Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
371f377b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
371f377b
编写于
2月 02, 2020
作者:
X
xujiaqi01
提交者:
GitHub
2月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add GeneralRoleMaker (#22295)
* add GeneralRoleMaker which is for general usage * test=develop
上级
269db0d1
变更
17
显示空白变更内容
内联
并排
Showing
17 changed file
with
993 addition
and
63 deletion
+993
-63
Dockerfile
Dockerfile
+7
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-0
paddle/fluid/framework/data_set.cc
paddle/fluid/framework/data_set.cc
+2
-0
paddle/fluid/framework/dist_multi_trainer.cc
paddle/fluid/framework/dist_multi_trainer.cc
+2
-2
paddle/fluid/framework/dist_multi_trainer_test.cc
paddle/fluid/framework/dist_multi_trainer_test.cc
+56
-0
paddle/fluid/framework/fleet/gloo_wrapper.cc
paddle/fluid/framework/fleet/gloo_wrapper.cc
+30
-9
paddle/fluid/framework/fleet/gloo_wrapper.h
paddle/fluid/framework/fleet/gloo_wrapper.h
+5
-2
paddle/fluid/framework/fleet/test_fleet.cc
paddle/fluid/framework/fleet/test_fleet.cc
+1
-2
paddle/fluid/pybind/gloo_wrapper_py.cc
paddle/fluid/pybind/gloo_wrapper_py.cc
+3
-3
python/paddle/fluid/dataset.py
python/paddle/fluid/dataset.py
+8
-8
python/paddle/fluid/incubate/fleet/base/fleet_base.py
python/paddle/fluid/incubate/fleet/base/fleet_base.py
+16
-0
python/paddle/fluid/incubate/fleet/base/role_maker.py
python/paddle/fluid/incubate/fleet/base/role_maker.py
+477
-21
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+16
-6
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
+5
-5
python/paddle/fluid/tests/unittests/test_dataset.py
python/paddle/fluid/tests/unittests/test_dataset.py
+6
-2
python/paddle/fluid/tests/unittests/test_fleet_rolemaker.py
python/paddle/fluid/tests/unittests/test_fleet_rolemaker.py
+73
-3
python/paddle/fluid/tests/unittests/test_fleet_rolemaker_2.py
...on/paddle/fluid/tests/unittests/test_fleet_rolemaker_2.py
+285
-0
未找到文件。
Dockerfile
浏览文件 @
371f377b
...
...
@@ -219,6 +219,13 @@ RUN wget -q https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/binutils/
cd
binutils-2.27
&&
\
./configure
&&
make
-j
&&
make
install
&&
cd
..
&&
rm
-rf
binutils-2.27 binutils_2.27.orig.tar.gz
RUN
wget
--no-check-certificate
https://pslib.bj.bcebos.com/openmpi-1.4.5.tar.gz
&&
tar
-xzf
openmpi-1.4.5.tar.gz
&&
\
cd
openmpi-1.4.5
&&
./configure
--prefix
=
/usr/local
&&
make all
-j8
&&
make
install
-j8
&&
\
export
LD_LIBRARY_PATH
=
/usr/local/lib/:
$LD_LIBRARY_PATH
&&
export
PATH
=
/usr/local/bin:
$PATH
&&
cd
..
&&
\
rm
-rf
openmpi-1.4.5.tar.gz
&&
pip
--no-cache-dir
install
mpi4py
&&
ln
-fs
/bin/bash /bin/sh
&&
\
apt-get
install
libprotobuf-dev
-y
RUN
pip
--no-cache-dir
install
-U
netifaces
==
0.10.9
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
371f377b
...
...
@@ -214,6 +214,7 @@ cc_library(parallel_executor SRCS parallel_executor.cc DEPS
graph build_strategy
fast_threaded_ssa_graph_executor variable_helper
)
cc_test
(
dist_multi_trainer_test SRCS dist_multi_trainer_test.cc DEPS executor
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto boost
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
cc_test
(
var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
...
...
paddle/fluid/framework/data_set.cc
浏览文件 @
371f377b
...
...
@@ -287,6 +287,7 @@ void DatasetImpl<T>::LocalShuffle() {
template
<
typename
T
>
void
DatasetImpl
<
T
>::
GlobalShuffle
(
int
thread_num
)
{
#ifdef PADDLE_WITH_PSLIB
VLOG
(
3
)
<<
"DatasetImpl<T>::GlobalShuffle() begin"
;
platform
::
Timer
timeline
;
timeline
.
Start
();
...
...
@@ -379,6 +380,7 @@ void DatasetImpl<T>::GlobalShuffle(int thread_num) {
timeline
.
Pause
();
VLOG
(
3
)
<<
"DatasetImpl<T>::GlobalShuffle() end, cost time="
<<
timeline
.
ElapsedSec
()
<<
" seconds"
;
#endif
}
template
<
typename
T
>
...
...
paddle/fluid/framework/dist_multi_trainer.cc
浏览文件 @
371f377b
...
...
@@ -41,8 +41,8 @@ void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
need_dump_field_
=
false
;
}
}
mpi_rank_
=
trainer_desc
.
mpi_rank
()
/
2
;
mpi_size_
=
trainer_desc
.
mpi_size
()
/
2
;
mpi_rank_
=
trainer_desc
.
mpi_rank
();
mpi_size_
=
trainer_desc
.
mpi_size
();
dump_file_num_
=
trainer_desc
.
dump_file_num
();
const
std
::
vector
<
paddle
::
framework
::
DataFeed
*>
readers
=
dataset
->
GetReaders
();
...
...
paddle/fluid/framework/dist_multi_trainer_test.cc
0 → 100644
浏览文件 @
371f377b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <sstream>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/trainer.h"
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif
namespace
paddle
{
namespace
framework
{
TEST
(
DisMultiTrainerTest
,
test1
)
{
#ifdef _LINUX
std
::
shared_ptr
<
DistMultiTrainer
>
tmp1
=
std
::
make_shared
<
DistMultiTrainer
>
();
TrainerDesc
t
;
t
.
set_class_name
(
"DistMultiTrainer"
);
t
.
set_device_worker_name
(
"DownpourWorker"
);
t
.
set_thread_num
(
1
);
auto
*
m
=
t
.
mutable_downpour_param
()
->
add_program_config
();
m
->
set_program_id
(
"123"
);
std
::
string
str
;
str
+=
"name:
\"
MultiSlotDataFeed
\"\n
batch_size: 2
\n
multi_slot_desc {
\n
"
;
str
+=
"slots {
\n
name:
\"
words
\"\n
type:
\"
uint64
\"\n
is_dense: false
\n
"
;
str
+=
"is_used: true
\n
}
\n
slots {
\n
name:
\"
label
\"\n
type:
\"
uint64
\"\n
"
;
str
+=
"is_dense: false
\n
is_used: true
\n
}
\n
}
\n
"
;
std
::
shared_ptr
<
MultiSlotDataset
>
dataset
=
std
::
make_shared
<
MultiSlotDataset
>
();
dataset
->
SetFileList
(
std
::
vector
<
std
::
string
>
());
dataset
->
SetThreadNum
(
1
);
dataset
->
SetTrainerNum
(
1
);
dataset
->
SetDataFeedDesc
(
str
);
dataset
->
CreateReaders
();
tmp1
->
Initialize
(
t
,
dataset
.
get
());
#endif
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/fleet/gloo_wrapper.cc
浏览文件 @
371f377b
...
