
...@@ -193,10 +197,29 @@ def _set_group_map_by_name(name, group): ...@@ -193,10 +197,29 @@ def _set_group_map_by_name(name, group):
_group_map_by_name[name] = group _group_map_by_name[name] = group
def _set_group_map_backend(group, backend):
global _group_map_backend
assert group not in _group_map_backend
_group_map_backend[group] = backend
def _new_ring_id(): def _new_ring_id():
return len(_get_group_map()) + max(_get_global_env().nrings, 9) return len(_get_group_map()) + max(_get_global_env().nrings, 9)
def _get_reduce_op(reduce_op, func_name):
if reduce_op == ReduceOp.SUM:
return core.ReduceOp.SUM
elif reduce_op == ReduceOp.MAX:
return core.ReduceOp.MAX
elif reduce_op == ReduceOp.MIN:
return core.ReduceOp.MIN
elif reduce_op == ReduceOp.PROD:
return core.ReduceOp.PRODUCT
else:
raise ValueError("Unknown reduce_op type for {}.".format(func_name))
def get_group(id=0): def get_group(id=0):
""" """
...@@ -400,6 +423,7 @@ def new_group(ranks=None, backend=None): ...@@ -400,6 +423,7 @@ def new_group(ranks=None, backend=None):
group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name) group = Group(rank, size, id=gid, ranks=ranks, pg=pg, name=group_name)
_group_map_by_name[group_name] = group _group_map_by_name[group_name] = group
_group_map[gid] = group _group_map[gid] = group
_group_map_backend[group] = backend
# TODO(shenliang03): This is a temporary solution to solve the problem of # TODO(shenliang03): This is a temporary solution to solve the problem of
# hang caused by tcp # hang caused by tcp
...@@ -462,6 +486,75 @@ def new_group(ranks=None, backend=None): ...@@ -462,6 +486,75 @@ def new_group(ranks=None, backend=None):
return gp return gp
def is_initialized():
"""
Check whether the distributed environment has been initialized
Returns (bool): `True` if distributed environment has been initialized, otherwise `False`.
Examples:
.. code-block:: python
# required: distributed
import paddle
print(paddle.distributed.is_initialized())
# False
paddle.distributed.init_parallel_env()
print(paddle.distributed.is_initialized())
# True
"""
global _group_map_by_name
return _default_group_name in _group_map_by_name
def destroy_process_group(group=None):
"""
Destroy a given group for communication
Args:
group (ProcessGroup, optional): The group to be destroyed. All of process groups, including
the default group, will be destroyed and the distributed
environment will be deinitialized.
Returns : None
Examples:
.. code-block:: python
# required: distributed
import paddle
paddle.distributed.init_parallel_env()
group = paddle.distributed.new_group([0, 1])
paddle.distributed.destroy_process_group(group)
print(paddle.distributed.is_initialized())
# True
paddle.distributed.destroy_process_group()
print(paddle.distributed.is_initialized())
# False
"""
global _group_map
global _group_map_by_name
pg = _get_default_group() if group is None else group
assert _group_map.get(pg.id, None) is not None, "Invalid group."
if group is None:
_group_map.clear()
_group_map_by_name.clear()
_group_map_backend.clear()
else:
del _group_map[pg.id]
del _group_map_by_name[pg.name]
del _group_map_backend[pg]
def wait(tensor, group=None, use_calc_stream=True): def wait(tensor, group=None, use_calc_stream=True):
""" """
...@@ -663,16 +756,7 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True): ...@@ -663,16 +756,7 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
return return
if in_dygraph_mode(): if in_dygraph_mode():
if op == ReduceOp.SUM: op_type = _get_reduce_op(op, "all_reduce")
op_type = core.ReduceOp.SUM
elif op == ReduceOp.MAX:
op_type = core.ReduceOp.MAX
elif op == ReduceOp.MIN:
op_type = core.ReduceOp.MIN
elif op == ReduceOp.PROD:
op_type = core.ReduceOp.PRODUCT
else:
raise ValueError("Unknown reduce_op type for allreduce.")
