diff --git a/CMakeLists.txt b/CMakeLists.txt index 1252e7539816016dfdf1b90b8941fa42e6bb85e0..264420ad830ed39b38f1918951d8d66c84fd5ee9 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -127,6 +127,7 @@ include(external/warpctc) # download, build, install warpctc include(external/any) # download libn::any include(external/eigen) # download eigen3 include(external/pybind11) # download pybind11 +include(external/nccl) include(cudnn) # set cudnn libraries, must before configure include(configure) # add paddle env configuration @@ -159,7 +160,7 @@ set(EXTERNAL_LIBS if(WITH_GPU) list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY}) if(NOT WITH_DSO) - list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY}) + list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY}) endif(NOT WITH_DSO) endif(WITH_GPU) diff --git a/Dockerfile b/Dockerfile index 136db772cc6a24b8084120fa6bab666bc1eda78e..150344a8116e2be9b5bab8e5fdcc9c37f4025020 100644 --- a/Dockerfile +++ b/Dockerfile @@ -22,7 +22,7 @@ COPY ./paddle/scripts/docker/root/ /root/ RUN apt-get update && \ apt-get install -y \ - git python-pip python-dev openssh-server bison \ + git python-pip python-dev openssh-server bison libnccl-dev \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ curl sed grep graphviz libjpeg-dev zlib1g-dev \ python-matplotlib gcc-4.8 g++-4.8 \ diff --git a/cmake/configure.cmake b/cmake/configure.cmake index db8f5ab0456792f903093b9cf20e2541f00add5c..24ddb24399dabeec9b8e5faf36be3eb21f420111 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -62,11 +62,11 @@ else() FIND_PACKAGE(CUDA REQUIRED) if(${CUDA_VERSION_MAJOR} VERSION_LESS 7) - message(FATAL_ERROR "Paddle need CUDA >= 7.0 to compile") + message(FATAL_ERROR "Paddle needs CUDA >= 7.0 to compile") endif() if(NOT CUDNN_FOUND) - message(FATAL_ERROR "Paddle need cudnn to compile") + message(FATAL_ERROR "Paddle needs cudnn to compile") endif() set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} "-Xcompiler ${SIMD_FLAG}") diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake index bd853d921b4362ac7ac5e17e629552b2a200f08a..96fc886a342cae38d5b804266d3af7bc909a4da2 100644 --- a/cmake/external/eigen.cmake +++ b/cmake/external/eigen.cmake @@ -8,7 +8,7 @@ ExternalProject_Add( extern_eigen3 ${EXTERNAL_PROJECT_LOG_ARGS} GIT_REPOSITORY "https://github.com/RLovelett/eigen.git" - GIT_TAG 4e79cb69b9425f5f8c3a84be4350d4ab75b5fd9d + GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10 PREFIX ${EIGEN_SOURCE_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" diff --git a/cmake/external/nccl.cmake b/cmake/external/nccl.cmake new file mode 100644 index 0000000000000000000000000000000000000000..57d2c0a352507afd01d1cbf2c7b23c00ff7ad81b --- /dev/null +++ b/cmake/external/nccl.cmake @@ -0,0 +1,49 @@ +include(ExternalProject) + +set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl) + +include_directories(${NCCL_SOURCE_DIR}/src/extern_nccl/src) + +if(WITH_DSO) + # If we use DSO, we do not build nccl, just download the dependencies + set(NCCL_BUILD_COMMAND "") + set(NCCL_INSTALL_COMMAND "") + set(NCCL_INSTALL_DIR "") +else() + # otherwise, we build nccl and link it. + set(NCCL_INSTALL_DIR ${THIRD_PARTY_PATH}/install/nccl) + # Note: cuda 8.0 is needed to make nccl + # When cuda is not installed on the system directory, need to set CUDA_HOME to your cuda root + set(NCCL_BUILD_COMMAND "make -j 8") + set(NCCL_INSTALL_COMMAND "make install PREFIX=${NCCL_INSTALL_DIR}") +endif() + +ExternalProject_Add( + extern_nccl + ${EXTERNAL_PROJECT_LOG_ARGS} + GIT_REPOSITORY "https://github.com/NVIDIA/nccl.git" + GIT_TAG "v1.3.4-1" + PREFIX "${NCCL_SOURCE_DIR}" + UPDATE_COMMAND "" + CONFIGURE_COMMAND "" + BUILD_COMMAND "${NCCL_BUILD_COMMAND}" + INSTALL_COMMAND "${NCCL_INSTALL_COMMAND}" + INSTALL_DIR "${NCCL_INSTALL_DIR}" + TEST_COMMAND "" +) + +if(WITH_DSO) + if(${CMAKE_VERSION} VERSION_LESS "3.3.0") + set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/lib_nccl_dummy.c) + file(WRITE ${dummyfile} "const char * dummy_nccl = \"${dummyfile}\";") + add_library(nccl STATIC ${dummyfile}) + else() + add_library(nccl INTERFACE) + endif() +else() + add_library(nccl STATIC IMPORTED GLOBAL) + set_property(TARGET nccl PROPERTY IMPORTED_LOCATION + ${NCCL_INSTALL_DIR}/lib/libnccl_static.a) +endif() + +add_dependencies(nccl extern_nccl) diff --git a/doc/api/v2/config/networks.rst b/doc/api/v2/config/networks.rst index 6e813ab1a820d068ea3e54cad6178f1cf928eadc..048379cf01f4aec5e73e2fe3ddfa728f3c17a5d1 100644 --- a/doc/api/v2/config/networks.rst +++ b/doc/api/v2/config/networks.rst @@ -125,3 +125,8 @@ simple_attention :members: simple_attention :noindex: +dot_product_attention +--------------------- +.. automodule:: paddle.v2.networks + :members: dot_product_attention + :noindex: diff --git a/doc/design/block.md b/doc/design/block.md index 7cbf0d55b1faeb2093ee7cf234d1c2ad1905885b..4066122c0e8dfa33776796c3d205ba5aec9e0f52 100644 --- a/doc/design/block.md +++ b/doc/design/block.md @@ -189,7 +189,7 @@ OpDesc { inputs = {0} // the index of x in vars of BlockDesc above outputs = {5, 3} // indices of act and hidden_out in vars of BlockDesc above attrs { - "memories" : {1} // the index of h + "states" : {1} // the index of h "step_net" : } }; diff --git a/doc/design/cluster_train/src/trainer.graffle b/doc/design/cluster_train/src/trainer.graffle index 42384a3f059966e22e22f5fa4295cc9ead5cef83..43415ed8cf61a5acfa34f8e56b9577f338dbf254 100644 Binary files a/doc/design/cluster_train/src/trainer.graffle and b/doc/design/cluster_train/src/trainer.graffle differ diff --git a/doc/design/graph_survey.md b/doc/design/graph_survey.md new file mode 100644 index 0000000000000000000000000000000000000000..6c6db08f463ae0a2b94fc4546f123a1d7c151870 --- /dev/null +++ b/doc/design/graph_survey.md @@ -0,0 +1,232 @@ +## Survey on Graph + +Neural network framework often provides symbolic API for users to write network topology conveniently. This doc manily focus on symbolic API in most popular neural network frameworks, and try to find out how to parse symbolic configuration to a portable file, such as protobuf or json. + +### Mxnet + +The core concept of symbolic API is `Symbol`. Mxnet implements `Symbol` class in C++, and export to Python using C-API. Please refer to the comments in Mxnet: + + +`Symbol` is help class used to represent the operator node in Graph. +`Symbol` acts as an interface for building graphs from different components like Variable, Functor and Group. `Symbol` is also exported to python front-end (while Graph is not) to enable quick test and deployment. Conceptually, symbol is the final operation of a graph and thus including all the information required (the graph) to evaluate its output value. + + +A simple network topology wrote by Symbol is as follows: + +```python +def get_symbol(num_classes=10, **kwargs): + data = mx.symbol.Variable('data') + data = mx.symbol.Flatten(data=data) + fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) + act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") + fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) + act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") + fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes) + mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') + return mlp +``` + + + +Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own NodeAttr. There is a op field in NodeAttr class, when a Symbol represents Variable(often input data), the op field is null. + +Symbol contains a data member, std::vector outputs, and NodeEntry cantains a poniter to Node. We can follow the Node pointer to get all the Graph. + +And Symbol can be saved to a Json file. + +Here is a detailed example: + +``` +>>> import mxnet as mx +>>> data = mx.symbol.Variable('data') +>>> print data.debug_str() +Variable:data + +>>> data = mx.symbol.Flatten(data=data) +>>> print data.debug_str() +Symbol Outputs: + output[0]=flatten0(0) +Variable:data +-------------------- +Op:Flatten, Name=flatten0 +Inputs: + arg[0]=data(0) version=0 + +>>> fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) +>>> print fc1.debug_str() +Symbol Outputs: + output[0]=fc1(0) +Variable:data +-------------------- +Op:Flatten, Name=flatten0 +Inputs: + arg[0]=data(0) version=0 +Variable:fc1_weight +Variable:fc1_bias +-------------------- +Op:FullyConnected, Name=fc1 +Inputs: + arg[0]=flatten0(0) + arg[1]=fc1_weight(0) version=0 + arg[2]=fc1_bias(0) version=0 +Attrs: + num_hidden=128 + +``` + + +### TensorFlow + + +The core concept of symbolic API is `Tensor`. Tensorflow defines `Tensor` in Python. Please refer to the comments in TensorFlow: + +A `Tensor` is a symbolic handle to one of the outputs of an `Operation`. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow [Session](https://www.tensorflow.org/api_docs/python/tf/Session). + +A simple example is as follows: + +```python + # Build a dataflow graph. + c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) + d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) + e = tf.matmul(c, d) + + # Construct a `Session` to execute the graph. + sess = tf.Session() + + # Execute the graph and store the value that `e` represents in `result`. + result = sess.run(e) +``` + + +The main method of `Tensor` is as follows: + + +```python +@property +def op(self): + """The `Operation` that produces this tensor as an output.""" + return self._op + +@property +def dtype(self): + """The `DType` of elements in this tensor.""" + return self._dtype + +@property +def graph(self): + """The `Graph` that contains this tensor.""" + return self._op.graph + +@property +def name(self): + """The string name of this tensor.""" + if not self._op.name: + raise ValueError("Operation was not named: %s" % self._op) + return "%s:%d" % (self._op.name, self._value_index) + +@property +def device(self): + """The name of the device on which this tensor will be produced, or None.""" + return self._op.device +``` + + +Tensor can be taken as target to run by session. Tensor contains all the information of Graph, and tracks data dependency. + + +Here is a detailed example: + + +``` +>>> import tensorflow as tf +>>> c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) +>>> print c.graph + +>>> d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) +>>> print d.graph + +>>> e = tf.matmul(c, d) +>>> print e.graph + +``` + +### Dynet + + +The core concept of symbolic API is `Expression`, and Dynet defines `Expression` class in C++. + + +A simple example is as follows: + +```cpp +ComputationGraph cg; +Expression W = parameter(cg, pW); + +Expression in = input(cg, xs[i]); +Expression label = input(cg, ys[i]); +Expression pred = W * in; +Expression loss = square(pred - label); +``` + +The input data and parameter are also represented by Expression. Every basci Expression corresponds to a Node. And input data is also a Node. + +Expression has a data member ComputationGraph, and ComputationGraph will be modified in users' configuring process. Expression can be a running target, beacuse Expression contains all dependency. + + +Here is a detailed example: + +write topology in C++ + +``` +ComputationGraph cg; +Expression W = parameter(cg, pW); +cg.print_graphviz(); + +Expression pred = W * xs[i]; +cg.print_graphviz(); + +Expression loss = square(pred - ys[i]); +cg.print_graphviz(); +``` + +compile and print + +``` +# first print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; +} +# second print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; + N1 [label="v1 = v0 * -0.98"]; + N0 -> N1; +} +# third print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; + N1 [label="v1 = v0 * -0.98"]; + N0 -> N1; + N2 [label="v2 = -1.88387 - v1"]; + N1 -> N2; + N3 [label="v3 = -v2"]; + N2 -> N3; + N4 [label="v4 = square(v3)"]; + N3 -> N4; +} +``` + +### Conclusion + + +Actually, Symbol/Tensor/Expression in Mxnet/TensorFlow/Dynet are the same level concepts. We use a unified name Expression here, this level concept has following features: + +- Users wirte topoloy with symbolic API, and all return value is Expression, including input data and parameter. +- Expression corresponds with a global Graph, and Expression can also be composed. +- Expression tracks all dependency and can be taken as a run target diff --git a/doc/design/images/feed_forward.png b/doc/design/images/feed_forward.png new file mode 100644 index 0000000000000000000000000000000000000000..d312371a04c26aa6cd196e0bd1f51becb425180b Binary files /dev/null and b/doc/design/images/feed_forward.png differ diff --git a/doc/design/images/feed_forward_regularized.png b/doc/design/images/feed_forward_regularized.png new file mode 100644 index 0000000000000000000000000000000000000000..677e99bfd9f8e72ed9fe4b27127af2ced202f447 Binary files /dev/null and b/doc/design/images/feed_forward_regularized.png differ diff --git a/doc/design/images/l1_regularization.png b/doc/design/images/l1_regularization.png new file mode 100644 index 0000000000000000000000000000000000000000..e1b9c7a44f94dc027598a98da93ddb8133190972 Binary files /dev/null and b/doc/design/images/l1_regularization.png differ diff --git a/doc/design/images/l2_regularization.png b/doc/design/images/l2_regularization.png new file mode 100644 index 0000000000000000000000000000000000000000..d5c2fcbc2ccae75ad083162e5a2dceb0210be298 Binary files /dev/null and b/doc/design/images/l2_regularization.png differ diff --git a/doc/design/images/loss_equation.png b/doc/design/images/loss_equation.png new file mode 100644 index 0000000000000000000000000000000000000000..14212ec8d36c803de96bde8a9a4b5591bd20434e Binary files /dev/null and b/doc/design/images/loss_equation.png differ diff --git a/doc/design/model_format.md b/doc/design/model_format.md new file mode 100644 index 0000000000000000000000000000000000000000..a1c086775acbee6d05ebf69d7de9c7c3ac2cd36e --- /dev/null +++ b/doc/design/model_format.md @@ -0,0 +1,38 @@ +# Design Doc: Model Format + +## Motivation + +A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code. + +As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters. + +## Implementation + +The topology is saved as a plain text in a detailed self-contain protobuf file. + +The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task. + +As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, the `name` of the tensor, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is, + +|HeaderLength|ContentLength|**LoDTensorDesc**|**TensorValue**| + +The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format. + +```text +[offset] [type] [description] +0004 4 bytes integer HeaderLength, the length of LoDTensorDesc +0008 4 bytes integer ContentLength, the length of LodTensor Buffer +0009 1 bytes char TensorDesc +00010 1 bytes char TensorDesc +... +00100 1 bytes char TensorValue +00101 1 bytes char TensorValue +00102 1 bytes char TensorValue .. +... +``` + +## Summary + +- We introduce a model format. +- The model represented by its forward-pass computation procedure is saved in a **ProgramDesc** protobuf message. +- A bunch of specified format binary tensors describe the **parameters**. diff --git a/doc/design/optimizer.md b/doc/design/optimizer.md index 17440fae5028cfac5d58fc079ca2096d0be3a0f9..202b4b65103c0b7c536a9cb466c4120ce134d8c3 100644 --- a/doc/design/optimizer.md +++ b/doc/design/optimizer.md @@ -65,20 +65,6 @@ class Optimizer(object): def __init__(self): pass - def create_backward_pass(self, loss, parameter_list=None): - """ - create and add gradient Operators in BlockDesc to Compute gradients of `loss` - for parameters in parameter_list - - Args: - loss: an variable generated by cost function. - parameter_list: parameters that need to compute gradient and update to optimize the lost. - - Returns: - list of (parameters, gradients) pair. - """ - return None - def create_optimization_pass(self, parameters_and_grads): """Add optimization operators to update gradients to variables. @@ -93,7 +79,7 @@ class Optimizer(object): def minimize(self, loss, parameter_list): """Add operations to minimize `loss` by updating `parameter_list`. - This method combines interface `create_backward_pass()` and + This method combines interface `append_backward_ops()` and `create_optimization_pass()` into one. """ params_grads = self.create_backward_pass(loss, parameter_list) diff --git a/doc/design/prune.md b/doc/design/prune.md new file mode 100644 index 0000000000000000000000000000000000000000..4a5cf10c79a554779137f0cce5494fdd96ef6b7a --- /dev/null +++ b/doc/design/prune.md @@ -0,0 +1,63 @@ +# Prune + +## Motivation + +We want to support running inference, training and checkpointing in one `ProgramDesc`. We implement +`void Prune(const ProgramDesc* input, ProgramDesc* output)` function, which takes a `ProgramDesc` +and generate a pruned `ProgramDesc`. + +## Challenge + +Pruning need to support both variables and operators being evaluation targets. Consider the following +different situations. + +```python +# Case 1: run foward pass. +cost_np = session.run(target=cost) +# Case 2: run backward passing. +opts_np, _ = session.run(target=[cost, opt]) +# Case 3: run checkpointing +_ = session.run(target=checkpoint) +``` + +## Solution + +To support evaluation of operators, we add `is_target` field in the `OpDesc`. + +```c++ +message OpDesc { + required string type = 3; + repeated Var inputs = 1; + repeated Var outputs = 2; + repeated Attr attrs = 4; + optional bool is_target = 5 [ default = false ]; +}; +``` + +To support evaluation of variables, we add [fetch_op](https://github.com/PaddlePaddle/Paddle/pull/4599). +For each variable in the `target`, we insert a `fetch_op` into the `ProgramDesc` with `variable` being +`fetch_op`'s input. Then we also set `fetch_op` is a target. + +### Algorithm + +If an operator needs to be run, it must fall into one of the following cases: + +1. It is the target. +2. It is depended by some other ops, meaning its output is some other op's input. + +The first case can be checked by `op_desc.is_traget()` . The second case can be implement as + +```c++ +bool HasDependentVar(const OpDesc& op_desc, const std::set& dependent_vars) { + for (auto& var : op_desc.outputs()) { + for (auto& argu : var.arguments()) { + if (dependent_vars.count(argu) != 0) { + return true; + } + } + } + return false; +} +``` + +Then the whole algorithm can be implemented as the following [code](https://github.com/tonyyang-svail/Paddle/blob/prune_impl/paddle/framework/prune.cc). diff --git a/doc/design/refactorization.md b/doc/design/refactorization.md index ec51aa1a0ec667175ff7215dcd359023e296769f..f93d6155e1764386b01d2f0df3f141ab75cd55d4 100644 --- a/doc/design/refactorization.md +++ b/doc/design/refactorization.md @@ -177,9 +177,6 @@ REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class) REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) ``` -### USE Macros -Make sure the registration process is executed and linked. - --- # Registration Process 1. Write an Op class and its gradient Op class, if required. @@ -188,8 +185,6 @@ Make sure the registration process is executed and linked. 1. Call maker class to complete `proto` and `checker` 2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap` -4. Invoke the `USE` macro in which the Op is used to make sure that it is linked. - --- # Backward Module (1/2) ### Create Backward Operator diff --git a/doc/design/register_grad_op.md b/doc/design/register_grad_op.md index 9f1ce4bae7b393cb9f04909e5e4917b8d660771c..8d973eb53178c3e889c845144553a453e11f067c 100644 --- a/doc/design/register_grad_op.md +++ b/doc/design/register_grad_op.md @@ -3,17 +3,17 @@ ## The Problem Posed -Currently, for each C++ operator class definition, there registers a *gradient operator creator* function, which takes a C++ operator instance and returns the corresponding gradient operator instance. +Currently, for each C++ operator class definition, a *gradient operator creator* function is registered, which takes as input a C++ operator instance and returns the corresponding gradient operator instance. -However, we noticed two problems with the current deisgn: +However, we noticed two problems with the current design: -1. As we decided to separate the *compilation* and *execution* phases, we need to change the creator to take an `OpDesc` protobuf message in a `ProgramDesc` and inserts corresponding `OpDesc` messages into the `ProgramDesc` message. +1. As we decided to separate the *compilation* and the *execution* phases, we need to change the creator to take an `OpDesc` protobuf message in a `ProgramDesc` and inserts corresponding `OpDesc` messages into the `ProgramDesc` message. -1. Some operator's gradient computation requires more than one gradient operators. For example, the gradient of *minus* consists of two operators -- an identity operaotr and a scale operator. So we need to make the registration mechanism to support the mapping from an operator to a set of operators for gradient computation. +1. For some operators, the gradient computation can be written in terms of existing operators. For example, the gradient of *minus* operator consists of two operators -- an *identity* operator followed by a *scale* operator. Hence the registration mechanism needs to support mapping from an operator to a set of operators for the gradient computation. ## The Current Implementation -The C++ class `OpInfos` store in a association map which key is the operator type. The `grad_op_type` indicate associated gradient operator type. Operator can create gradient operator by `OpInfo::creator_` of gradient. The pseudo code is +Instances of the C++ class `OpInfo` are stored an associative map whose key is the operator type. The `grad_op_type` indicates the associated gradient operator type. An operator can create the gradient operator by invoking `OpInfo::creator_` of the gradient operator. The pseudo code is as follows ```cpp struct OpInfo { @@ -31,16 +31,16 @@ OperatorBase* CreateGradientOperator(const OperatorBase& op) { ## Proposed Solution -The mapping relationship between an operator and its gradient operators is a function. The interface of that function is: +The mapping relationship between an operator and its gradient operators is a function. The interface of this function is: ```cpp // (OpDesc) --> vector std::function(const OpDescBind&)>; ``` -The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for protobuf message `OpDesc` to manipulate `OpDesc` fast. +The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for the protobuf message `OpDesc` for rapid manipulation of `OpDesc`. -The `GradOpDescMaker` will be registered in `OpInfo`, to replace `grad_op_type_` field. The `OpInfo` should be +The `GradOpDescMaker` will be registered in `OpInfo` and will replace the `grad_op_type_` field. The `OpInfo` should look like ```cpp struct OpInfo { @@ -49,7 +49,7 @@ struct OpInfo { }; ``` -The `grad_op_maker_ ` is `nullptr` if the operator does not have associated gradient operators. +The `grad_op_maker_ ` is a `nullptr` if the operator does not have any associated gradient operators. We propose a base class called `GradOpDescMakerBase` to let operator developers generate `Gradient Operators` easily. The public interface of that class is @@ -74,7 +74,7 @@ func = [] (const OpDescBind& fwd_op) { We can write many helper functions since the `GradOpDescMakerBase` is a class now. The basic helper functions get the variables of `Input`, `Output`, `InputGradient` and `OutputGradient` in the forwarding operator. -We should chagne register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. +We should change register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. The user interface should be diff --git a/doc/design/regularization.md b/doc/design/regularization.md new file mode 100644 index 0000000000000000000000000000000000000000..21280ac898feb4dd5e5a5d9e88d121e856850f0b --- /dev/null +++ b/doc/design/regularization.md @@ -0,0 +1,72 @@ +# Regularization in PaddlePaddle + +## Introduction to Regularization +A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. A frequently faced problem is the problem of **overfitting**, where the model does not make reliable predictions on new unseen data. **Regularization** is the process of introducing additional information in order to prevent overfitting. This is usually done by adding extra penalties to the loss function that restricts the parameter spaces that an optimization algorithm can explore. + +### Parameter Norm Penalties +Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows: + +
+ +The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`. + +The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows: + +##### L2 Regularization: +
+ +##### L1 Regularization +
+ +A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html). + +## Regularization Survey + +A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey). + +## Proposal for Regularization in PaddlePaddle + +### Low-Level implementation + +In the new design, we propose to create new operations for regularization. For now, we can add 2 ops that correspond to the most frequently used regularizations: +- L2_regularization_op +- L1_regularization_op + +These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties. + +The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API. + +### Computation Graph + +Below is an example of a really simple feed forward neural network. + +
+ +The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows: + +
+    +### Python API implementation for Regularization + +Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions. + +#### Creation of Regularization ops +There are two possibilities for creating the regularization ops: +1. We create these ops immediately while building the computation graph. +2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added. + +The proposal is to add these ops in a lazy manner just before the backward pass. + +#### Storage of Regularization attributes + +Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters. + +#### High-level API + +In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers). + + + + + + diff --git a/doc/design/selected_rows.md b/doc/design/selected_rows.md index 9e6f3b20cbcdc55e481fbe7bf5fa555d8b3c3d45..1a98839a957612b91b2276b58818623ecc62d1d5 100644 --- a/doc/design/selected_rows.md +++ b/doc/design/selected_rows.md @@ -1,6 +1,6 @@ # Design Doc: Selected Rows -`SelectedRows` is a kind of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in that tensor. It is straightforward to represent the sparse tensor by the following sparse tensor data structure: +`SelectedRows` is a type of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in this tensor. It is straight-forward to represent a sparse tensor by the following sparse tensor data structure: ```cpp class SelectedRows { @@ -11,7 +11,7 @@ class SelectedRows { }; ``` -The field `height_` shows the first dimension of `SelectedRows`. The `rows` are the indices of which rows of `SelectedRows` are non-zeros. The `value_` field is an N-dim tensor and shape is `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`. +The field `height_` is the first dimension of `SelectedRows`. The `rows` are the indices of the non-zero rows of `SelectedRows`. The `value_` field is an N-dim tensor of shape `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`. Suppose that a SelectedRows-typed variable `x` has many rows, but only two of them have values -- row 73 is `[1, 2]` and row 84 is `[3, 4]`, the `SelectedRows` representation would be: @@ -25,7 +25,7 @@ x = SelectedRow { ## SelectedRows in Protobuf -`SelectedRows` is a kind of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time since the `rows_` and `value_` are related to training data. +`SelectedRows` is a type of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time because the `rows_` and `value_` are dependent on the training data. So we use `TensorDesc` to unify `data_type` and `dims`. A LodTensorDesc contains a `TensorDesc` and `lod_level`. The description of `SelectedRows` is a Tensor description. ```proto @@ -54,7 +54,7 @@ message VarDesc { ## InferShape for Selected Rows -Just like `LoD` information, `InferShape` method will inference output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor. +Just like `LoD` information, `InferShape` method will infer the output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor. For example, the gradient operator of `TableLookup` will always generate `SelectedRows`. Its `InferShape` method should be like following @@ -68,7 +68,7 @@ void TableLookupGrad::InferShape(context) { ## Sparse Operators -There are several operators should be written to support `SelectedRows`. They are: +There are several operators that need to be written to support `SelectedRows`. These are: -1. Operators which generates `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`. +1. Operators which generate `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`. 2. Optimize operators which support `SelectedRows` gradient. e.g. `SGD` or `AdaGrad` for `SelectedRows`. However, there should be only one `SGD` operator. `OpWithKernel::Run` should select a suitable kernel for both `dense` tensor or `SelectedRows`. diff --git a/doc/faq/local/index_cn.rst b/doc/faq/local/index_cn.rst index 75c4ba028e497e29e9030a86514348726d9c0a80..0e939a2671ace8682c90cdc1c1bb2da1dda0d568 100644 --- a/doc/faq/local/index_cn.rst +++ b/doc/faq/local/index_cn.rst @@ -174,7 +174,7 @@ decoder_inputs = paddle.layer.fc( 1. 两者都是对梯度的截断,但截断时机不同,前者在 :code:`optimzier` 更新网络参数时应用;后者在激活函数反向计算时被调用; 2. 截断对象不同:前者截断可学习参数的梯度,后者截断回传给前层的梯度; -除此之外,还可以通过减小学习律或者对数据进行归一化处理来解决这类问题。 +除此之外,还可以通过减小学习率或者对数据进行归一化处理来解决这类问题。 5. 如何调用 infer 接口输出多个layer的预测结果 ----------------------------------------------- diff --git a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md b/doc/howto/cross_compiling/cross_compiling_for_android_cn.md index 90dc84718c9ce1374cda6022de177afeeb60279d..1fc58c37cc9151d5e4d99b939e30c29aa99e04f1 100644 --- a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md +++ b/doc/howto/cross_compiling/cross_compiling_for_android_cn.md @@ -1,9 +1,46 @@ # 构建Android平台上的PaddlePaddle库 -用户可通过交叉编译的方式,在用户熟悉的开发平台(Linux,Mac OS X和Windows)上编译Android平台上适用的PaddlePaddle库。 +用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库: +- 基于Docker容器的编译方式 +- 基于Linux交叉编译环境的编译方式 + +## 基于Docker容器的编译方式 +Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。 + +### 构建PaddlePaddle的Android开发镜像 +我们把PaddlePaddle的交叉编译环境打包成一个镜像,称为开发镜像,里面涵盖了交叉编译Android版PaddlePaddle库需要的所有编译工具。 + +```bash +$ git clone https://github.com/PaddlePaddle/Paddle.git +$ cd Paddle +$ docker build -t username/paddle-android:dev . -f Dockerfile.android +``` + +### 编译PaddlePaddle C-API库 +构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。 +Android的Docker开发镜像向用户提供两个可配置的参数: + +| Argument | Optional Values | Default | +|-----------------|-------------------------|---------| +|`ANDROID_ABI` |`armeabi-v7a, arm64-v8a` | `armeabi-v7a` | +|`ANDROID_API` |`>= 21` | `21` | + +- 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库 +```bash +$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev +``` + +- 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库 +```bash +$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev +``` + +执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 + +## 基于Linux交叉编译环境的编译方式 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 -## 准备交叉编译环境 +### 准备交叉编译环境 从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。Android平台上使用的C/C++交叉编译工具链为[Android NDK](https://developer.android.com/ndk/downloads/index.html?hl=zh-cn),用户可自行前往下载预编译好的版本,也可通过以下命令获取: @@ -13,18 +50,27 @@ unzip -q android-ndk-r14b-linux-x86_64.zip ``` Android NDK中包含了所有Android API级别、所有架构(arm/arm64/x86/mips)需要用到的编译工具和系统库。用户可根据自己的编译目标架构、所需支持的最低Android API级别,构建[独立工具链](https://developer.android.google.cn/ndk/guides/standalone_toolchain.html?hl=zh-cn)。 -比如: + +- 构建`armeabi-v7a`、 `Android API 21`的独立工具链: ```bash your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ - --arch=arm --platform=android-21 --install-dir=your/path/to/my_standalone_toolchain + --arch=arm --platform=android-21 --install-dir=your/path/to/arm_standalone_toolchain ``` -此命令将在your/path/to/my_standalone_toolchain目录生成一套编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,使用的编译器为arm-linux-androideabi-gcc (GCC) 4.9。 +此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 -注意:**PaddlePaddle要求使用的编译工具链所支持的Andoid API级别不小于21**。 +- 构建`arm64-v8a`、 `Android API 21`的独立工具链: +```bash +your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ + --arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain +``` -## 配置交叉编译参数 +此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。 + +注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**。 + +### 配置交叉编译参数 CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。 @@ -36,32 +82,57 @@ CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cm Android平台可选配置参数: - `ANDROID_STANDALONE_TOOLCHAIN`,独立工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别;否则,用户需要在cmake时手动设置这些值。无默认值。 -- `ANDROID_ABI`,目标架构ABI。目前只支持`armeabi-v7a`,默认值为`armeabi-v7a`。 +- `ANDROID_TOOLCHAIN`,目标工具链。可设置`gcc/clang`,默认值为`clang`。 + - CMake 3.7以上,将会始终使用`clang`工具链;CMake 3.7以下,可设置`ANDROID_TOOLCHAIN=gcc`以使用`gcc`工具链。 + - Android官方提供的`clang`编译器要求系统支持`GLIBC 2.15`以上。 +- `ANDROID_ABI`,目标架构ABI。目前支持`armeabi-v7a`和`arm64-v8a`,默认值为`armeabi-v7a`。 - `ANDROID_NATIVE_API_LEVEL`,工具链的Android API级别。若没有显式设置,PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。 -- `ANROID_ARM_MODE`,是否使用ARM模式。可设置`ON/OFF`,默认值为`ON`。 -- `ANDROID_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`。 +- `ANROID_ARM_MODE`,是否使用ARM模式。 + - `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`; + - `ANDROID_ABI=arm64-v8a`时,不需要设置。 +- `ANDROID_ARM_NEON`,是否使用NEON指令。 + - `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`; + - `ANDROID_ABI=arm64-v8a`时,不需要设置。 其他配置参数: +- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`。 - `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 -一种常用的cmake配置如下: +常用的cmake配置如下: ```bash cmake -DCMAKE_SYSTEM_NAME=Android \ - -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/my_standalone_toolchain \ + -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm_standalone_toolchain \ -DANDROID_ABI=armeabi-v7a \ -DANDROID_ARM_NEON=ON \ -DANDROID_ARM_MODE=ON \ + -DUSE_EIGEN_FOR_BLAS=ON \ -DCMAKE_INSTALL_PREFIX=your/path/to/install \ -DWITH_C_API=ON \ -DWITH_SWIG_PY=OFF \ .. ``` +``` +cmake -DCMAKE_SYSTEM_NAME=Android \ + -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \ + -DANDROID_ABI=arm64-v8a \ + -DUSE_EIGEN_FOR_BLAS=OFF \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_SWIG_PY=OFF \ + .. +``` + 用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 -## 编译和安装 +**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议: +- 设置`CMAKE_BUILD_TYPE`为`Release` +- 使用`clang`编译工具链 +- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算 + +### 编译和安装 CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。 @@ -72,4 +143,4 @@ make install 注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。 -执行完安装命令后,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Android版本的库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。 +执行完安装命令后,`your/path/to/install`目录中会包含`include`、`lib`和`third_party`目录,其中`include`中包含C-API的头文件,`lib`中包含若干个不同Android ABI的PaddlePaddle库,`third_party`中包含所依赖的所有第三方库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。 diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index 274452fbf0c595ad7b4dbeffe85ad9038f12b458..93c5544bcfa911f8bdcdaea39a75b3ab7ef218f8 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -1,135 +1,215 @@ -```eval_rst -.. _cluster_train: +# PaddlePaddle分布式训练 + +* [概述](#概述) +* [环境准备](#环境准备) +* [启动参数说明](#启动参数说明) + * [启动参数服务器](#启动参数服务器) + * [启动计算节点](#启动计算节点) + * [准备数据集](#准备数据集) + * [准备训练程序](#准备训练程序) +* [使用分布式计算平台或工具](#使用分布式计算平台或工具) + * [使用Fabric启动集群作业](#使用fabric启动集群作业) + * [准备一个Linux集群](#准备一个linux集群) + * [启动集群作业](#启动集群作业) + * [终止集群作业](#终止集群作业) + * [检查集群训练结果](#检查集群训练结果) + * [检查模型输出](#检查模型输出) + * [在OpenMPI集群中提交训练作业](#在openmpi集群中提交训练作业) + * [准备OpenMPI集群](#准备OpenMPI集群) + * [启动集群作业](#启动集群作业-1) + * [在Kubernetes集群中提交训练作业](#在kubernetes集群中提交训练作业) + +# 概述 +本文将介绍如何使用PaddlePaddle在不同的集群框架下完成分布式训练。分布式训练架构如下图所示: + + + +- 数据分片(Data shard): 用于训练神经网络的数据,被切分成多个部分,每个部分分别给每个trainer使用。 +- 计算节点(Trainer): 每个trainer启动后读取切分好的一部分数据,开始神经网络的“前馈”和“后馈”计算,并和参数服务器通信。在完成一定量数据的训练后,上传计算得出的梯度(gradients),然后下载优化更新后的神经网络参数(parameters)。 +- 参数服务器(Parameter server):每个参数服务器只保存整个神经网络所有参数的一部分。参数服务器接收从计算节点上传的梯度,并完成参数优化更新,再将更新后的参数下发到每个计算节点。 + +这样,通过计算节点和参数服务器的分布式协作,可以完成神经网络的SGD方法的训练。PaddlePaddle可以同时支持同步随机梯度下降(SGD)和异步随机梯度下降。 + +在使用同步SGD训练神经网络时,PaddlePaddle使用同步屏障(barrier),使梯度的提交和参数的更新按照顺序方式执行。在异步SGD中,则并不会等待所有trainer提交梯度才更新参数,这样极大地提高了计算的并行性:参数服务器之间不相互依赖,并行地接收梯度和更新参数,参数服务器也不会等待计算节点全部都提交梯度之后才开始下一步,计算节点之间也不会相互依赖,并行地执行模型的训练。可以看出,虽然异步SGD方式会提高参数更新并行度, 但是并不能保证参数同步更新,在任意时间某一台参数服务器上保存的参数可能比另一台要更新,与同步SGD相比,梯度会有噪声。 + +# 环境准备 + +1. 准备您的计算集群。计算集群通常由一组(几台到几千台规模)的Linux服务器组成。服务器之间可以通过局域网(LAN)联通,每台服务器具有集群中唯一的IP地址(或者可被DNS解析的主机名)。集群中的每台计算机通常被成为一个“节点”。 +1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install)的多种安装方式。我们推荐使用[Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)安装方式来快速安装PaddlePaddle。 + +安装完成之后,执行下面的命令可以查看已经安装的版本(docker安装方式可以进入docker容器执行:`docker run -it paddlepaddle/paddle:[tag] /bin/bash`): +```bash +$ paddle version +PaddlePaddle 0.10.0, compiled with + with_avx: ON + with_gpu: OFF + with_double: OFF + with_python: ON + with_rdma: OFF + with_timer: OFF ``` -# 运行分布式训练 +下面以`doc/howto/usage/cluster/src/word2vec`中的代码作为实例,介绍使用PaddlePaddle v2 API完成分布式训练。 -在本文中,我们将阐释如何在集群上运行分布式 Paddle 训练作业。我们将以[推荐系统](https://github.com/baidu/Paddle/tree/develop/demo/recommendation)为例创建分布式的单进程训练。 +# 启动参数说明 +## 启动参数服务器 +执行以下的命令启动一个参数服务器并等待和计算节点的数据交互 +```bash +$ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 +``` -在本文中使用的[脚本](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train)通过 SSH 运行分布式作业。 它们还可以供那些运行更复杂的集群管理系统(如 MPI 和 [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s) )的用户参考。 +如果希望可以在后台运行pserver程序,并保存输出到一个日志文件,可以运行: +```bash +$ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log +``` -## 前提条件 +| 参数 | 是否必选 | 默认值 | 说明 | +| ------------- | ------------- | ------------- | ------------- | +| port | 必选 | 7164 | pserver监听的起始端口,根据ports_num决定
总端口个数,从起始端口监听多个端口用于通信 | +| ports_num | 必选 | 1 | 监听的端口个数 | +| ports_num_for_sparse | 必选 | 1 | 用于稀疏类型参数通信的端口个数 | +| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | + +## 启动计算节点 +执行以下命令启动使用python编写的trainer程序(文件名为任意文件名,如train.py) +```bash +$ python train.py +``` -1. 上述脚本使用 Python 库 [fabric](http://www.fabfile.org/) 来运行 SSH 命令。 我们使用 `pip` 来安装 fabric: +trainer需要和pserver保持网络联通以完成训练。trainer启动需要传入端口、pserver地址等参数使trainer可以正确连接到pserver。这些参数可以通过环境变量(https://zh.wikipedia.org/wiki/环境变量 )或编写程序时`paddle.init()`中传入参数。如果同时使用`paddle.init()`参数和环境变量,将会优先使用`paddle.init()`中传入的参数。 - ```bash - pip install fabric - ``` +使用环境变量: -2. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,需要在 `/usr/local/cuda` 中安装 CUDA; 否则 Paddle 将在运行时报错。 +```bash +export PADDLE_INIT_USE_GPU=False +export PADDLE_INIT_TRAINER_COUNT=1 +export PADDLE_INIT_PORT=7164 +export PADDLE_INIT_PORTS_NUM=1 +export PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +export PADDLE_INIT_NUM_GRADIENT_SERVERS=1 +export PADDLE_INIT_TRAINER_ID=0 +export PADDLE_INIT_PSERVERS=127.0.0.1 +``` -3. 在 [`cluster_train/conf.py`] 中设置 `ROOT_DIR`, 该 ROOT_DIR 要在所有节点上存在。为了方便起见,我们通常在所有节点上创建一个 Unix 用户 `paddle`,并设置 `ROOT_DIR=/home/paddle`。这样,我们可以将 SSH 公钥写入 `/home/paddle/.ssh/authorized_keys`,以便用户 `paddle` 可以 SSH 到所有节点而不用密码。 +使用参数: -## 准备工作空间 +```python +paddle.init( + use_gpu=False, + trainer_count=1, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1, + trainer_id=0, + pservers="127.0.0.1") +``` -我们将放置依赖库、配置等文件的目录视为 *工作空间(workspace)*。 +| 参数 | 是否必选 | 默认 | 说明 | +| ------------- | ------------- | ------------- | ------------- | +| use_gpu | 可选 | False | 是否启用GPU训练 | +| trainer_count | 必选 | 1 | 当前训练任务trainer总个数 | +| port | 必选 | 7164 | 连接到pserver的端口 | +| ports_num | 必选 | 1 | 连接到pserver的端口个数 | +| ports_num_for_sparse | 必选 | 1 | 和pserver之间用于稀疏类型参数通信的端口个数 | +| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | +| trainer_id | 必选 | 0 | 每个trainer的唯一ID,从0开始的整数 | +| pservers | 必选 | 127.0.0.1 | 当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 | -这些 `train/test` 数据应该在启动集群作业之前准备好。 为了满足训练/测试数据放置在工作空间中不同目录的要求,PADDLE 根据在模型配置文件中使用的名为 `train.list/test.list` 的索引文件引用训练/测试数据,所以训练/测试数据也包含 train.list/test.list 两个列表文件。所有本地训练 demo 已经提供了脚本来帮助您创建这两个文件,并且集群作业中的所有节点将在正常情况下处理具有相同逻辑代码的文件。 -通常,你可以使用本地训练中的相同模型文件进行集群训练。请记住,在模型文件的 `setting`函数中设置的 `batch_size` 表示在集群作业**每个**节点中的 batch 大小,而不是使用同步 SGD 的总 batch 大小。 +## 准备数据集 -以下步骤基于 demo 目录中的 [demo/recommendation](https://github.com/PaddlePaddle/Paddle/tree/develop/demo/recommendation)。 +参考样例数据准备脚本[prepare.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py),准备训练数据和验证数据集,我们使用paddle.dataset.imikolov数据集,并根据分布式训练并发数(trainer节点个数),在`prepare.py`开头部分指定`SPLIT_COUNT`将数据切分成多份。 -你只需完成 demo/recommendation 教程文档到 `Train` 的部分,之后你会得到训练/测试数据和模型配置文件。最后,只需使用 demo/recommendation 作为集群训练的工作空间。 +在线上系统中,通常会使用MapReduce任务的输出结果作为训练结果,这样训练文件的个数会比较多,而且个数并不确定。在trainer中可以使用下面取模的方法为每个trainer分配训练数据文件: -最后,你的工作空间应如下所示: -``` -. -|-- common_utils.py -|-- data -| |-- config.json -| |-- config_generator.py -| |-- meta.bin -| |-- meta_config.json -| |-- meta_generator.py -| |-- ml-1m -| |-- ml_data.sh -| |-- ratings.dat.test -| |-- ratings.dat.train -| |-- split.py -| |-- test.list -| `-- train.list -|-- dataprovider.py -|-- evaluate.sh -|-- prediction.py -|-- preprocess.sh -|-- requirements.txt -|-- run.sh -`-- trainer_config.py +```python +import os +train_list = [] +flist = os.listdir("/train_data/") +for f in flist: + suffix = int(f.split("-")[1]) + if suffix % TRAINER_COUNT == TRAINER_ID: + train_list.append(f) ``` -虽然这些文件并非都需要集群训练,但是也没有必要删除无用的文件。 - -`trainer_config.py` -表示模型配置文件。 -`train.list` 和 `test.list` -文件索引。它存储当前节点所有训练/测试数据的所有相对或绝对文件路径。 +示例程序`prepare.py`会把训练集和测试集分别分割成多个文件(例子中为3个,后缀为`-00000`、`-00001`和`-00002`): +``` +train.txt +train.txt-00000 +train.txt-00001 +train.txt-00002 +test.txt +test.txt-00000 +test.txt-00001 +test.txt-00002 +``` -`dataprovider.py` -用于读取训练/测试样本。这与本地训练相同。 +在进行分布式训练时,每个trainer进程需要能够读取属于自己的一份数据。在一些分布式系统中,系统会提供一个分布式存储服务,这样保存在分布式存储中的数据可以被集群中的每个节点读取到。如果不使用分布式存储,则需要手动拷贝属于每个trainer节点的训练数据到对应的节点上。 -`data` -数据目录中的所有文件被 train.list/test.list 引用。 +对于不同的训练任务,训练数据格式和训练程序的`reader()`会大不相同,所以开发者需要根据自己训练任务的实际场景完成训练数据的分割和`reader()`的编写。 +## 准备训练程序 -## 准备集群作业配置 +我们会对每个训练任务都会在每个节点上创建一个工作空间(workspace),其中包含了用户的训练程序、程序依赖、挂载或下载的训练数据分片。 -以下选项必须在 cluster_train/conf.py 中认真设置 +最后,工作空间应如下所示: +``` +. +|-- my_lib.py +|-- word_dict.pickle +|-- train.py +|-- train_data_dir/ +| |-- train.txt-00000 +| |-- train.txt-00001 +| |-- train.txt-00002 +`-- test_data_dir/ + |-- test.txt-00000 + |-- test.txt-00001 + `-- test.txt-00002 +``` -`HOSTS` 所有节点运行集群作业的主机名或 IP 。你还可以将用户和 ssh 端口附加到主机名上,例如 root@192.168.100.17:9090。 +- `my_lib.py`:会被`train.py`调用的一些用户定义的库函数,比如PIL库等。 +- `word_dict.pickle`:在`train.py`中会使用到的字典数据文件。 +- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: -`ROOT_DIR` 用于放置 JOB 工作空间目录的工作空间 ROOT 目录 + ```python + cluster_train_file = "./train_data_dir/train/train.txt" + cluster_test_file = "./test_data_dir/test/test.txt" + node_id = os.getenv("OMPI_COMM_WORLD_RANK") + if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + ``` -`PADDLE_NIC` 集群通信通道的 NIC(Network Interface Card, 网络接口卡) 接口名称,例如以太网的 eth0,infiniband 的 ib0。 +- `train_data_dir`:包含训练数据的目录,可以是从分布式存储挂载过来的,也可以是在任务启动前下载到本地的。 +- `test_data_dir`:包含测试数据集的目录。 -`PADDLE_PORT` 集群通信通道的端口号 +# 使用分布式计算平台或工具 -`PADDLE_PORTS_NUM` 用于集群通信通道的端口数。 如果集群节点数量少(少于5〜6个节点),建议将其设置为较大,如2〜8,以获得更好的网络性能。 +PaddlePaddle可以使用多种分布式计算平台构建分布式计算任务,包括: +- [Kubernetes](http://kubernetes.io) Google开源的容器集群的调度框架,支持大规模集群生产环境的完整集群方案。 +- [OpenMPI](https://www.open-mpi.org) 成熟的高性能并行计算框架。 +- [Fabric](http://www.fabfile.org) 集群管理工具。可以使用`Fabric`编写集群任务提交和管理脚本。 -`PADDLE_PORTS_NUM_FOR_SPARSE` 用于 sparse remote updater 集群通信信道的端口数。如果使用 sparse remote update,则可以像 `PADDLE_PORTS_NUM` 一样设置。 +对于不同的集群平台,会分别介绍集群作业的启动和停止方法。这些例子都可以在[cluster_train_v2](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2)找到。 -`LD_LIBRARY_PATH` 为集群作业设置额外的 LD_LIBRARY_PATH。你可以使用它来设置 CUDA 库的路径。 +在使用分布式计算平台进行训练时,任务被调度在集群中时,分布式计算平台通常会通过API或者环境变量提供任务运行需要的参数,比如节点的ID、IP和任务节点个数等。 -默认配置如下: +## 使用Fabric启动集群作业 -```python -HOSTS = [ - "root@192.168.100.17", - "root@192.168.100.18", - ] - -''' -工作空间配置 -''' - -#工作空间根目录 -ROOT_DIR = "/home/paddle" - -''' -网络配置 -''' -#pserver NIC -PADDLE_NIC = "eth0" -#pserver 端口 -PADDLE_PORT = 7164 -#pserver 端口数 -PADDLE_PORTS_NUM = 2 -#pserver sparse ports num -PADDLE_PORTS_NUM_FOR_SPARSE = 2 - -#集群作业中所有进程的环境设置 -LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib64" -``` +### 准备一个Linux集群 +可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 ### 启动集群作业 -`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为```paddle.py``` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 + +`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 `paddle.py` 为方便作业启动提供了两个独特的命令选项。 -`job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 conf.py 中设置的所有节点。 它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 -`job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 +- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 +- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 -`cluster_train/run.sh` 提供了命令样例来运行 `demo/recommendation` 集群工作,只需用你定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: +`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: ``` sh run.sh ``` @@ -149,7 +229,7 @@ sh run.sh 提供 pserver 运行日志,有助于诊断分布式错误。 `server.log` -提供 pserver 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 +提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 `train.log` 提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 @@ -157,3 +237,49 @@ sh run.sh ### 检查模型输出 运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 + +## 在OpenMPI集群中提交训练作业 + +### 准备OpenMPI集群 + +执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: + +```bash +paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 + +### 启动集群作业 + +您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: + +```bash +# 获得head和node节点的IP地址 +kubectl get po -o wide +# 将node节点的IP地址保存到machines文件中 +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# 拷贝必要的文件到head节点 +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# ssh 登录到head节点 +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- 以下操作均在head节点中执行 --------------- +# 准备训练数据 +python prepare.py +# 拷贝训练程序和字典文件到每台MPI节点 +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# 创建日志目录 +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# 拷贝训练数据到各自的节点 +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# 启动训练任务 +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` + +## 在Kubernetes集群中提交训练作业 + +此部分的使用方法可以参考[here](../k8s/k8s_distributed_cn.md)。 diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index c60876721cbf5565d6e48c8061811aacada748cd..1e8b4d54b9ffa99b3beef35ecaf95bbd0866535f 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -1,129 +1,220 @@ -# Run Distributed Training +# PaddlePaddle Distributed Training + +* [Introduction](#introduction) +* [Preparations](#preparations) +* [Command-line arguments](#command-line-arguments) + * [Starting parameter server](#starting-parameter-server) + * [Starting trainer](#starting-trainer) + * [Prepare Training Dataset](#prepare-training-dataset) + * [Prepare Training program](#prepare-training-program) +* [Use cluster platforms or cluster management tools](#use-cluster-platforms-or-cluster-management-tools) + * [Cluster Training Using Fabric](#cluster-training-using-fabric) + * [Prepare a Linux cluster](#prepare-a-linux-cluster) + * [Launching Cluster Job](#launching-cluster-job) + * [Kill Cluster Job](#kill-cluster-job) + * [Check Cluster Training Result](#check-cluster-training-result) + * [Check Model Output](#check-model-output) + * [Cluster Training Using OpenMPI](#cluster-training-using-openmpi) + * [Prepare an OpenMPI cluster](#prepare-an-openmpi-cluster) + * [Launching Cluster Job](#launching-cluster-job-1) + * [Cluster Training Using Kubernetes](#cluster-training-using-kubernetes) + +# Introduction + +In this article, we'll explain how to run distributed training jobs with PaddlePaddle on different types of clusters. The diagram below shows the main architecture of a distributed trainning job: + + + +- Data shard: training data will be split into multiple partitions, trainers use the partitions of the whole dataset to do the training job. +- Trainer: each trainer reads the data shard, and train the neural network. Then the trainer will upload calculated "gradients" to parameter servers, and wait for parameters to be optimized on the parameter server side. When that finishes, the trainer download optimized parameters and continues its training. +- Parameter server: every parameter server stores part of the whole neural network model data. They will do optimization calculations when gradients are uploaded from trainers, and then send updated parameters to trainers. + +PaddlePaddle can support both synchronize stochastic gradient descent (SGD) and asynchronous SGD. + +When training with synchronize SGD, PaddlePaddle uses an internal "synchronize barrier" which makes gradients update and parameter download in strict order. On the other hand, asynchronous SGD won't wait for all trainers to finish upload at a single step, this will increase the parallelism of distributed training: parameter servers do not depend on each other, they'll do parameter optimization concurrently. Parameter servers will not wait for trainers, so trainers will also do their work concurrently. But asynchronous SGD will introduce more randomness and noises in the gradient. + +# Preparations +1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes". +2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). + +After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`): + +```bash +$ paddle version +PaddlePaddle 0.10.0rc, compiled with + with_avx: ON + with_gpu: OFF + with_double: OFF + with_python: ON + with_rdma: OFF + with_timer: OFF +``` -In this article, we explain how to run distributed Paddle training jobs on clusters. We will create the distributed version of the single-process training example, [recommendation](https://github.com/baidu/Paddle/tree/develop/demo/recommendation). +We'll take `doc/howto/usage/cluster/src/word2vec` as an example to introduce distributed training using PaddlePaddle v2 API. -[Scripts](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train) used in this article launch distributed jobs via SSH. They also work as a reference for users running more sophisticated cluster management systems like MPI and [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s). +# Command-line arguments -## Prerequisite +## Starting parameter server -1. Aforementioned scripts use a Python library [fabric](http://www.fabfile.org/) to run SSH commands. We can use `pip` to install fabric: +Type the below command to start a parameter server which will wait for trainers to connect: - ```bash - pip install fabric - ``` +```bash +$ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 +``` -1. We need to install PaddlePaddle on all nodes in the cluster. To enable GPUs, we need to install CUDA in `/usr/local/cuda`; otherwise Paddle would report errors at runtime. +If you wish to run parameter servers in background, and save a log file, you can type: +```bash +$ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log +``` -1. Set the `ROOT_DIR` variable in [`cluster_train/conf.py`] on all nodes. For convenience, we often create a Unix user `paddle` on all nodes and set `ROOT_DIR=/home/paddle`. In this way, we can write public SSH keys into `/home/paddle/.ssh/authorized_keys` so that user `paddle` can SSH to all nodes without password. +| param | required | default | description | +| ------------- | ------------- | ------------- | ------------- | +| port | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput | +| ports_num | required | 1 | total number of ports will listen on | +| ports_num_for_sparse | required | 1 | number of ports which serves sparse parameter update | +| num_gradient_servers | required | 1 | total number of gradient servers | -## Prepare Job Workspace +## Starting trainer +Type the command below to start the trainer(name the file whatever you want, like "train.py") -We refer to the directory where we put dependent libraries, config files, etc., as *workspace*. +```bash +$ python train.py +``` -These `train/test` data should be prepared before launching cluster job. To satisfy the requirement that train/test data are placed in different directory from workspace, PADDLE refers train/test data according to index file named as `train.list/test.list` which are used in model config file. So the train/test data also contains train.list/test.list two list file. All local training demo already provides scripts to help you create these two files, and all nodes in cluster job will handle files with same logical code in normal condition. +Trainers' network need to be connected with parameter servers' network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through [environment variables](https://en.wikipedia.org/wiki/Environment_variable) or pass to `paddle.init()` function. Arguments passed to the `paddle.init()` function will overwrite environment variables. -Generally, you can use same model file from local training for cluster training. What you should have in mind that, the `batch_size` set in `setting` function in model file means batch size in `each` node of cluster job instead of total batch size if synchronization SGD was used. +Use environment viriables: -Following steps are based on [demo/recommendation](https://github.com/PaddlePaddle/Paddle/tree/develop/demo/recommendation) demo in demo directory. +```bash +export PADDLE_INIT_USE_GPU=False +export PADDLE_INIT_TRAINER_COUNT=1 +export PADDLE_INIT_PORT=7164 +export PADDLE_INIT_PORTS_NUM=1 +export PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +export PADDLE_INIT_NUM_GRADIENT_SERVERS=1 +export PADDLE_INIT_TRAINER_ID=0 +export PADDLE_INIT_PSERVERS=127.0.0.1 +python train.py +``` -You just go through demo/recommendation tutorial doc until `Train` section, and at last you will get train/test data and model configuration file. Finaly, just use demo/recommendation as workspace for cluster training. +Pass arguments: -At last your workspace should look like as follow: +```python +paddle.init( + use_gpu=False, + trainer_count=1, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1, + trainer_id=0, + pservers="127.0.0.1") ``` -. -|-- common_utils.py -|-- data -| |-- config.json -| |-- config_generator.py -| |-- meta.bin -| |-- meta_config.json -| |-- meta_generator.py -| |-- ml-1m -| |-- ml_data.sh -| |-- ratings.dat.test -| |-- ratings.dat.train -| |-- split.py -| |-- test.list -| `-- train.list -|-- dataprovider.py -|-- evaluate.sh -|-- prediction.py -|-- preprocess.sh -|-- requirements.txt -|-- run.sh -`-- trainer_config.py + +| param | required | default | description | +| ------------- | ------------- | ------------- | ------------- | +| use_gpu | optional | False | set to "True" to enable GPU training | +| trainer_count | required | 1 | total count of trainers in the training job | +| port | required | 7164 | port to connect to parameter server | +| ports_num | required | 1 | number of ports for communication | +| ports_num_for_sparse | required | 1 | number of ports for sparse type caculation | +| num_gradient_servers | required | 1 | total number of gradient server | +| trainer_id | required | 0 | ID for every trainer, start from 0 | +| pservers | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," | + +## Prepare Training Dataset + +Here's some example code [prepare.