...
@@ -21,6 +21,7 @@ HdfsStore::HdfsStore(const std::string& path) {
path_
=
path
;
wait_sleep_ms_
=
3000
;
wait_timeout_
=
std
::
chrono
::
seconds
(
999999999
);
retry_times_
=
100
;
}
void
HdfsStore
::
set
(
const
std
::
string
&
key
,
const
std
::
vector
<
char
>&
data
)
{
...
...
@@ -33,10 +34,27 @@ void HdfsStore::set(const std::string& key, const std::vector<char>& data) {
paddle
::
framework
::
fs_remove
(
path
);
}
int
err_no
=
0
;
std
::
shared_ptr
<
FILE
>
fp
=
paddle
::
framework
::
fs_open_write
(
tmp
,
&
err_no
,
""
);
for
(
int
i
=
1
;
i
<=
retry_times_
;
++
i
)
{
std
::
shared_ptr
<
FILE
>
fp
=
paddle
::
framework
::
fs_open_write
(
tmp
,
&
err_no
,
""
);
if
(
err_no
!=
0
)
{
VLOG
(
0
)
<<
"fs_open_write failed, retry times "
<<
i
<<
" err no "
<<
err_no
;
fp
.
reset
();
sleep
(
wait_sleep_ms_
/
1000
);
continue
;
}
size_t
write_count
=
fwrite_unlocked
(
data
.
data
(),
1
,
data
.
size
(),
fp
.
get
());
VLOG
(
3
)
<<
"HdfsStore::set write_count="
<<
write_count
<<
" key "
<<
key
;
if
(
write_count
!=
data
.
size
())
{
VLOG
(
0
)
<<
"fwrite_unlocked failed, retry times "
<<
i
<<
" write_count "
<<
write_count
<<
" data.size() "
<<
data
.
size
();
fp
.
reset
();
sleep
(
2
);
continue
;
}
fp
.
reset
();
break
;
}
paddle
::
framework
::
fs_mv
(
tmp
,
path
);
#endif
}
...
...
@@ -131,7 +149,7 @@ void GlooWrapper::Init(int rank, int size, const std::string& path,
}
rank_
=
rank
;
size_
=
size
;
std
::
string
cmd
=
std
::
string
(
"hadoop fs"
);
std
::
string
cmd
=
std
::
string
(
"
${HADOOP_HOME}/bin/
hadoop fs"
);
cmd
+=
" -D fs.default.name="
+
fs_name
;
cmd
+=
" -D hadoop.job.ugi="
+
fs_ugi
;
paddle
::
framework
::
hdfs_set_command
(
cmd
);
...
...
@@ -149,16 +167,19 @@ void GlooWrapper::Init(int rank, int size, const std::string& path,
is_initialized_
=
true
;
}
template
void
GlooWrapper
::
AllReduce
<
int64_t
>(
template
std
::
vector
<
int64_t
>
GlooWrapper
::
AllReduce
<
int64_t
>
(
std
::
vector
<
int64_t
>&
sendbuf
,
// NOLINT
std
::
vector
<
int64_t
>&
recvbuf
,
// NOLINT
const
std
::
string
&
mode
);
template
void
GlooWrapper
::
AllReduce
<
double
>(
template
std
::
vector
<
double
>
GlooWrapper
::
AllReduce
<
double
>
(
std
::
vector
<
double
>&
sendbuf
,
// NOLINT
std
::
vector
<
double
>&
recvbuf
,
// NOLINT
const
std
::
string
&
mode
);
template
std
::
vector
<
uint64_t
>
GlooWrapper
::
AllReduce
<
uint64_t
>
(
std
::
vector
<
uint64_t
>&
sendbuf
,
// NOLINT
const
std
::
string
&
mode
);
template
std
::
vector
<
int64_t
>
GlooWrapper
::
AllGather
<
int64_t
>
(
int64_t
&
input
);
// NOLINT
template
std
::
vector
<
uint64_t
>
GlooWrapper
::
AllGather
<
uint64_t
>
(
uint64_t
&
input
);
// NOLINT
template
std
::
vector
<
double
>
GlooWrapper
::
AllGather
<
double
>
(
double
&
input
);
// NOLINT
...
...
paddle/fluid/framework/fleet/gloo_wrapper.h
浏览文件 @
371f377b
...
...
@@ -70,6 +70,7 @@ class HdfsStore {
std
::
string
path_
;
int
wait_sleep_ms_
;
std
::
chrono
::
seconds
wait_timeout_
;
int
retry_times_
;
};
}
// namespace rendezvous
...
...
@@ -107,9 +108,10 @@ class GlooWrapper {
}
template
<
typename
T
>
void
AllReduce
(
std
::
vector
<
T
>&
sendbuf
,
std
::
vector
<
T
>&
recvbuf
,
// NOLINT
const
std
::
string
&
mode
=
"sum"
)
{
std
::
vector
<
T
>
AllReduce
(
std
::
vector
<
T
>&
sendbuf
,
// NOLINT
const
std
::
string
&
mode
=
"sum"
)
{
// NOLINT
CHECK_EQ
(
is_initialized_
,
true
);
std
::
vector
<
T
>
recvbuf
(
sendbuf
.
size
(),
T
());
CHECK_EQ
(
sendbuf
.
size
()
==
recvbuf
.
size
(),
true
);
#ifdef PADDLE_WITH_GLOO
gloo
::
AllreduceOptions
opts
(
context_
);
...
...
@@ -133,6 +135,7 @@ class GlooWrapper {
}
gloo
::
allreduce
(
opts
);
#endif
return
recvbuf
;
}
template
<
typename
T
>
...
...
paddle/fluid/framework/fleet/test_fleet.cc
浏览文件 @
371f377b
...
...
@@ -49,8 +49,7 @@ TEST(TEST_GLOO, store_1) {
gw
.
Size
();
gw
.
Barrier
();
std
::
vector
<
double
>
input
;
std
::
vector
<
double
>
output
;
gw
.
AllReduce
(
input
,
output
);
gw
.
AllReduce
(
input
);
int64_t
t
;
gw
.
AllGather
(
t
);
#endif
...
...
paddle/fluid/pybind/gloo_wrapper_py.cc
浏览文件 @
371f377b
...