group = _get_default_group() if group is None else group group = _get_default_group() if group is None else group
task = group.process_group.allreduce(tensor, op_type) task = group.process_group.allreduce(tensor, op_type)
if use_calc_stream: if use_calc_stream:
...@@ -768,16 +852,7 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True): ...@@ -768,16 +852,7 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
return return
if in_dygraph_mode(): if in_dygraph_mode():
if op == ReduceOp.SUM: op_type = _get_reduce_op(op, "reduce")
op_type = core.ReduceOp.SUM
elif op == ReduceOp.MAX:
op_type = core.ReduceOp.MAX
elif op == ReduceOp.MIN:
op_type = core.ReduceOp.MIN
elif op == ReduceOp.PROD:
op_type = core.ReduceOp.PRODUCT
else:
raise ValueError("Unknown reduce_op type for reduce.")
group = _get_default_group() if group is None else group group = _get_default_group() if group is None else group
gdst = group.get_group_rank(dst) gdst = group.get_group_rank(dst)
assert gdst >= 0, ("dst rank out of group, need global rank") assert gdst >= 0, ("dst rank out of group, need global rank")
...@@ -1781,10 +1856,10 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True): ...@@ -1781,10 +1856,10 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
Args: Args:
in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type in_tensor_list (list): A list of input Tensors. Every element in the list must be a Tensor whose data type
should be float16, float32, float64, int32 or int64. should be float16, float32, float64, int32 or int64.
out_tensor_list (Tensor): A list of output Tensors. The data type of its elements should be the same as the out_tensor_list (list): A list of output Tensors. The data type of its elements should be the same as the
data type of the input Tensors. data type of the input Tensors.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None. group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True. use_calc_stream (bool, optional): Whether to use calculation stream (True) or communication stream. Default: True.
Returns: Returns:
None. None.
...@@ -1867,6 +1942,94 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True): ...@@ -1867,6 +1942,94 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
out_tensor_list.extend(paddle.split(out, nranks, 0)) out_tensor_list.extend(paddle.split(out, nranks, 0))
def alltoall_single(in_tensor,
out_tensor,
in_split_sizes=None,
out_split_sizes=None,
group=None,
use_calc_stream=True):
"""
Scatter a single input tensor to all participators and gather the received tensors in out_tensor.
.. note::
``alltoall_single`` is only supported in eager mode.
Args:
in_tensor (Tensor): Input tensor. The data type should be float16, float32, float64, int32 or int64.
out_tensor (Tensor): Output Tensor. The data type should be the same as the data type of the input Tensor.
in_split_sizes (list[int], optional): Split sizes of ``in_tensor`` for dim[0]. If not given, dim[0] of ``in_tensor``
must be divisible by group size and ``in_tensor`` will be scattered averagely to all participators. Default: None.
out_split_sizes (list[int], optional): Split sizes of ``out_tensor`` for dim[0]. If not given, dim[0] of ``out_tensor``
must be divisible by group size and ``out_tensor`` will be gathered averagely from all participators. Default: None.
group (Group, optional): The group instance return by ``new_group`` or None for global default group. Default: None.
use_calc_stream (bool, optional): Whether to use calculation stream (True) or communication stream. Default: True.
Returns:
None, if ``use_calc_stream`` is set to ``True``; ``Task`` of ``group``, if ``use_calc_stream`` is set to ``False``.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
size = dist.get_world_size()
# case 1
input = paddle.arange(2, dtype='int64') + rank * 2
# input for rank 0: [0, 1]
# input for rank 1: [2, 3]
output = paddle.empty([2], dtype='int64')
dist.alltoall_single(input, output)
# output for rank 0: [0, 2]
# output for rank 1: [1, 3]
# case 2
in_split_sizes = [i + 1 for i in range(size)]
# in_split_sizes for rank 0: [1, 2] and for rank 1: [1, 2]
out_split_sizes = [rank + 1 for i in range(size)]
# out_split_sizes for rank 0: [1, 1] and for rank 1: [2, 2]
input = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank
# input for rank 0: [[0., 0.], [0., 0.], [0., 0.]]
# input for rank 1: [[1., 1.], [1., 1.], [1., 1.]]
output = paddle.empty([(rank + 1) * size, size], dtype='float32')
group = dist.new_group([0, 1])
task = dist.alltoall_single(input,
output,
in_split_sizes,
out_split_sizes,
use_calc_stream=False,
group=group)
task.wait()
# output for rank 0: [[0., 0.], [1., 1.]]
# output for rank 1: [[0., 0.], [0., 0.], [1., 1.], [1., 1.]]
"""
if group is not None and not group.is_member():
return
assert in_dygraph_mode(), "Only suppport alltoall_single in eager mode."
# _check_single_tensor
group = _get_default_group() if group is None else group
in_split_sizes = [] if in_split_sizes is None else in_split_sizes
out_split_sizes = [] if out_split_sizes is None else out_split_sizes
task = group.process_group.alltoall_single(in_tensor, out_tensor,
in_split_sizes, out_split_sizes)
if use_calc_stream:
task.wait()
return
else:
return task
def send(tensor, dst=0, group=None, use_calc_stream=True): def send(tensor, dst=0, group=None, use_calc_stream=True):
""" """
Send a tensor to the receiver. Send a tensor to the receiver.
...@@ -1902,7 +2065,8 @@ def send(tensor, dst=0, group=None, use_calc_stream=True): ...@@ -1902,7 +2065,8 @@ def send(tensor, dst=0, group=None, use_calc_stream=True):
if in_dygraph_mode(): if in_dygraph_mode():
group = _get_default_group() if group is None else group group = _get_default_group() if group is None else group
task = group.process_group.send(tensor, dst) group_dst_rank = group.get_group_rank(dst)
task = group.process_group.send(tensor, group_dst_rank)
if use_calc_stream: if use_calc_stream:
task.wait() task.wait()
return None return None
...@@ -1964,7 +2128,8 @@ def recv(tensor, src=0, group=None, use_calc_stream=True): ...@@ -1964,7 +2128,8 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
if in_dygraph_mode(): if in_dygraph_mode():
group = _get_default_group() if group is None else group group = _get_default_group() if group is None else group
task = group.process_group.recv(tensor, src) group_src_rank = group.get_group_rank(src)
task = group.process_group.recv(tensor, group_src_rank)
if use_calc_stream: if use_calc_stream:
task.wait() task.wait()
return None return None
...@@ -1991,3 +2156,390 @@ def recv(tensor, src=0, group=None, use_calc_stream=True): ...@@ -1991,3 +2156,390 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
'dtype': tensor.dtype, 'dtype': tensor.dtype,
'use_calc_stream': use_calc_stream, 'use_calc_stream': use_calc_stream,
}) })
def _check_single_tensor(tensor, tensor_name):
if not isinstance(tensor, (core.eager.Tensor, paddle.Tensor)):
raise RuntimeError("Invalid function argument. Expected parameter {}"
"to be of type paddle.Tensor, but it's {}".format(
tensor_name, type(tensor)))
def _check_tensor_list(tensor_list, tensor_name):
if not isinstance(tensor_list, list) or \
not all(isinstance(t, (core.eager.Tensor, paddle.Tensor)) for t in tensor_list):
raise RuntimeError("Invalid function argument. Expected parameter {}"
"to be of type paddle.Tensor".format(tensor_name))
def isend(tensor, dst, group=None):
"""
Sends a tensor asynchronously
Args:
tensor (Tensor): The Tensor to send. Its data type
should be float16, float32, float64, int32 or int64.
dst (int): The destination rank.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
Returns:
A distributed task object.