...
@@ -37,12 +37,12 @@ void BindGlooWrapper(py::module* m) {
.
def
(
"rank"
,
&
framework
::
GlooWrapper
::
Rank
)
.
def
(
"size"
,
&
framework
::
GlooWrapper
::
Size
)
.
def
(
"barrier"
,
&
framework
::
GlooWrapper
::
Barrier
)
.
def
(
"all_reduce"
,
&
framework
::
GlooWrapper
::
AllReduce
<
uint64_t
>
)
.
def
(
"all_reduce"
,
&
framework
::
GlooWrapper
::
AllReduce
<
int64_t
>
)
.
def
(
"all_reduce"
,
&
framework
::
GlooWrapper
::
AllReduce
<
double
>
)
.
def
(
"all_gather"
,
&
framework
::
GlooWrapper
::
AllGather
<
uint64_t
>
)
.
def
(
"all_gather"
,
&
framework
::
GlooWrapper
::
AllGather
<
int64_t
>
)
.
def
(
"all_gather"
,
&
framework
::
GlooWrapper
::
AllGather
<
double
>
)
.
def
(
"Allreduce"
,
&
framework
::
GlooWrapper
::
AllReduce
<
int64_t
>
)
.
def
(
"Allreduce"
,
&
framework
::
GlooWrapper
::
AllReduce
<
double
>
);
.
def
(
"all_gather"
,
&
framework
::
GlooWrapper
::
AllGather
<
double
>
);
}
// end BindGlooWrapper
}
// end namespace pybind
}
// end namespace paddle
python/paddle/fluid/dataset.py
浏览文件 @
371f377b
...
...
@@ -526,7 +526,7 @@ class InMemoryDataset(DatasetBase):
"""
trainer_num
=
1
if
fleet
is
not
None
:
fleet
.
_role_maker
.
_
barrier_worker
()
fleet
.
_role_maker
.
barrier_worker
()
trainer_num
=
fleet
.
worker_num
()
if
self
.
fleet_send_batch_size
is
None
:
self
.
fleet_send_batch_size
=
1024
...
...
@@ -537,14 +537,14 @@ class InMemoryDataset(DatasetBase):
self
.
dataset
.
set_fleet_send_batch_size
(
self
.
fleet_send_batch_size
)
self
.
dataset
.
set_fleet_send_sleep_seconds
(
self
.
fleet_send_sleep_seconds
)
if
fleet
is
not
None
:
fleet
.
_role_maker
.
_
barrier_worker
()
fleet
.
_role_maker
.
barrier_worker
()
self
.
dataset
.
global_shuffle
(
thread_num
)
if
fleet
is
not
None
:
fleet
.
_role_maker
.
_
barrier_worker
()
fleet
.
_role_maker
.
barrier_worker
()
if
self
.
merge_by_lineid
:
self
.
dataset
.
merge_by_lineid
()
if
fleet
is
not
None
:
fleet
.
_role_maker
.
_
barrier_worker
()
fleet
.
_role_maker
.
barrier_worker
()
def
release_memory
(
self
):
"""
...
...
@@ -599,7 +599,7 @@ class InMemoryDataset(DatasetBase):
local_data_size
=
np
.
array
([
local_data_size
])
if
fleet
is
not
None
:
global_data_size
=
local_data_size
*
0
fleet
.
_role_maker
.
_node_type_comm
.
Allreduce
(
local_data_size
,
fleet
.
_role_maker
.
all_reduce_worker
(
local_data_size
,
global_data_size
)
return
global_data_size
[
0
]
return
local_data_size
[
0
]
...
...
@@ -637,7 +637,7 @@ class InMemoryDataset(DatasetBase):
local_data_size
=
np
.
array
([
local_data_size
])
if
fleet
is
not
None
:
global_data_size
=
local_data_size
*
0
fleet
.
_role_maker
.
_node_type_comm
.
Allreduce
(
local_data_size
,
fleet
.
_role_maker
.
all_reduce_worker
(
local_data_size
,
global_data_size
)
return
global_data_size
[
0
]
return
local_data_size
[
0
]
...
...
python/paddle/fluid/incubate/fleet/base/fleet_base.py
浏览文件 @
371f377b
...
...
@@ -202,6 +202,22 @@ class Fleet(object):
self
.
_role_maker
.
generate_role
()
self
.
_is_initialized
=
True
def
all_reduce_worker
(
self
,
input
,
output
):
"""
all reduce between workers, only support array of one dim.
Args:
input(list|numpy.array): array of one dim
output(list|numpy.array): array of one dim
"""
self
.
_role_maker
.
all_reduce_worker
(
input
,
output
)
def
barrier_worker
(
self
):
"""
barrier between workers
"""
self
.
_role_maker
.
barrier_worker
()
@
abc
.
abstractmethod
def
init_worker
(
self
):
pass
...
...
python/paddle/fluid/incubate/fleet/base/role_maker.py
浏览文件 @
371f377b
...
...
@@ -11,16 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
os
import
time
__all__
=
[
'Role'
,
'RoleMakerBase'
,
'MPISymetricRoleMaker'
,
'UserDefinedRoleMaker'
,
'UserDefinedCollectiveRoleMaker'
,
'PaddleCloudRoleMaker'
'UserDefinedCollectiveRoleMaker'
,
'PaddleCloudRoleMaker'
,
'GeneralRoleMaker'
]
import
os
class
Role
:
WORKER
=
1
...
...
@@ -107,6 +109,43 @@ class RoleMakerBase(object):
self
.
_role
,
self
.
_current_id
,
self
.
_worker_endpoints
,
self
.
_server_endpoints
)
def
all_gather
(
self
,
input
):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
print
(
"warning: RoleMakerBase does not have all gather."
)
return
None
def
all_reduce_worker
(
self
,
input
,
output
,
mode
=
"sum"
):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
print
(
"warning: RoleMakerBase does not have all reduce worker."
)
def
barrier_worker
(
self
):
"""
barrier between trainers if current role is TRAINER
"""
print
(
"warning: RoleMakerBase does not have barrier worker."
)
def
barrier_all
(
self
):
"""
barrier between trainers if current role is PSERVER
"""
print
(
"warning: RoleMakerBase does not have barrier all."
)
class
MPIRoleMaker
(
RoleMakerBase
):
"""
...
...
@@ -115,6 +154,7 @@ class MPIRoleMaker(RoleMakerBase):
"""
def
__init__
(
self
):
"""Init."""
super
(
MPIRoleMaker
,
self
).
__init__
()
from
mpi4py
import
MPI
self
.
MPI
=
MPI
...
...
@@ -124,16 +164,12 @@ class MPIRoleMaker(RoleMakerBase):
self
.
_ip
=
None
def
_get_rank
(
self
):
"""
return rank
"""
"""Return rank."""
self
.
_rank
=
self
.
_comm
.
Get_rank
()
return
self
.
_rank
def
_get_size
(
self
):
"""
return size
"""
"""Return size."""
self
.
_size
=
self
.
_comm
.
Get_size
()
return
self
.
_size
...
...
@@ -174,9 +210,7 @@ class MPIRoleMaker(RoleMakerBase):
return
self
.
_ips
def
get_local_ip
(
self
):
"""
return get local ip
"""
"""Return get local ip."""
import
socket
self
.
_ip
=
socket
.
gethostbyname
(
socket
.
gethostname
())
return
self
.
_ip
...
...
@@ -196,16 +230,68 @@ class MPISymetricRoleMaker(MPIRoleMaker):
"""
def
__init__
(
self
):
"""Init."""
super
(
MPISymetricRoleMaker
,
self
).
__init__
()
self
.
_node_type
=
None
self
.
_proc_per_node
=
2
self
.
_pserver_rand_port
=
0
def
_check_role_generation
(
self
):
"""Check whether role has been generated."""
if
not
self
.
_role_is_generated
:
raise
NameError
(
"generate_role() should be called first"
)
return
True
def
all_gather
(
self
,
input
):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_all_gather
(
input
)
def
all_reduce_worker
(
self
,
input
,
output
,
mode
=
"sum"
):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
not
self
.
is_worker
():
print
(
"warning: current role is not worker in all_reduce_worker"
)
return
self
.
_all_reduce
(
input
,
output
,
mode
)
def
barrier_worker
(
self
):
"""
barrier between trainers if current role is TRAINER
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
self
.
is_worker
():
self
.
_node_type_comm
.
barrier
()
else
:
print
(
"warning: current role is not worker in barrier_worker"
)
def
barrier_all
(
self
):
"""
barrier between trainers if current role is PSERVER
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
self
.
_comm
.
barrier
()
def
is_first_worker
(
self
):
"""
return whether current process is the first worker assigned by role maker
...
...
@@ -215,6 +301,12 @@ class MPISymetricRoleMaker(MPIRoleMaker):
return
False
def
get_pserver_endpoints
(
self
):
"""
get pserver endpoints
Returns:
endpoints(list): pserver endpoints
"""
if
self
.
_pserver_rand_port
<=
0
:
import
random
random
.
seed
(
self
.
_server_num
())
...
...
@@ -285,6 +377,28 @@ class MPISymetricRoleMaker(MPIRoleMaker):
self
.
generate_role
()
return
self
.
_get_size
()
/
self
.
_proc_per_node
def
_all_reduce
(
self
,
input
,
output
,
mode
=
"sum"
):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
mode
==
"sum"
:
mode
=
self
.
MPI
.
SUM
elif
mode
==
"max"
:
mode
=
self
.
MPI
.
MAX
elif
mode
==
"min"
:
mode
=
self
.
MPI
.
MIN
else
:
raise
ValueError
(
"unknown mode: %s"
%
mode
)
self
.
_node_type_comm
.
Allreduce
(
input
,
output
,
op
=
mode
)
def
_barrier_worker
(
self
):
"""
barrier all workers in current distributed job
...
...
@@ -325,12 +439,18 @@ class MPISymetricRoleMaker(MPIRoleMaker):
class
PaddleCloudRoleMaker
(
RoleMakerBase
):
"""
role maker for paddle cloud,
base class is RoleMakerBase
"""
def
__init__
(
self
,
is_collective
=
False
):
super
(
PaddleCloudRoleMaker
,
self
).
__init__
()
self
.
_role_is_generated
=
False
self
.
_is_collective
=
is_collective
def
generate_role
(
self
):
"""Generate role."""
if
not
self
.
_role_is_generated
:
if
not
self
.
_is_collective
:
try
:
...
...
@@ -419,17 +539,352 @@ class PaddleCloudRoleMaker(RoleMakerBase):
return
self
.
_trainers_num
class
GeneralRoleMaker
(
RoleMakerBase
):
"""
This role maker is for general use, you can set os.environ to customize:
PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, seperated by ','
PADDLE_TRAINER_ENDPOINTS : all trainers' ip:port, seperated by ','
TRAINING_ROLE : TRAINER or PSERVER
PADDLE_TRAINER_ID : current trainer id (only for trainer),
it is index in PADDLE_TRAINER_ENDPOINTS
PADDLE_PSERVER_ID : current pserver id (only for pserver)
it is index in PADDLE_PSERVERS_IP_PORT_LIST
"""
def
__init__
(
self
,
**
kwargs
):
super
(
RoleMakerBase
,
self
).
__init__
()
self
.
_role_is_generated
=
False
self
.
_hdfs_name
=
kwargs
.
get
(
"hdfs_name"
,
""
)
self
.
_hdfs_ugi
=
kwargs
.
get
(
"hdfs_ugi"
,
""
)
self
.
_hdfs_path
=
kwargs
.
get
(
"path"
,
""
)
self
.
_iface
=
self
.
__get_default_iface
()
# this environment variable can be empty
self
.
_prefix
=
os
.
getenv
(
"SYS_JOB_ID"
,
""
)
def
generate_role
(
self
):
"""
generate role for general role maker
"""
if
not
self
.
_role_is_generated
:
eplist
=
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
].
split
(
","
)
training_role
=
os
.
environ
[
"TRAINING_ROLE"
]
worker_endpoints
=
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
].
split
(
","
)
trainers_num
=
len
(
worker_endpoints
)
if
training_role
not
in
[
"TRAINER"
,
"PSERVER"
]:
raise
ValueError
(
"TRAINING_ROLE must be PSERVER or TRAINER"
)
if
training_role
==
"TRAINER"
:
role
=
Role
.
WORKER
current_id
=
int
(
os
.
environ
[
"PADDLE_TRAINER_ID"
])
self
.
_node_type
=
1
self
.
_cur_endpoint
=
worker_endpoints
[
current_id
]
gloo
=
fluid
.
core
.
Gloo
()
gloo
.
init
(
current_id
,
len
(
worker_endpoints
),
self
.
_hdfs_path
.
rstrip
(
"/"
)
+
"/trainer"
,
self
.
_hdfs_name
,
self
.
_hdfs_ugi
,
self
.
_iface
,
self
.
_prefix
)
self
.
_node_type_comm
=
gloo
elif
training_role
==
"PSERVER"
:
role
=
Role
.
SERVER
if
os
.
environ
.
get
(
"PADDLE_PSERVER_ID"
)
is
not
None
:
current_id
=
int
(
os
.
environ
[
"PADDLE_PSERVER_ID"
])
cur_endpoint
=
eplist
[
current_id
]
else
:
# this is for compatible with paddlecloud
cur_ip
=
os
.
environ
[
"POD_IP"
]
cur_port
=
os
.
environ
[
"PADDLE_PORT"
]
cur_endpoint
=
":"
.
join
([
cur_ip
,
cur_port
])
current_id
=
eplist
.
index
(
cur_endpoint
)
self
.