Warning:
This API only supports the dygraph mode.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
data = paddle.to_tensor([7, 8, 9])
task = paddle.distributed.isend(data, dst=1)
else:
data = paddle.to_tensor([1, 2, 3])
task = paddle.distributed.irecv(data, src=0)
task.wait()
print(data)
# paddle.tensor([7, 8, 9]) # Rank-0
# paddle.tensor([7, 8, 9]) # Rank-1
"""
_check_single_tensor(tensor, "tensor")
if group is not None and not group.is_member():
return
if in_dygraph_mode():
group = _get_default_group() if group is None else group
group_dst_rank = group.get_group_rank(dst)
assert group_dst_rank >= 0, ("dst rank out of group, need global rank")
return group.process_group.send(tensor, group_dst_rank)
else:
raise RuntimeError("Don't support static graph mode currently.")
def irecv(tensor, src=None, group=None):
"""
Receive a tensor to the sender.
Args:
tensor (Tensor): The Tensor to receive. Its data type
should be float16, float32, float64, int32 or int64.
src (int): The source rank id.
group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
Returns:
A distributed task object.
Warning:
This API only supports the dygraph mode.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
data = paddle.to_tensor([7, 8, 9])
task = paddle.distributed.isend(data, dst=1)
else:
data = paddle.to_tensor([1, 2, 3])
task = paddle.distributed.irecv(data, src=0)
task.wait()
print(data)
# paddle.tensor([7, 8, 9]) # Rank-0
# paddle.tensor([7, 8, 9]) # Rank-1
"""
_check_single_tensor(tensor, "tensor")
if group is not None and not group.is_member():
return
if in_dygraph_mode():
group = _get_default_group() if group is None else group
group_src_rank = group.get_group_rank(src)
assert group_src_rank >= 0, ("src rank out of group, need global rank")
return group.process_group.recv(tensor, group_src_rank)
else:
raise RuntimeError("Don't support static graph mode currently.")
class P2POp(object):
"""
A class that makes point-to-point operations for "batch_isend_irecv".
This class creates the type of P2P operation, communication buffer, peer rank,
Group. Instances of this class will be passed to
``paddle.distributed.batch_isend_irecv`` for point-to-point communication.
Args:
op (callable): A function to send data to or receive data from a peer process.
The type of ``op`` is either ``paddle.distributed.isend`` or ``paddle.distributed.irecv``.
tensor (Tensor): Tensor to send or receive.
peer (int): The destination or source rank.
group (Group, optional): The group instance return by new_group or None for global
default group. Default: None.
"""
def __init__(self, op, tensor, peer, group=None):
if op not in [isend, irecv]:
raise RuntimeError("Invalid ``op`` function. Expected ``op`` "
"to be of type ``paddle.distributed.isend`` or "
"``paddle.distributed.irecv``.")
_check_single_tensor(tensor, "tensor")
self.op = op
self.tensor = tensor
self.peer = peer
self.group = _get_default_group() if group is None else group
@contextlib.contextmanager
def _with_batch_p2p_guard(backend):
if backend == "nccl":
core.ProcessGroupNCCL.group_start()
try:
yield
finally:
if backend == "nccl":
core.ProcessGroupNCCL.group_end()
def _check_p2p_op_list(p2p_op_list):
"""
Helper to check that the ``p2p_op_list`` is a list of P2POp instances and
all ops use the same backend.
"""
if not isinstance(p2p_op_list, list) or not all(
isinstance(p2p_op, P2POp) for p2p_op in p2p_op_list):
raise RuntimeError("Invalid ``p2p_op_list``. Each op is expected to "
"to be of type ``paddle.distributed.P2POp``.")
backend = _group_map_backend[p2p_op_list[0].group]
if not all(backend == _group_map_backend[p2p_op.group]
for p2p_op in p2p_op_list):
raise RuntimeError("All groups need to use the same backend.")
def batch_isend_irecv(p2p_op_list):
"""
Send or Receive a batch of tensors asynchronously and return a list of requests.
Process each of the point-to-point operations in ``p2p_op_list`` and return the
corresponding tasks. NCCL are currently supported.
Args:
p2p_op_list: A list of point-to-point operations(type of each operator is
``paddle.distributed.P2POp``). The order of the isend/irecv in the list
matters and it needs to match with corresponding isend/irecv on the
remote end.
Returns:
A list of distributed tasks returned by calling the corresponding
op in the op_list.
Warning:
This API only supports the dygraph mode.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
send_t = paddle.arange(2) + rank
# paddle.tensor([0, 1]) # Rank-0
# paddle.tensor([1, 2]) # Rank-1
recv_t = paddle.empty(shape=[2], dtype=send_t.dtype)
send_op = dist.P2POp(dist.isend, send_t, (rank + 1) % world_size)
recv_op = dist.P2POp(dist.irecv, recv_t, (rank - 1 + world_size) % world_size)
tasks = dist.batch_isend_irecv([send_op, recv_op])
for task in tasks:
task.wait()
print(recv_t)
# paddle.tensor([1, 2]) # Rank-0
# paddle.tensor([0, 1]) # Rank-1
"""
_check_p2p_op_list(p2p_op_list)
group = p2p_op_list[0].group
if group is not None and not group.is_member():
return
if in_dygraph_mode():
group = _get_default_group() if group is None else group
backend = _group_map_backend[group]
tasks = []
with _with_batch_p2p_guard(backend):
for p2p_op in p2p_op_list:
op = p2p_op.op
tensor = p2p_op.tensor
peer = p2p_op.peer
comm_group = p2p_op.group
task = op(tensor, peer, comm_group)
if task is not None:
tasks.append(task)
return tasks
else:
raise RuntimeError("Don't support static graph mode currently.")
def reduce_scatter(tensor,
tensor_list,
op=ReduceOp.SUM,
group=None,
use_calc_stream=True):
"""
Reduces, then scatters a list of tensors to all processes in a group
Args:
tensor (Tensor): Output tensor.
tensor_list (list[Tensor]): List of tensors to reduce and scatter.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
group (Group, optional): The group instance return by new_group or None for global
default group. Default: None.
use_calc_stream (bool, optional): Whether this op should be an async op.
Returns:
Async task handle, if use_calc_stream is set to False.
None, if use_calc_stream or if not part of the group.
Warning:
This API only supports the dygraph mode.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
t1 = paddle.to_tensor([0, 1])
t2 = paddle.to_tensor([2, 3])
else:
t1 = paddle.to_tensor([4, 5])
t2 = paddle.to_tensor([6, 7])
tensor_list = [t1, t2]
output = paddle.empty(shape=[2], dtype=tensor_list[0].dtype)
dist.reduce_scatter(output, tensor_list)
print(output)
# [4, 6] # Rank-0
# [8, 10] # Rank-1
"""
_check_single_tensor(tensor, "tensor")
_check_tensor_list(tensor_list, "tensor_list")
if group is not None and not group.is_member():
return
if in_dygraph_mode():
op_type = _get_reduce_op(op, "reduce_scatter")
group = _get_default_group() if group is None else group
temp = paddle.concat(tensor_list, axis=0)
task = group.process_group._reduce_scatter_base(tensor, temp, op_type)
if use_calc_stream:
task.wait()
return None
else:
return task
else:
raise RuntimeError("Don't support static graph mode currently.")
def _reduce_scatter_base(output,
input,
op=ReduceOp.SUM,
group=None,
use_calc_stream=True):
"""
Reduces, then scatters a flattened tensor to all processes in a group.
Args:
output (Tensor): Output tensor.
input (Tensor): Input tensor that is of size output tensor size times world size
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used.
use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream (False).
Default to True.
Returns:
Async task handle, if use_calc_stream is set to False.