_node_type
=
0
self
.
_cur_endpoint
=
cur_endpoint
gloo
=
fluid
.
core
.
Gloo
()
gloo
.
init
(
current_id
,
len
(
eplist
),
self
.
_hdfs_path
.
rstrip
(
"/"
)
+
"/pserver"
,
self
.
_hdfs_name
,
self
.
_hdfs_ugi
,
self
.
_iface
,
self
.
_prefix
)
self
.
_node_type_comm
=
gloo
gloo
=
fluid
.
core
.
Gloo
()
all_list
=
worker_endpoints
+
eplist
gloo
.
init
(
all_list
.
index
(
self
.
_cur_endpoint
),
len
(
all_list
),
self
.
_hdfs_path
.
rstrip
(
"/"
)
+
"/all"
,
self
.
_hdfs_name
,
self
.
_hdfs_ugi
,
self
.
_iface
,
self
.
_prefix
)
self
.
_all_comm
=
gloo
self
.
_trainers_num
=
trainers_num
self
.
_server_endpoints
=
eplist
self
.
_role
=
role
self
.
_current_id
=
current_id
self
.
_rank
=
all_list
.
index
(
self
.
_cur_endpoint
)
self
.
_size
=
len
(
all_list
)
self
.
_worker_endpoints
=
worker_endpoints
self
.
_role_is_generated
=
True
def
all_gather
(
self
,
input
):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
return
self
.
_all_gather
(
input
)
def
all_reduce_worker
(
self
,
input
,
output
,
mode
=
"sum"
):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if
not
self
.
is_worker
():
return
self
.
_all_reduce
(
input
,
output
,
mode
)
def
barrier_worker
(
self
):
"""
barrier between trainers if current role is TRAINER
"""
self
.
_barrier_worker
()
def
barrier_all
(
self
):
"""
barrier between trainers if current role is PSERVER
"""
self
.
_barrier_all
()
def
get_local_endpoint
(
self
):
"""
get local endpoint of current process
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_cur_endpoint
def
get_trainer_endpoints
(
self
):
"""
get endpoint of all trainers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_worker_endpoints
def
get_pserver_endpoints
(
self
):
"""
get endpoint of all pservers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_server_endpoints
def
is_worker
(
self
):
"""
whether current process is worker
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_role
==
Role
.
WORKER
def
is_server
(
self
):
"""
whether current process is server
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_role
==
Role
.
SERVER
def
is_first_worker
(
self
):
"""
whether current process is worker of rank 0
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_role
==
Role
.
WORKER
and
self
.
_current_id
==
0
def
worker_index
(
self
):
"""
get index of current worker
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_current_id
def
server_index
(
self
):
"""
get index of current server
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_current_id
def
worker_num
(
self
):
"""
retrun the current number of worker
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_worker_num
()
def
server_num
(
self
):
"""
return the current number of server
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_server_num
()
def
_barrier_worker
(
self
):
"""
barrier all workers in current distributed job
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
self
.
is_worker
():
self
.
_node_type_comm
.
barrier
()
def
_barrier_all
(
self
):
"""
barrier all workers and servers in current distributed job
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
self
.
_all_comm
.
barrier
()
def
_barrier_server
(
self
):
"""
barrier all servers in current distributed job
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
self
.
is_server
():
self
.
_node_type_comm
.
barrier
()
def
_worker_num
(
self
):
"""
return the current number of worker
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_trainers_num
def
_server_num
(
self
):
"""
return the current number of server
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
len
(
self
.
_server_endpoints
)
def
_finalize
(
self
):
"""Default do nothing."""
pass
def
_all_reduce
(
self
,
input
,
output
,
mode
=
"sum"
):
"""
all reduce between all workers
Args:
input(list|numpy.array): array of one dim
output(list|numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
input_list
=
[
i
for
i
in
input
]
ans
=
self
.
_node_type_comm
.
all_reduce
(
input_list
,
mode
)
for
i
in
range
(
len
(
ans
)):
output
[
i
]
=
ans
[
i
]
def
_all_gather
(
self
,
obj
):
"""
gather between all workers and pservers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
self
.
_barrier_all
()
return
self
.
_all_comm
.
all_gather
(
obj
)
def
_worker_gather
(
self
,
obj
):
"""
gather between all workers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
if
not
self
.
is_worker
():
return
None
self
.
_barrier_worker
()
return
self
.
_node_type_comm
.
all_gather
(
obj
)
def
_get_rank
(
self
):
"""
get current rank in all workers and pservers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_rank
def
_get_size
(
self
):
"""
get total num of all workers and pservers
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_size
def
__get_default_iface
(
self
):
"""
get default physical interface
"""
default1
=
self
.
__get_default_iface_from_gateway
()
default2
=
self
.
__get_default_iface_from_interfaces
()
return
default2
if
default1
==
"lo"
else
default1
def
__get_default_iface_from_gateway
(
self
):
"""
get default physical interface
"""
import
netifaces
gateways
=
netifaces
.
gateways
()
if
gateways
.
get
(
netifaces
.
AF_INET
)
!=
None
:
gateway
=
gateways
[
netifaces
.
AF_INET
]
if
len
(
gateway
)
>
0
and
len
(
gateway
[
0
])
>
1
:
return
gateway
[
0
][
1
]
return
"lo"
def
__get_default_iface_from_interfaces
(
self
):
"""
get default physical interface
"""
import
netifaces
for
intf_name
in
netifaces
.
interfaces
():
addresses
=
netifaces
.
ifaddresses
(
intf_name
)
if
netifaces
.
AF_INET
in
addresses
:
ipv4_addresses
=
addresses
[
netifaces
.
AF_INET
]
for
ipv4_address
in
ipv4_addresses
:
if
'broadcast'
in
ipv4_address
:
return
intf_name
return
"lo"
class
UserDefinedRoleMaker
(
RoleMakerBase
):
def
__init__
(
self
,
current_id
=
0
,
role
=
Role
.
WORKER
,
worker_num
=
0
,
server_endpoints
=
None
):
"""
UserDefinedRoleMaker is designed for worker and server assignment
under manual. Typically, a worker and a server node will be appointed
on each physical node, It can be assign by user.
"""
def
__init__
(
self
,
current_id
=
0
,
role
=
Role
.
WORKER
,
worker_num
=
0
,
server_endpoints
=
None
):
super
(
UserDefinedRoleMaker
,
self
).
__init__
()
if
not
isinstance
(
server_endpoints
,
list
):
...
...
@@ -495,11 +950,12 @@ class UserDefinedRoleMaker(RoleMakerBase):
class
UserDefinedCollectiveRoleMaker
(
RoleMakerBase
):
def
__init__
(
self
,
current_id
=
0
,
worker_endpoints
=
None
):
"""
UserDefinedCollectiveRoleMaker is designed for worker assignment
under manual for collective mode.
"""
def
__init__
(
self
,
current_id
=
0
,
worker_endpoints
=
None
):
super
(
UserDefinedCollectiveRoleMaker
,
self
).
__init__
()
if
not
isinstance
(
worker_endpoints
,
list
):
...
...
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
浏览文件 @
371f377b
...
...
@@ -40,7 +40,9 @@ class PSLib(Fleet):
self
.
_client2client_max_retry
=
3
def
init
(
self
,
role_maker
=
None
):
super
(
PSLib
,
self
).
init
(
MPISymetricRoleMaker
())
if
role_maker
is
None
:
role_maker
=
MPISymetricRoleMaker
()
super
(
PSLib
,
self
).
init
(
role_maker
)
self
.
_fleet_ptr
=
fluid
.
core
.
Fleet
()
def
_set_client_communication_config
(
self
,
request_timeout_ms
,
...
...
@@ -75,9 +77,10 @@ class PSLib(Fleet):
# barrier_all for init_server, wait for server starts
self
.
_role_maker
.
_barrier_all
()
self
.
all_ips_
=
self
.
_role_maker
.
_all_gather
(
self
.
_local_ip
)
# worker_index * 2 is for compatible with older versions of pslib
self
.
_fleet_ptr
.
init_worker
(
self
.
_dist_desc_str
,
self
.
all_ips_
,
self
.
_role_maker
.
_get_size
(),
self
.
_role_maker
.
_get_rank
()
)
self
.
_role_maker
.
worker_index
()
*
2
)
# barrier_all for init_worker
self
.
_role_maker
.
_barrier_all
()
# prepare for client to client communication
...
...
@@ -160,9 +163,16 @@ class PSLib(Fleet):
else
:
raise
Exception
(
"You should run DistributedOptimizer.minimize() first"
)
# server_index * 2 is for compatible with older versions of pslib
self
.
_fleet_ptr
.
init_server
(
self
.
_dist_desc_str
,
self
.
_role_maker
.
_get_rank
())
self
.
_role_maker
.
server_index
()
*
2
)
if
isinstance
(
self
.
_role_maker
,
MPISymetricRoleMaker
):
self
.
_local_ip
=
self
.
_fleet_ptr
.
run_server
()
else
:
local_endpoint
=
self
.
_role_maker
.
get_local_endpoint
()
local_endpoint
=
local_endpoint
.
split
(
":"
)
self
.
_local_ip
=
self
.
_fleet_ptr
.
run_server
(
str
(
local_endpoint
[
0
]),
int
(
local_endpoint
[
1
]))
# barrier_all for init_server
self
.
_role_maker
.
_barrier_all
()
...
...
@@ -632,8 +642,8 @@ class DownpourOptimizer(DistributedOptimizer):
parameter_list
,
no_grad_set
,
self
.
_strategy
)
opt_info
[
"mpi_rank"
]
=
fleet
.
_role_maker
.
_get_rank
()
opt_info
[
"mpi_size"
]
=
fleet
.
_role_maker
.
_get_size
()
opt_info
[
"mpi_rank"
]
=
fleet
.
worker_index
()
opt_info
[
"mpi_size"
]
=
fleet
.
worker_num
()
fleet
.
_set_opt_info
(
opt_info
)
programs
=
[
loss
.
block
.
program
for
loss
in
losses
]
...
...
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
浏览文件 @
371f377b
...
...
@@ -206,7 +206,7 @@ class FleetUtil(object):
pos
=
pos
.
reshape
(
-
1
)
global_pos
=
np
.
copy
(
pos
)
*
0
# mpi allreduce
fleet
.
_role_maker
.
_
node_type_comm
.
All
reduce
(
pos
,
global_pos
)
fleet
.
_role_maker
.
_
all_
reduce
(
pos
,
global_pos
)
# reshape to its original shape
global_pos
=
global_pos
.
reshape
(
old_pos_shape
)
...
...
@@ -215,7 +215,7 @@ class FleetUtil(object):
old_neg_shape
=
np
.
array
(
neg
.
shape
)
neg
=
neg
.
reshape
(
-
1
)
global_neg
=
np
.
copy
(
neg
)
*
0
fleet
.
_role_maker
.
_
node_type_comm
.
All
reduce
(
neg
,
global_neg
)
fleet
.
_role_maker
.
_
all_
reduce
(
neg
,
global_neg
)
global_neg
=
global_neg
.
reshape
(
old_neg_shape
)
# calculate auc
...
...
@@ -1350,7 +1350,7 @@ class FleetUtil(object):
pos
=
pos
.
reshape
(
-
1
)
global_pos
=
np
.
copy
(
pos
)
*
0
# mpi allreduce
fleet
.
_role_maker
.
_
node_type_comm
.
All
reduce
(
pos
,
global_pos
)
fleet
.
_role_maker
.
_
all_
reduce
(
pos
,
global_pos
)
# reshape to its original shape
global_pos
=
global_pos
.
reshape
(
old_pos_shape
)
# auc neg bucket
...
...
@@ -1358,7 +1358,7 @@ class FleetUtil(object):
old_neg_shape
=
np
.
array
(
neg
.
shape
)
neg
=
neg
.
reshape
(
-
1
)
global_neg
=
np
.
copy
(
neg
)
*
0
fleet
.
_role_maker
.
_
node_type_comm
.
All
reduce
(
neg
,
global_neg
)
fleet
.
_role_maker
.
_
all_
reduce
(
neg
,
global_neg
)
global_neg
=
global_neg
.
reshape
(
old_neg_shape
)
num_bucket
=
len
(
global_pos
[
0
])
...
...
@@ -1368,7 +1368,7 @@ class FleetUtil(object):
old_metric_shape
=
np
.
array
(
metric
.
shape
)
metric
=
metric
.
reshape
(
-
1
)
global_metric
=
np
.
copy
(
metric
)
*
0
fleet
.
_role_maker
.
_
node_type_comm
.
All
reduce
(
metric
,
global_metric
)
fleet
.
_role_maker
.
_
all_
reduce
(
metric
,
global_metric
)
global_metric
=
global_metric
.
reshape
(
old_metric_shape
)
return
global_metric
[
0
]
...
...
python/paddle/fluid/tests/unittests/test_dataset.py
浏览文件 @
371f377b
...
...
@@ -733,7 +733,7 @@ class TestDataset2(unittest.TestCase):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
try
:
fleet
.
init
(
exe
)
fleet
.
init
()
except
ImportError
as
e
:
print
(
"warning: no mpi4py"
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.000005
)
...
...