None, if use_calc_stream or if not part of the group.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
rank = dist.get_rank()
world_size = dist.get_world_size()
input = paddle.arange(4) + rank
# [0, 1, 2, 3] # Rank-0
# [1, 2, 3, 4] # Rank-1
output = paddle.empty(shape=[2], dtype=input.dtype)
paddle.distributed.collective._reduce_scatter_base(output, input)
print(output)
# [1, 3] # Rank-0
# [5, 7] # Rank-1
"""
_check_single_tensor(output, "output")
_check_single_tensor(input, "input")
if group is not None and not group.is_member():
return
if in_dygraph_mode():
op_type = _get_reduce_op(op, "_reduce_scatter_base")
group = _get_default_group() if group is None else group
task = group.process_group._reduce_scatter_base(output, input, op_type)
if use_calc_stream:
task.wait()
return None
else:
return task
else:
raise RuntimeError("Don't support static graph mode currently.")
...@@ -42,6 +42,7 @@ from paddle.distributed.collective import _set_default_backend ...@@ -42,6 +42,7 @@ from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store from paddle.distributed.collective import _set_default_store
from paddle.distributed.collective import _new_process_group_impl from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group from paddle.distributed.collective import Group
from paddle.distributed.collective import _set_group_map_backend
__all__ = [] __all__ = []
...@@ -257,6 +258,7 @@ def init_parallel_env(): ...@@ -257,6 +258,7 @@ def init_parallel_env():
name=_default_group_name) name=_default_group_name)
_set_group_map_by_name(_default_group_name, group) _set_group_map_by_name(_default_group_name, group)
_set_group_map(0, group) _set_group_map(0, group)
_set_group_map_backend(group, backend)
parallel_helper._set_parallel_ctx(True) parallel_helper._set_parallel_ctx(True)
paddle.distributed.barrier(group=group) paddle.distributed.barrier(group=group)
......
...@@ -72,7 +72,10 @@ list(APPEND DIST_TEST_OPS test_auto_parallel_data_unshard) ...@@ -72,7 +72,10 @@ list(APPEND DIST_TEST_OPS test_auto_parallel_data_unshard)
list(APPEND DIST_TEST_OPS test_auto_parallel_save_load) list(APPEND DIST_TEST_OPS test_auto_parallel_save_load)
list(APPEND DIST_TEST_OPS test_auto_parallel_autoconvert) list(APPEND DIST_TEST_OPS test_auto_parallel_autoconvert)
list(APPEND DIST_TEST_OPS test_collective_process_group) list(APPEND DIST_TEST_OPS test_collective_process_group)
list(APPEND DIST_TEST_OPS test_collective_alltoall_single)
list(APPEND DIST_TEST_OPS test_eager_dist_api) list(APPEND DIST_TEST_OPS test_eager_dist_api)
list(APPEND DIST_TEST_OPS test_collective_batch_isend_irecv)
list(APPEND DIST_TEST_OPS test_collective_reduce_scatter)
set(MIXED_DIST_TEST_OPS ${DIST_TEST_OPS}) set(MIXED_DIST_TEST_OPS ${DIST_TEST_OPS})
#remove distribute unittests. #remove distribute unittests.