@@ -795,7 +795,7 @@ class TestDataset2(unittest.TestCase):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
try
:
fleet
.
init
(
exe
)
fleet
.
init
()
except
ImportError
as
e
:
print
(
"warning: no mpi4py"
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.000005
)
...
...
@@ -824,6 +824,10 @@ class TestDataset2(unittest.TestCase):
dataset
.
set_pipe_command
(
"cat"
)
dataset
.
set_use_var
(
slots_vars
)
dataset
.
load_into_memory
()
try
:
dataset
.
global_shuffle
(
fleet
)
except
:
print
(
"warning: catch expected error"
)
fleet
.
_opt_info
=
None
fleet
.
_fleet_ptr
=
None
...
...
python/paddle/fluid/tests/unittests/test_fleet_rolemaker.py
浏览文件 @
371f377b
...
...
@@ -11,36 +11,41 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
class
TestCloudRoleMaker
(
unittest
.
TestCase
):
"""
Test cases for PaddleCloudRoleMaker.
"""
def
setUp
(
self
):
"""Set up, set envs."""
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"2"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
"127.0.0.1:36001,127.0.0.2:36001"
def
test_tr_rolemaker
(
self
):
"""Test tr rolenamer."""
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
ro
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
False
)
ro
.
generate_role
()
self
.
assertTrue
(
ro
.
is_worker
())
self
.
assertFalse
(
ro
.
is_server
())
self
.
assertEqual
(
ro
.
worker_num
(),
2
)
def
test_ps_rolemaker
(
self
):
"""Test ps rolemaker."""
os
.
environ
[
"TRAINING_ROLE"
]
=
"PSERVER"
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_PORT"
]
=
"36001"
ro
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
False
)
ro
.
generate_role
()
self
.
assertFalse
(
ro
.
is_worker
())
...
...
@@ -48,10 +53,75 @@ class TestCloudRoleMaker(unittest.TestCase):
self
.
assertEqual
(
ro
.
worker_num
(),
2
)
def
test_traing_role
(
self
):
"""Test training role."""
os
.
environ
[
"TRAINING_ROLE"
]
=
"TEST"
ro
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
False
)
self
.
assertRaises
(
ValueError
,
ro
.
generate_role
)
def
test_pslib_1
(
self
):
"""Test cases for pslib."""
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
PSLib
from
paddle.fluid.incubate.fleet.base.role_maker
import
GeneralRoleMaker
try
:
import
netifaces
except
:
print
(
"warning: no netifaces, skip test_pslib_1"
)
return
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_PORT"
]
=
"36001"
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
"127.0.0.1:36002"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
role_maker
=
GeneralRoleMaker
()
role_maker
.
generate_role
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
fleet
.
init
(
role_maker
)
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
show
=
fluid
.
layers
.
data
(
name
=
"show"
,
shape
=
[
-
1
,
1
],
\
dtype
=
"float32"
,
lod_level
=
1
,
append_batch_size
=
False
)
fc
=
fluid
.
layers
.
fc
(
input
=
show
,
size
=
1
,
act
=
None
)
label
=
fluid
.
layers
.
data
(
name
=
"click"
,
shape
=
[
-
1
,
1
],
\
dtype
=
"int64"
,
lod_level
=
1
,
append_batch_size
=
False
)
label_cast
=
fluid
.
layers
.
cast
(
label
,
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
log_loss
(
fc
,
label_cast
)
try
:
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.000005
)
adam
=
fleet
.
distributed_optimizer
(
adam
)
adam
.
minimize
([
cost
],
[
scope
])
fleet
.
run_server
()
except
:
print
(
"do not support pslib test, skip"
)
return
from
paddle.fluid.incubate.fleet.base.role_maker
import
\
MPISymetricRoleMaker
try
:
role
=
MPISymetricRoleMaker
()
role
.
_all_reduce
([
1
],
[
2
])
except
:
print
(
"catch expected error of not inited"
)
try
:
role
=
MPISymetricRoleMaker
()
role
.
_all_reduce
([
1
],
[
2
],
"min"
)
except
:
print
(
"catch expected error of not inited"
)
try
:
role
=
MPISymetricRoleMaker
()
role
.
_all_reduce
([
1
],
[
2
],
"max"
)
except
:
print
(
"catch expected error of not inited"
)
try
:
role
=
MPISymetricRoleMaker
()
role
.
_all_reduce
([
1
],
[
2
],
"unknown"
)
except
:
print
(
"catch expected error of unknown type"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_rolemaker_2.py
0 → 100644
浏览文件 @
371f377b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cases for role makers."""
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
class
TestCloudRoleMaker2
(
unittest
.
TestCase
):
"""
Test cases for paddle cloud role makers.
"""
def
setUp
(
self
):
"""Set up, set envs."""
pass
def
test_pslib_2
(
self
):
"""Test cases for pslib."""
import
paddle.fluid
as
fluid
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
PSLib
from
paddle.fluid.incubate.fleet.base.role_maker
import
GeneralRoleMaker
from
paddle.fluid.incubate.fleet.base.role_maker
import
RoleMakerBase
try
:
import
netifaces
except
:
print
(
"warning: no netifaces, skip test_pslib_2"
)
return
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_PORT"
]
=
"36001"
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
"127.0.0.1:36002"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
try
:
fleet
.
init
(
None
)
except
:
print
(
"no mpi4py, skip test_pslib_2"
)
return
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
show
=
fluid
.
layers
.
data
(
name
=
"show"
,
shape
=
[
-
1
,
1
],
\
dtype
=
"float32"
,
lod_level
=
1
,
append_batch_size
=
False
)
fc
=
fluid
.
layers
.
fc
(
input
=
show
,
size
=
1
,
act
=
None
)
label
=
fluid
.
layers
.
data
(
name
=
"click"
,
shape
=
[
-
1
,
1
],
\
dtype
=
"int64"
,
lod_level
=
1
,
append_batch_size
=
False
)
label_cast
=
fluid
.
layers
.
cast
(
label
,
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
log_loss
(
fc
,
label_cast
)
try
:
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.000005
)
adam
=
fleet
.
distributed_optimizer
(
adam
)
adam
.
minimize
([
cost
],
[
scope
])
fleet
.
run_server
()
except
:
print
(
"do not support pslib test, skip"
)
return
os
.
environ
[
"TRAINING_ROLE"
]
=
"wrong"
try
:
role1
=
GeneralRoleMaker
(
path
=
"./test_gloo_1"
)
role1
.
generate_role
()
except
:
print
(
"catch expected error of wrong TRAINING_ROLE"
)
os
.
environ
[
"TRAINING_ROLE"
]
=
"PSERVER"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
"127.0.0.1:36001"
role2
=
GeneralRoleMaker
(
path
=
"./test_gloo_2"
)
role2
.
_finalize
()
role2
.
_all_gather
(
1
)
role2
.
_all_gather
(
1
)
role2
.
_barrier_server
()
role2
.
all_gather
(
1
)
role3
=
GeneralRoleMaker
(
path
=
"./test_gloo_3"
)
role3
.
_worker_gather
(
1
)
role3
.
_worker_gather
(
1
)
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
"127.0.0.1:36002"
role4
=
GeneralRoleMaker
(
path
=
"./test_gloo_4"
)
role4
.
_worker_gather
(
1
)
role4
.
_get_rank
()
role4
.
_get_size
()
role4
.
_all_comm
.
init
(
0
,
0
,
""
,
""
,
""
,
""
,
""
)
role5
=
GeneralRoleMaker
(
path
=
"./test_gloo_5"
)
role5
.
get_local_endpoint
()
role5
.
get_local_endpoint
()
role6
=
GeneralRoleMaker
(
path
=
"./test_gloo_6"
)
role6
.
get_trainer_endpoints
()
role6
.
get_trainer_endpoints
()
role7
=
GeneralRoleMaker
(
path
=
"./test_gloo_7"
)
role7
.
get_pserver_endpoints
()
role7
.
get_pserver_endpoints
()
role8
=
GeneralRoleMaker
(
path
=
"./test_gloo_8"
)
role8
.
is_worker
()
role8
.
is_worker
()
role9
=
GeneralRoleMaker
(
path
=
"./test_gloo_9"
)
role9
.
is_server
()
role9
.
is_server
()
role10
=
GeneralRoleMaker
(
path
=
"./test_gloo_10"
)
role10
.
is_first_worker
()
role10
.
is_first_worker
()
role11
=
GeneralRoleMaker
(
path
=
"./test_gloo_11"
)
role11
.
worker_index
()
role11
.
worker_index
()
role12
=
GeneralRoleMaker
(
path
=
"./test_gloo_12"
)
role12
.
server_index
()
role12
.
server_index
()
role13
=
GeneralRoleMaker
(
path
=
"./test_gloo_13"
)
role13
.
worker_num
()
role13
.
worker_num
()
role14
=
GeneralRoleMaker
(
path
=
"./test_gloo_14"
)
role14
.
server_num
()
role14
.
server_num
()
role15
=
GeneralRoleMaker
(
path
=
"./test_gloo_15"
)
role15
.
_barrier_worker
()
role15
.
_barrier_worker
()
role16
=
GeneralRoleMaker
(
path
=
"./test_gloo_16"
)
role16
.
_barrier_all
()
role16
.
_barrier_all
()
role17
=
GeneralRoleMaker
(
path
=
"./test_gloo_17"
)
role17
.
_barrier_server
()
role17
.
_barrier_server
()
role18
=
GeneralRoleMaker
(
path
=
"./test_gloo_18"
)
role18
.
_worker_num
()
role18
.
_worker_num
()
role19
=
GeneralRoleMaker
(
path
=
"./test_gloo_19"
)
role19
.
_server_num
()
role19
.
_server_num
()
role20
=
GeneralRoleMaker
(
path
=
"./test_gloo_20"
)
a
=
[
1
]
b
=
[
0
]
role20
.
_all_reduce
(
a
,
b
)
role21
=
GeneralRoleMaker
(
path
=
"./test_gloo_21"
)
role21
.
all_reduce_worker
([],
[])
role21
.
all_reduce_worker
([],
[])
role21
.
barrier_worker
()
role21
.
barrier_all
()
role22
=
GeneralRoleMaker
(
path
=
"./test_gloo_22"
)
role22
.
_get_rank
()
role22
.
_get_rank
()
os
.
environ
[
"PADDLE_PSERVER_ID"
]
=
"0"
role23
=
GeneralRoleMaker
(
path
=
"./test_gloo_23"
)
role23
.
_get_size
()
role23
.
_get_size
()
with
open
(
"test_fleet_gloo_role_maker_1.txt"
,
"w"
)
as
f
:
data
=
"1 1 1 1
\n
"
f
.
write
(
data
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
"InMemoryDataset"
)
dataset
.
set_filelist
([
"test_fleet_gloo_role_maker_1.txt"
])
dataset
.
set_use_var
([
show
,
label
])
dataset
.
load_into_memory
()
dataset
.
get_memory_data_size
(
fleet
)
dataset
.
get_shuffle_data_size
(
fleet
)
os
.
remove
(
"./test_fleet_gloo_role_maker_1.txt"
)
class
TmpClass
():
"""
dummy tmp class
"""
def
__init__
(
self
):
pass
def
all_reduce_worker
(
self
,
input
,
output
):
"""
dummy all reduce worker
Args:
input(None): fake input
output(None): fale output
"""
pass
def
barrier_worker
(
self
):
"""
dummy barrier worker
"""
pass
from
paddle.fluid.incubate.fleet.base.fleet_base
import
Fleet
class
TmpFleet
(
Fleet
):
"""
dummy tmp fleet
"""
def
__init__
(
self
):
super
(
Fleet
,
self
).
__init__
()
self
.
_role_maker
=
None
def
init_worker
(
self
):
"""
dummy init worker
"""
pass
def
init_server
(
self
,
model_dir
=
None
):
"""
dummy init server
Args:
model_dir(None): fake model_dir
"""
pass
def
run_server
(
self
):
"""
dummy run server
"""
pass
def
stop_worker
(
self
):
"""
dummy stop worker
"""
pass
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
"""
dummy distributed optimizer
Args:
optimizer(None): fake optimizer
strategy(None): fake strategy
"""
pass
def
save_inference_model
(
self
):
"""
dummy save inference model
"""
pass
def
save_persistables
(
self
):
"""
dummy save persistables
"""
pass
os
.
environ
[
"TRAINING_ROLE"
]
=
"TRAINER"
tmp
=
TmpFleet
()
tmp
.
_role_maker
=
TmpClass
()
tmp
.
all_reduce_worker
([],
[])
tmp
.
barrier_worker
()
from
paddle.fluid.incubate.fleet.base.role_maker
import
GeneralRoleMaker
tmp
=
RoleMakerBase
()
tmp
.
all_gather
(
1
)
tmp
.
all_reduce_worker
([],
[])
tmp
.
barrier_worker
()
tmp
.
barrier_all
()
from
paddle.fluid.incubate.fleet.base.role_maker
import
\
MPISymetricRoleMaker
tmp1
=
MPISymetricRoleMaker
()
tmp1
.
all_gather
(
1
)
tmp1
.
all_gather
(
1
)
tmp2
=
MPISymetricRoleMaker
()
tmp2
.
all_reduce_worker
([],
[])
tmp3
=
MPISymetricRoleMaker
()
tmp3
.
barrier_worker
()
tmp3
.
barrier_worker
()
tmp4
=
MPISymetricRoleMaker
()
tmp4
.
barrier_all
()
tmp4
.
barrier_all
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录