list(APPEND MIXED_DIST_TEST_OPS test_dgc_op) list(APPEND MIXED_DIST_TEST_OPS test_dgc_op)
...@@ -334,7 +337,11 @@ if((NOT WITH_GPU) AND (NOT WITH_ROCM)) ...@@ -334,7 +337,11 @@ if((NOT WITH_GPU) AND (NOT WITH_ROCM))
list(REMOVE_ITEM TEST_OPS test_auto_parallel_save_load) list(REMOVE_ITEM TEST_OPS test_auto_parallel_save_load)
list(REMOVE_ITEM TEST_OPS test_auto_parallel_autoconvert) list(REMOVE_ITEM TEST_OPS test_auto_parallel_autoconvert)
list(REMOVE_ITEM TEST_OPS test_collective_process_group) list(REMOVE_ITEM TEST_OPS test_collective_process_group)
list(REMOVE_ITEM TEST_OPS test_collective_alltoall_single)
list(REMOVE_ITEM TEST_OPS test_eager_dist_api) list(REMOVE_ITEM TEST_OPS test_eager_dist_api)
list(REMOVE_ITEM TEST_OPS test_collective_batch_isend_irecv)
list(REMOVE_ITEM TEST_OPS test_collective_reduce_scatter)
elseif(WITH_GPU) elseif(WITH_GPU)
if(${CUDNN_VERSION} VERSION_LESS 7100) if(${CUDNN_VERSION} VERSION_LESS 7100)
list(REMOVE_ITEM TEST_OPS test_conv2d_fusion_op) list(REMOVE_ITEM TEST_OPS test_conv2d_fusion_op)
...@@ -1569,8 +1576,10 @@ if(WITH_DISTRIBUTE ...@@ -1569,8 +1576,10 @@ if(WITH_DISTRIBUTE
set_tests_properties(test_auto_parallel_save_load PROPERTIES TIMEOUT 120) set_tests_properties(test_auto_parallel_save_load PROPERTIES TIMEOUT 120)
set_tests_properties(test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120) set_tests_properties(test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_process_group PROPERTIES TIMEOUT 120) set_tests_properties(test_collective_process_group PROPERTIES TIMEOUT 120)
set_tests_properties(test_collective_alltoall_single PROPERTIES TIMEOUT 60)
set_tests_properties(test_eager_dist_api PROPERTIES TIMEOUT 100) set_tests_properties(test_eager_dist_api PROPERTIES TIMEOUT 100)
set_tests_properties(test_collective_batch_isend_irecv PROPERTIES TIMEOUT 100)
set_tests_properties(test_collective_reduce_scatter PROPERTIES TIMEOUT 100)
if(${NCCL_VERSION} VERSION_GREATER_EQUAL 2212) if(${NCCL_VERSION} VERSION_GREATER_EQUAL 2212)
set_tests_properties(test_parallel_dygraph_sparse_embedding set_tests_properties(test_parallel_dygraph_sparse_embedding
PROPERTIES TIMEOUT 200) PROPERTIES TIMEOUT 200)
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle import framework
class TestCollectiveAllToAllSingle(unittest.TestCase):
def setUp(self):
assert not paddle.distributed.is_initialized(), \
"The distributed environment has not been initialized."
dist.init_parallel_env()
assert paddle.distributed.is_initialized(), \
"The distributed environment has been initialized."
paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
def test_collective_alltoall_single(self):
rank = dist.get_rank()
size = dist.get_world_size()
# case 1
input = paddle.ones([size, size], dtype='int64') * rank
output = paddle.empty([size, size], dtype='int64')
expected_output = paddle.concat(
[paddle.ones([1, size], dtype='int64') * i for i in range(size)])
group = dist.new_group([0, 1])
dist.alltoall_single(input, output, group=group)
np.testing.assert_allclose(output.numpy(), expected_output.numpy())
dist.destroy_process_group(group)
# case 2
in_split_sizes = [i + 1 for i in range(size)]
out_split_sizes = [rank + 1 for i in range(size)]
input = paddle.ones([sum(in_split_sizes), size], dtype='float32') * rank
output = paddle.empty([(rank + 1) * size, size], dtype='float32')
expected_output = paddle.concat([
paddle.ones([rank + 1, size], dtype='float32') * i
for i in range(size)
])
group = dist.new_group([0, 1])
task = dist.alltoall_single(input,
output,
in_split_sizes,
out_split_sizes,
use_calc_stream=False,
group=group)
task.wait()
np.testing.assert_allclose(output.numpy(), expected_output.numpy())
dist.destroy_process_group(group)
def tearDown(self):
dist.destroy_process_group()
assert not paddle.distributed.is_initialized(), \
"The distributed environment has been deinitialized."
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle import framework
class TestCollectiveBatchIsendIrecv(unittest.TestCase):
def setUp(self):
dist.init_parallel_env()
paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
def test_collective_batch_isend_irecv(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
send_t = paddle.arange(2) + rank
# paddle.tensor([0, 1]) # Rank-0
# paddle.tensor([1, 2]) # Rank-1
recv_t = paddle.empty(shape=[2], dtype=send_t.dtype)
send_op = dist.P2POp(dist.isend, send_t, (rank + 1) % world_size)
recv_op = dist.P2POp(dist.irecv, recv_t,
(rank - 1 + world_size) % world_size)
tasks = dist.batch_isend_irecv([send_op, recv_op])
for task in tasks:
task.wait()
if rank == 0:
np.testing.assert_allclose(recv_t.numpy(), [1, 2])
elif rank == 1:
np.testing.assert_allclose(recv_t.numpy(), [0, 1])
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle import framework
class TestCollectiveReduceScatter(unittest.TestCase):
def setUp(self):
dist.init_parallel_env()
paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
def test_collective_reduce_scatter_sum(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
t1 = paddle.to_tensor([0, 1])
t2 = paddle.to_tensor([2, 3])
else:
t1 = paddle.to_tensor([4, 5])
t2 = paddle.to_tensor([6, 7])
input_list = [t1, t2]
output = paddle.empty(shape=[2], dtype=input_list[0].dtype)
dist.reduce_scatter(output, input_list)
if rank == 0:
np.testing.assert_allclose(output.numpy(), [4, 6])
elif rank == 1:
np.testing.assert_allclose(output.numpy(), [8, 10])
def test_collective_reduce_scatter_max(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
if rank == 0:
t1 = paddle.to_tensor([0, 1], dtype="float16")
t2 = paddle.to_tensor([2, 3], dtype="float16")
else:
t1 = paddle.to_tensor([4, 5], dtype="float16")
t2 = paddle.to_tensor([6, 7], dtype="float16")
input_list = [t1, t2]
output = paddle.empty(shape=[2], dtype=input_list[0].dtype)
dist.reduce_scatter(output, input_list, op=dist.ReduceOp.MAX)
if rank == 0:
np.testing.assert_allclose(output.numpy(), [4, 5])
elif rank == 1:
np.testing.assert_allclose(output.numpy(), [6, 7])
def test_collective_reduce_scatter_base(self):
rank = dist.get_rank()
world_size = dist.get_world_size()
input = paddle.arange(4) + rank
# [0, 1, 2, 3] # Rank-0
# [1, 2, 3, 4] # Rank-1
output = paddle.empty(shape=[2], dtype=input.dtype)
task = paddle.distributed.collective._reduce_scatter_base(
output, input, use_calc_stream=False)
task.wait()
if rank == 0:
np.testing.assert_allclose(output.numpy(), [1, 3])
elif rank == 1:
np.testing.assert_allclose(output.numpy(), [5, 7])
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestCollectiveAllToAllSingle(TestMultipleGpus):
def test_collective_alltoall_single(self):
self.run_mnist_2gpu('collective_alltoall_single.py', eager_mode=True)
if __name__ == "__main__":
os.environ["FLAGS_enable_eager_mode"] = "1"
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestCollectiveBatchIsendIrecv(TestMultipleGpus):
def test_collective_batch_isend_irecv(self):
self.run_mnist_2gpu('collective_batch_isend_irecv.py', eager_mode=True)
if __name__ == "__main__":
os.environ["FLAGS_enable_eager_mode"] = "1"
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestCollectiveReduceScatter(TestMultipleGpus):
def test_collective_reduce_scatter(self):
self.run_mnist_2gpu('collective_reduce_scatter.py', eager_mode=True)
if __name__ == "__main__":
os.environ["FLAGS_enable_eager_mode"] = "1"
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册