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py), it will download public `imikolov` dataset and split it into multiple files according to job parallelism(trainers count). Modify `SPLIT_COUNT` at the begining of `prepare.py` to change the count of output files. + +In the real world, we often use `MapReduce` job's output as training data, so there will be lots of files. You can use `mod` to assign training file to trainers: + +```python +import os +train_list = [] +flist = os.listdir("/train_data/") +for f in flist: + suffix = int(f.split("-")[1]) + if suffix % TRAINER_COUNT == TRAINER_ID: + train_list.append(f) +``` + +Example code `prepare.py` will split training data and testing data into 3 files with digital suffix like `-00000`, `-00001` and`-00002`: + +``` +train.txt +train.txt-00000 +train.txt-00001 +train.txt-00002 +test.txt +test.txt-00000 +test.txt-00001 +test.txt-00002 ``` -Not all of these files are needed for cluster training, but it's not necessary to remove useless files. -`trainer_config.py` -Indicates the model config file. +When job started, every trainer needs to get it's own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node. -`train.list` and `test.list` -File index. It stores all relative or absolute file paths of all train/test data at current node. +Different training jobs may have different data format and `reader()` function, developers may need to write different data prepare scripts and `reader()` functions for their job. -`dataprovider.py` -used to read train/test samples. It's same as local training. +## Prepare Training program -`data` -all files in data directory are refered by train.list/test.list which are refered by data provider. +We'll create a *workspace* directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory. -## Prepare Cluster Job Configuration +Your workspace may looks like: +``` +. +|-- my_lib.py +|-- word_dict.pickle +|-- train.py +|-- train_data_dir/ +| |-- train.txt-00000 +| |-- train.txt-00001 +| |-- train.txt-00002 +`-- test_data_dir/ + |-- test.txt-00000 + |-- test.txt-00001 + `-- test.txt-00002 +``` -The options below must be carefully set in cluster_train/conf.py +- `my_lib.py`: user defined libraries, like PIL libs. This is optional. +- `word_dict.pickle`: dict file for training word embeding. +- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: -`HOSTS` all nodes hostname or ip that will run cluster job. You can also append user and ssh port with hostname, such as root@192.168.100.17:9090. + ```python + cluster_train_file = "./train_data_dir/train/train.txt" + cluster_test_file = "./test_data_dir/test/test.txt" + node_id = os.getenv("OMPI_COMM_WORLD_RANK") + if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + ``` -`ROOT_DIR` workspace ROOT directory for placing JOB workspace directory +- `train_data_dir`: containing training data. Mount from storage service or copy trainning data to here. +- `test_data_dir`: containing testing data. -`PADDLE_NIC` the NIC(Network Interface Card) interface name for cluster communication channel, such as eth0 for ethternet, ib0 for infiniband. +# Use cluster platforms or cluster management tools -`PADDLE_PORT` port number for cluster commnunication channel +PaddlePaddle supports running jobs on several platforms including: +- [Kubernetes](http://kubernetes.io) open-source system for automating deployment, scaling, and management of containerized applications from Google. +- [OpenMPI](https://www.open-mpi.org) Mature high performance parallel computing framework. +- [Fabric](http://www.fabfile.org) A cluster management tool. Write scripts to submit jobs or manage the cluster. -`PADDLE_PORTS_NUM` the number of port used for cluster communication channle. if the number of cluster nodes is small(less than 5~6nodes), recommend you set it to larger, such as 2 ~ 8, for better network performance. +We'll introduce cluster job management on these platforms. The examples can be found under [cluster_train_v2](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2). -`PADDLE_PORTS_NUM_FOR_SPARSE` the number of port used for sparse updater cluster commnunication channel. if sparse remote update is used, set it like `PADDLE_PORTS_NUM` +These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc. -`LD_LIBRARY_PATH` set addtional LD_LIBRARY_PATH for cluster job. You can use it to set CUDA libraries path. +## Cluster Training Using Fabric -Default Configuration as follow: +### Prepare a Linux cluster -```python -HOSTS = [ - "root@192.168.100.17", - "root@192.168.100.18", - ] - -''' -workspace configuration -''' - -#root dir for workspace -ROOT_DIR = "/home/paddle" - -''' -network configuration -''' -#pserver nics -PADDLE_NIC = "eth0" -#pserver port -PADDLE_PORT = 7164 -#pserver ports num -PADDLE_PORTS_NUM = 2 -#pserver sparse ports num -PADDLE_PORTS_NUM_FOR_SPARSE = 2 - -#environments setting for all processes in cluster job -LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib64" -``` +Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. ### Launching Cluster Job -`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. +`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. `paddle.py`provides two distinguished command option for easy job launching. -`job_dispatch_package` set it with local `workspace`directory, it will be dispatched to all nodes set in conf.py. It could be helpful for frequent hacking workspace files, otherwise frequent mulit-nodes workspace deployment could make your crazy. -`job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy +- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. +- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy dispatch latency. `cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: @@ -134,23 +225,69 @@ sh run.sh The cluster Job will start in several seconds. ### Kill Cluster Job -`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should mannally kill job if program crashed. +`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. ### Check Cluster Training Result Check log in $workspace/log for details, each node owns same log structure. `paddle_trainer.INFO` -It provides almost all interal output log for training, same as local training. Check runtime model convergence here. +It provides almost all internal output log for training, same as local training. Check runtime model convergence here. `paddle_pserver2.INFO` -It provides pserver running log, which could help to diagnose distributed error. +It provides parameter server running log, which could help to diagnose distributed error. `server.log` -It provides stderr and stdout of pserver process. Check error log if training crashs. +It provides stderr and stdout of parameter server process. Check error log if training crashes. `train.log` -It provides stderr and stdout of trainer process. Check error log if training crashs. +It provides stderr and stdout of trainer process. Check error log if training crashes. ### Check Model Output -After one pass finished, model files will be writed in `output` directory in node 0. +After one pass finished, model files will be written in `output` directory in node 0. `nodefile` in workspace indicates the node id of current cluster job. + +## Cluster Training Using OpenMPI + +### Prepare an OpenMPI cluster + +Run the following command to start a 3-node MPI cluster and one "head" node. + +```bash +cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +Then you can log in to every OpenMPI node using ssh without input any passwords. + +### Launching Cluster Job + +Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ + +```bash +# find out node IP addresses +kubectl get po -o wide +# generate a "machines" file containing node IP addresses +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# copy necessary files onto "head" node +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# login to head node using ssh +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- in head node --------------- +# prepare training data +python prepare.py +# copy training data and dict file to MPI nodes +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# creat a directory for storing log files +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# copy training data to every node +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# start the job +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` + +## Cluster Training Using Kubernetes + +The details can be found [here](../k8s/k8s_cn.md) diff --git a/doc/howto/usage/cluster/src/trainer.png b/doc/howto/usage/cluster/src/trainer.png new file mode 100644 index 0000000000000000000000000000000000000000..6537d3d56589ca9f19a77a50a970e4b5275e6ce0 Binary files /dev/null and b/doc/howto/usage/cluster/src/trainer.png differ diff --git a/doc/howto/usage/cluster/src/trainer_cn.png b/doc/howto/usage/cluster/src/trainer_cn.png new file mode 100644 index 0000000000000000000000000000000000000000..f9525739cc8bc6506adde642aafa0a85ae3ebebc Binary files /dev/null and b/doc/howto/usage/cluster/src/trainer_cn.png differ diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..c0940f0e56eafa22f8aeb7052c0ddc79d8862917 --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2.py @@ -0,0 +1,100 @@ +import gzip +import math + +import paddle.v2 as paddle + +embsize = 32 +hiddensize = 256 +N = 5 + + +def wordemb(inlayer): + wordemb = paddle.layer.embedding( + input=inlayer, + size=embsize, + param_attr=paddle.attr.Param( + name="_proj", + initial_std=0.001, + learning_rate=1, + l2_rate=0, + sparse_update=True)) + return wordemb + + +def main(): + # for local training + cluster_train = False + + if not cluster_train: + paddle.init(use_gpu=False, trainer_count=1) + else: + paddle.init( + use_gpu=False, + trainer_count=2, + port=7164, + ports_num=1, + ports_num_for_sparse=1, + num_gradient_servers=1) + word_dict = paddle.dataset.imikolov.build_dict() + dict_size = len(word_dict) + firstword = paddle.layer.data( + name="firstw", type=paddle.data_type.integer_value(dict_size)) + secondword = paddle.layer.data( + name="secondw", type=paddle.data_type.integer_value(dict_size)) + thirdword = paddle.layer.data( + name="thirdw", type=paddle.data_type.integer_value(dict_size)) + fourthword = paddle.layer.data( + name="fourthw", type=paddle.data_type.integer_value(dict_size)) + nextword = paddle.layer.data( + name="fifthw", type=paddle.data_type.integer_value(dict_size)) + + Efirst = wordemb(firstword) + Esecond = wordemb(secondword) + Ethird = wordemb(thirdword) + Efourth = wordemb(fourthword) + + contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) + hidden1 = paddle.layer.fc(input=contextemb, + size=hiddensize, + act=paddle.activation.Sigmoid(), + layer_attr=paddle.attr.Extra(drop_rate=0.5), + bias_attr=paddle.attr.Param(learning_rate=2), + param_attr=paddle.attr.Param( + initial_std=1. / math.sqrt(embsize * 8), + learning_rate=1)) + predictword = paddle.layer.fc(input=hidden1, + size=dict_size, + bias_attr=paddle.attr.Param(learning_rate=2), + act=paddle.activation.Softmax()) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + with gzip.open("batch-" + str(event.batch_id) + ".tar.gz", + 'w') as f: + trainer.save_parameter_to_tar(f) + result = trainer.test( + paddle.batch( + paddle.dataset.imikolov.test(word_dict, N), 32)) + print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics, + result.metrics) + + cost = paddle.layer.classification_cost(input=predictword, label=nextword) + + parameters = paddle.parameters.create(cost) + adagrad = paddle.optimizer.AdaGrad( + learning_rate=3e-3, + regularization=paddle.optimizer.L2Regularization(8e-4)) + trainer = paddle.trainer.SGD(cost, + parameters, + adagrad, + is_local=not cluster_train) + trainer.train( + paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32), + num_passes=30, + event_handler=event_handler) + + +if __name__ == '__main__': + main() diff --git a/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py new file mode 100644 index 0000000000000000000000000000000000000000..2e6d8887124a5524505b097803a60a35478ca644 --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py @@ -0,0 +1,123 @@ +import math +import os +import paddle.v2 as paddle +import pickle + +embsize = 32 +hiddensize = 256 +N = 5 +cluster_train_file = "./train_data_dir/train/train.txt" +cluster_test_file = "./test_data_dir/test/test.txt" +node_id = os.getenv("OMPI_COMM_WORLD_RANK") +if not node_id: + raise EnvironmentError("must provied OMPI_COMM_WORLD_RANK") + + +def wordemb(inlayer): + wordemb = paddle.layer.embedding( + input=inlayer, + size=embsize, + param_attr=paddle.attr.Param( + name="_proj", + initial_std=0.001, + learning_rate=1, + l2_rate=0, + sparse_update=True)) + return wordemb + + +def cluster_reader_cluster(filename, node_id): + def cluster_reader(): + with open("-".join([filename, "%05d" % int(node_id)]), "r") as f: + for l in f: + csv_data = [int(cell) for cell in l.split(",")] + yield tuple(csv_data) + + return cluster_reader + + +def main(): + # get arguments from env + + # for local training + TRUTH = ["true", "True", "TRUE", "1", "yes", "Yes", "YES"] + cluster_train = os.getenv('PADDLE_CLUSTER_TRAIN', "False") in TRUTH + use_gpu = os.getenv('PADDLE_INIT_USE_GPU', "False") + + if not cluster_train: + paddle.init( + use_gpu=use_gpu, + trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1"))) + else: + paddle.init( + use_gpu=use_gpu, + trainer_count=int(os.getenv("PADDLE_INIT_TRAINER_COUNT", "1")), + port=int(os.getenv("PADDLE_INIT_PORT", "7164")), + ports_num=int(os.getenv("PADDLE_INIT_PORTS_NUM", "1")), + ports_num_for_sparse=int( + os.getenv("PADDLE_INIT_PORTS_NUM_FOR_SPARSE", "1")), + num_gradient_servers=int( + os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "1")), + trainer_id=int(os.getenv("PADDLE_INIT_TRAINER_ID", "0")), + pservers=os.getenv("PADDLE_INIT_PSERVERS", "127.0.0.1")) + fn = open("thirdparty/wuyi_train_thdpty/word_dict.pickle", "r") + word_dict = pickle.load(fn) + fn.close() + dict_size = len(word_dict) + firstword = paddle.layer.data( + name="firstw", type=paddle.data_type.integer_value(dict_size)) + secondword = paddle.layer.data( + name="secondw", type=paddle.data_type.integer_value(dict_size)) + thirdword = paddle.layer.data( + name="thirdw", type=paddle.data_type.integer_value(dict_size)) + fourthword = paddle.layer.data( + name="fourthw", type=paddle.data_type.integer_value(dict_size)) + nextword = paddle.layer.data( + name="fifthw", type=paddle.data_type.integer_value(dict_size)) + + Efirst = wordemb(firstword) + Esecond = wordemb(secondword) + Ethird = wordemb(thirdword) + Efourth = wordemb(fourthword) + + contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) + hidden1 = paddle.layer.fc(input=contextemb, + size=hiddensize, + act=paddle.activation.Sigmoid(), + layer_attr=paddle.attr.Extra(drop_rate=0.5), + bias_attr=paddle.attr.Param(learning_rate=2), + param_attr=paddle.attr.Param( + initial_std=1. / math.sqrt(embsize * 8), + learning_rate=1)) + predictword = paddle.layer.fc(input=hidden1, + size=dict_size, + bias_attr=paddle.attr.Param(learning_rate=2), + act=paddle.activation.Softmax()) + + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + result = trainer.test( + paddle.batch( + cluster_reader_cluster(cluster_test_file, node_id), 32)) + print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics, + result.metrics) + + cost = paddle.layer.classification_cost(input=predictword, label=nextword) + parameters = paddle.parameters.create(cost) + adagrad = paddle.optimizer.AdaGrad( + learning_rate=3e-3, + regularization=paddle.optimizer.L2Regularization(8e-4)) + trainer = paddle.trainer.SGD(cost, + parameters, + adagrad, + is_local=not cluster_train) + trainer.train( + paddle.batch(cluster_reader_cluster(cluster_train_file, node_id), 32), + num_passes=30, + event_handler=event_handler) + + +if __name__ == '__main__': + main() diff --git a/doc/howto/usage/cluster/src/word2vec/prepare.py b/doc/howto/usage/cluster/src/word2vec/prepare.py new file mode 100644 index 0000000000000000000000000000000000000000..24f5c5b26d37ea03de3ab4dc2d967a4bd009eef0 --- /dev/null +++ b/doc/howto/usage/cluster/src/word2vec/prepare.py @@ -0,0 +1,41 @@ +import paddle.v2 as paddle +import tarfile +import os +import pickle + +SPLIT_COUNT = 3 +N = 5 + + +def file_len(fd): + for i, l in enumerate(fd): + pass + return i + 1 + + +def split_from_reader_by_line(filename, reader, split_count): + fn = open(filename, "w") + for batch_id, batch_data in enumerate(reader()): + batch_data_str = [str(d) for d in batch_data] + fn.write(",".join(batch_data_str)) + fn.write("\n") + fn.close() + + fn = open(filename, "r") + total_line_count = file_len(fn) + fn.close() + per_file_lines = total_line_count / split_count + 1 + cmd = "split -d -a 5 -l %d %s %s-" % (per_file_lines, filename, filename) + os.system(cmd) + + +word_dict = paddle.dataset.imikolov.build_dict() +with open("word_dict.pickle", "w") as dict_f: + pickle.dump(word_dict, dict_f) + +split_from_reader_by_line("train.txt", + paddle.dataset.imikolov.train(word_dict, N), + SPLIT_COUNT) +split_from_reader_by_line("test.txt", + paddle.dataset.imikolov.test(word_dict, N), + SPLIT_COUNT) diff --git a/go/cmd/master/master.go b/go/cmd/master/master.go index 739c4c01e02b10f46c36b997f8c4700150da2a26..f57db1c0a0107c4fd74b81aedaf4a58ff2a132ec 100644 --- a/go/cmd/master/master.go +++ b/go/cmd/master/master.go @@ -25,9 +25,8 @@ import ( "strings" "time" + log "github.com/inconshreveable/log15" "github.com/namsral/flag" - log "github.com/sirupsen/logrus" - "github.com/topicai/candy" "github.com/PaddlePaddle/Paddle/go/master" "github.com/PaddlePaddle/Paddle/go/utils/networkhelper" @@ -41,16 +40,20 @@ func main() { taskTimeoutMax := flag.Int("task-timeout-max", 3, "max timtout count for each task before it being declared failed task.") chunkPerTask := flag.Int("chunk-per-task", 10, "chunk per task.") logLevel := flag.String("log-level", "info", - "log level, possible values: debug, info, warning, error, fatal, panic") + "log level, possible values: debug, info, warn, error, crit") flag.Parse() - level, e := log.ParseLevel(*logLevel) - candy.Must(e) + lvl, err := log.LvlFromString(*logLevel) + if err != nil { + panic(err) + } - log.SetLevel(level) + log.Root().SetHandler( + log.LvlFilterHandler(lvl, log.CallerStackHandler("%+v", log.StderrHandler)), + ) if *endpoints == "" { - log.Warningln("-endpoints not set, fault tolerance not be enabled.") + log.Warn("-endpoints not set, fault tolerance not be enabled.") } var store master.Store @@ -58,23 +61,25 @@ func main() { eps := strings.Split(*endpoints, ",") ip, err := networkhelper.GetExternalIP() if err != nil { - log.Fatal(err) + log.Crit("get external ip error", log.Ctx{"error": err}) + panic(err) } addr := fmt.Sprintf("%s:%d", ip, *port) store, err = master.NewEtcdClient(eps, addr, master.DefaultLockPath, master.DefaultAddrPath, master.DefaultStatePath, *ttlSec) if err != nil { - log.Fatal(err) + log.Crit("error creating etcd client.", log.Ctx{"error": err}) + panic(err) } } else { store = &master.InMemStore{} } shutdown := func() { - log.Infoln("shutting down gracefully") + log.Info("shutting down gracefully") err := store.Shutdown() if err != nil { - log.Errorln(err) + log.Error("shutdown error", log.Ctx{"error": err}) } } @@ -86,24 +91,28 @@ func main() { s, err := master.NewService(store, *chunkPerTask, *taskTimeoutDur, *taskTimeoutMax) if err != nil { - log.Fatal(err) + log.Crit("error creating new service.", log.Ctx{"error": err}) + panic(err) } err = rpc.Register(s) if err != nil { - log.Fatal(err) + log.Crit("error registering to etcd.", log.Ctx{"error": err}) + panic(err) } rpc.HandleHTTP() l, err := net.Listen("tcp", ":"+strconv.Itoa(*port)) if err != nil { - log.Fatal(err) + log.Crit("error listing to port", log.Ctx{"error": err, "port": *port}) + panic(err) } go func() { err = http.Serve(l, nil) if err != nil { - log.Fatal(err) + log.Crit("error serving HTTP", log.Ctx{"error": err}) + panic(err) } }() diff --git a/go/cmd/pserver/pserver.go b/go/cmd/pserver/pserver.go index bec5775d540729000ab2dd3002600f0a92619d70..90f9cf3fcf209457b2746ab746c437d82dfc65aa 100644 --- a/go/cmd/pserver/pserver.go +++ b/go/cmd/pserver/pserver.go @@ -27,11 +27,11 @@ import ( "github.com/topicai/candy" "github.com/PaddlePaddle/Paddle/go/pserver" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) func main() { - port := flag.Int("port", 0, "port of the pserver") + port := flag.Int("port", 8001, "port of the pserver") index := flag.Int("index", -1, "index of the pserver, set to -1 if use etcd for auto pserver index registry") etcdEndpoint := flag.String("etcd-endpoint", "http://127.0.0.1:2379", "comma separated endpoint string for pserver to connect to etcd") @@ -41,13 +41,17 @@ func main() { checkpointPath := flag.String("checkpoint-path", "/checkpoints/", "save checkpoint path") checkpointInterval := flag.Duration("checkpoint-interval", 600*time.Second, "save checkpoint per interval seconds") logLevel := flag.String("log-level", "info", - "log level, possible values: debug, info, warning, error, fatal, panic") + "log level, possible values: debug, info, warn, error, crit") flag.Parse() - level, err := log.ParseLevel(*logLevel) - candy.Must(err) + lvl, err := log.LvlFromString(*logLevel) + if err != nil { + panic(err) + } - log.SetLevel(level) + log.Root().SetHandler( + log.LvlFilterHandler(lvl, log.CallerStackHandler("%+v", log.StderrHandler)), + ) var idx int @@ -63,7 +67,7 @@ func main() { cp, err = pserver.LoadCheckpoint(e, idx) if err != nil { if err == pserver.ErrCheckpointNotFound { - log.Infof("Could not find the pserver checkpoint.") + log.Info("Could not find the pserver checkpoint.") } else { panic(err) } @@ -71,10 +75,10 @@ func main() { } shutdown := func() { - log.Infoln("shutting down gracefully") + log.Info("shutting down gracefully") sErr := e.Shutdown() if sErr != nil { - log.Errorln(sErr) + log.Error("error shutting down", log.Ctx{"error": sErr}) } } @@ -95,7 +99,7 @@ func main() { candy.Must(err) go func() { - log.Infof("start pserver at port %d", *port) + log.Info("starting pserver", log.Ctx{"port": *port}) err = http.Serve(l, nil) candy.Must(err) }() diff --git a/go/glide.lock b/go/glide.lock index aabc03657fff299581c61ed2a220e1c615cd6dfe..ce654d36364f8078a493651d8d8b141532eea26d 100644 --- a/go/glide.lock +++ b/go/glide.lock @@ -1,5 +1,5 @@ -hash: 328e7b9b7306b45e7b9879139a9f86698115981f6283032e1312093a6a6ddb04 -updated: 2017-10-16T08:00:23.484693528Z +hash: 51d9e2e46d7fd9173ff11ecada40f7b7728756be18d5e2f032535f66465e6e15 +updated: 2017-10-24T15:04:09.987751592-07:00 imports: - name: github.com/alecthomas/gometalinter version: bae2f1293d092fd8167939d5108d1b025eaef9de @@ -99,6 +99,8 @@ imports: version: d2709f9f1f31ebcda9651b03077758c1f3a0018c - name: github.com/ghodss/yaml version: 0ca9ea5df5451ffdf184b4428c902747c2c11cd7 +- name: github.com/go-stack/stack + version: 817915b46b97fd7bb80e8ab6b69f01a53ac3eebf - name: github.com/gogo/protobuf version: 909568be09de550ed094403c2bf8a261b5bb730a subpackages: @@ -120,8 +122,14 @@ imports: - runtime - runtime/internal - utilities +- name: github.com/inconshreveable/log15 + version: 0decfc6c20d9ca0ad143b0e89dcaa20f810b4fb3 - name: github.com/jonboulle/clockwork version: 2eee05ed794112d45db504eb05aa693efd2b8b09 +- name: github.com/mattn/go-colorable + version: 5411d3eea5978e6cdc258b30de592b60df6aba96 +- name: github.com/mattn/go-isatty + version: 57fdcb988a5c543893cc61bce354a6e24ab70022 - name: github.com/matttproud/golang_protobuf_extensions version: c12348ce28de40eed0136aa2b644d0ee0650e56c subpackages: @@ -179,11 +187,12 @@ imports: - lex/httplex - trace - name: golang.org/x/sys - version: 0f826bdd13b500be0f1d4004938ad978fcc6031e + version: e48874b42435b4347fc52bdee0424a52abc974d7 repo: https://github.com/golang/sys.git vcs: git subpackages: - unix + - windows - name: golang.org/x/text version: 836efe42bb4aa16aaa17b9c155d8813d336ed720 repo: https://github.com/golang/text.git @@ -222,4 +231,3 @@ testImports: version: 05e8a0eda380579888eb53c394909df027f06991 subpackages: - assert - diff --git a/go/glide.yaml b/go/glide.yaml index 4b22ab2caaae2272e3aab0eeba0758925c67d448..ba253f8bebef0ddab810a8303ab1fbe541defbdf 100644 --- a/go/glide.yaml +++ b/go/glide.yaml @@ -26,3 +26,7 @@ import: version: v1.1.0 - package: github.com/alecthomas/gometalinter version: v1.2.1 +- package: github.com/inconshreveable/log15 + version: v2.13 +- package: github.com/go-stack/stack + version: v1.6.0 diff --git a/go/master/c/client.go b/go/master/c/client.go index b5759c30b1d7f7dc33e162e959c7de165e02e1da..9a59337108d1aa33929abb480af686a96514655b 100644 --- a/go/master/c/client.go +++ b/go/master/c/client.go @@ -35,13 +35,19 @@ import ( "unsafe" "github.com/PaddlePaddle/Paddle/go/master" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) var mu sync.Mutex var handleMap = make(map[C.paddle_master_client]*master.Client) var curHandle C.paddle_master_client +func init() { + log.Root().SetHandler( + log.LvlFilterHandler(log.LvlWarn, log.CallerStackHandler("%+v", log.StderrHandler)), + ) +} + func add(c *master.Client) C.paddle_master_client { mu.Lock() defer mu.Unlock() @@ -117,7 +123,7 @@ func paddle_set_dataset(client C.paddle_master_client, path **C.char, size C.int } err := c.SetDataset(paths) if err != nil { - log.Errorln(err) + log.Error("error set dataset", log.Ctx{"error": err}) return C.PADDLE_MASTER_ERROR } @@ -167,7 +173,7 @@ func paddle_request_save_model(client C.paddle_master_client, trainerID string, c := get(client) need, err := c.RequestSaveModel(trainerID, time.Duration(blockMS)*time.Millisecond) if err != nil { - log.Errorln(err) + log.Error("error request save model", log.Ctx{"error": err}) return C.PADDLE_MASTER_ERROR } diff --git a/go/master/client.go b/go/master/client.go index f04cf50ce3cf765a79cbe555d3edb68f3dbb911e..5d657548c9039dfdacf61dd1145deb9777596d9f 100644 --- a/go/master/client.go +++ b/go/master/client.go @@ -21,7 +21,7 @@ import ( "github.com/PaddlePaddle/Paddle/go/connection" "github.com/PaddlePaddle/recordio" "github.com/coreos/etcd/clientv3" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) // Client is the client of the master server. @@ -75,7 +75,7 @@ func WithEtcd(endpoints []string, timeout time.Duration) func(*Client) error { for { err := f() if err != nil { - log.Warningln(err) + log.Warn("create etcd client error", log.Ctx{"error": err}) } else { break } @@ -135,13 +135,13 @@ func (c *Client) getRecords(passID int) { time.Sleep(time.Second * 3) continue } - log.Errorf("getTask error: %s", err) + log.Error("getTask error.", log.Ctx{"error": err}) } for _, chunk := range t.Chunks { f, e := os.Open(chunk.Path) if e != nil { - log.Errorln(e) + log.Error("error open chunk", log.Ctx{"error": e}) continue } @@ -152,12 +152,15 @@ func (c *Client) getRecords(passID int) { if s.Err() != nil { c.ch <- record{nil, s.Err()} - log.Errorln(err, chunk.Path) + log.Error( + "error scan chunk", + log.Ctx{"error": err, "path": chunk.Path}, + ) } err = f.Close() if err != nil { - log.Errorln(err) + log.Error("error close record file", log.Ctx{"error": err}) } } @@ -166,7 +169,7 @@ func (c *Client) getRecords(passID int) { // correct, but a reasonable approximation. err = c.taskFinished(t.Meta.ID) if err != nil { - log.Errorln(err) + log.Error("task finish callback error.", log.Ctx{"error": err}) } } } @@ -179,12 +182,12 @@ func (c *Client) monitorMaster(addrCh <-chan string) { if curMaster == "" { err := c.conn.Close() if err != nil { - log.Errorln(err) + log.Error("close old master addr error", log.Ctx{"error": err}) } } else { err := c.conn.Connect(curMaster) if err != nil { - log.Errorln(err) + log.Error("connect to new master addr error", log.Ctx{"error": err}) // connect to addr failed, set // to last known addr in order diff --git a/go/master/client_internal_test.go b/go/master/client_internal_test.go index d5f3d79464655540a29eaa6395057aa5795c4615..2f13fd0dcda85ee10669133ed011f47ce418b61c 100644 --- a/go/master/client_internal_test.go +++ b/go/master/client_internal_test.go @@ -25,8 +25,6 @@ import ( "testing" "time" - log "github.com/sirupsen/logrus" - "github.com/PaddlePaddle/Paddle/go/connection" "github.com/PaddlePaddle/recordio" ) @@ -36,10 +34,6 @@ const ( chunkPerTask = 10 ) -func init() { - log.SetLevel(log.ErrorLevel) -} - func TestGetFinishTask(t *testing.T) { const path = "/tmp/master_client_test_0" diff --git a/go/master/etcd_client.go b/go/master/etcd_client.go index 94848d887e8bc4b055a7c8b89b9b7f26a39229d1..2a41d36949cb19d9076c0ed00c8db6e235f1296c 100644 --- a/go/master/etcd_client.go +++ b/go/master/etcd_client.go @@ -20,7 +20,7 @@ import ( "github.com/coreos/etcd/clientv3" "github.com/coreos/etcd/clientv3/concurrency" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) const ( @@ -44,7 +44,7 @@ type EtcdClient struct { // NewEtcdClient creates a new EtcdClient. func NewEtcdClient(endpoints []string, addr string, lockPath, addrPath, statePath string, ttlSec int) (*EtcdClient, error) { - log.Debugf("Connecting to etcd at %v", endpoints) + log.Debug("Connecting to etcd", log.Ctx{"endpoint": endpoints}) cli, err := clientv3.New(clientv3.Config{ Endpoints: endpoints, DialTimeout: dialTimeout, @@ -64,12 +64,12 @@ func NewEtcdClient(endpoints []string, addr string, lockPath, addrPath, statePat // one master running, but split-brain problem may cause // multiple master servers running), and the cluster management // software will kill one of them. - log.Infof("Trying to acquire lock at %s.", lockPath) + log.Info("Trying to acquire lock.", log.Ctx{"path": lockPath}) err = lock.Lock(context.TODO()) if err != nil { return nil, err } - log.Infof("Successfully acquired lock at %s.", lockPath) + log.Info("Successfully acquired lock at %s.", log.Ctx{"path": lockPath}) put := clientv3.OpPut(addrPath, addr) resp, err := cli.Txn(context.Background()).If(lock.IsOwner()).Then(put).Commit() @@ -78,7 +78,8 @@ func NewEtcdClient(endpoints []string, addr string, lockPath, addrPath, statePat } if !resp.Succeeded { - log.Fatal("No longer owns the master lock. Exiting.") + log.Crit("No longer owns the master lock. Exiting.") + panic("No longer owns the master lock. Exiting.") } e := &EtcdClient{ @@ -102,7 +103,7 @@ func (e *EtcdClient) Save(state []byte) error { } if !resp.Succeeded { - log.Errorln("No longer owns the lock, trying to lock again") + log.Error("No longer owns the lock, trying to lock again") ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) err := e.lock.Lock(ctx) cancel() @@ -116,9 +117,10 @@ func (e *EtcdClient) Save(state []byte) error { // to kill current master server. The current // state is not saved, but the trainer's RPC // call will fail, so the trainer will retry. - log.Fatalf("Could not acquire the lock at %s: %v. Exiting.", e.lockPath, err) + log.Crit("Could not acquire the lock at %s: %v. Exiting.", log.Ctx{"path": e.lockPath, "error": err}) + panic("Could not acquire the lock at %s: %v. Exiting.") } - log.Infof("Successfully acquired lock at %s.", e.lockPath) + log.Info("Successfully acquired lock at %s.", e.lockPath) return e.Save(state) } @@ -136,7 +138,7 @@ func (e *EtcdClient) Load() ([]byte, error) { } if !resp.Succeeded { - log.Errorln("No longer owns the lock, trying to lock and load again.") + log.Error("No longer owns the lock, trying to lock and load again.") err = e.lock.Lock(context.Background()) if err != nil { return nil, err @@ -163,7 +165,7 @@ func (e *EtcdClient) Shutdown() error { if err == nil { err = newErr } else { - log.Errorln(newErr) + log.Error("shutdown error", log.Ctx{"error": newErr}) } } @@ -192,7 +194,7 @@ func watchKey(c *clientv3.Client, key string, valChan chan<- string) { for wresp := range rch { for _, ev := range wresp.Events { // if received event is DELETE, the value will be an empty string - log.Infof("received event %s, %q : %q\n", ev.Type, ev.Kv.Key, ev.Kv.Value) + log.Info("received event.", log.Ctx{"type": ev.Type, "key": ev.Kv.Key, "value": ev.Kv.Value}) valChan <- string(ev.Kv.Value) } } diff --git a/go/master/service.go b/go/master/service.go index df7c6860e6ae13a5be7d0425273812208685ee9d..f3501028800c850a521d4b08db323cb70fe926d2 100644 --- a/go/master/service.go +++ b/go/master/service.go @@ -25,7 +25,7 @@ import ( "sync" "time" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" "github.com/PaddlePaddle/recordio" ) @@ -170,11 +170,11 @@ func (s *Service) recover() (bool, error) { } if state == nil { - log.Infoln("No state exists, not recovered.") + log.Info("No state exists, not recovered.") return false, nil } - log.Infof("Loaded snapshot of size: %d bytes.", len(state)) + log.Info("Loaded snapshot.", log.Ctx{"size": len(state)}) gr, err := gzip.NewReader(bytes.NewReader(state)) if err != nil { return false, err @@ -191,11 +191,11 @@ func (s *Service) recover() (bool, error) { if err != nil { // Only close failed, recover actually succeed, so // just log error. - log.Errorln(err) + log.Error("error close recover file.", log.Ctx{"error": err}) } s.state = tqs - log.WithFields(s.logFields()).Infof("Master recovered from snapshot, scheduling pending task timeout check.") + log.Info("Master recovered from snapshot, scheduling pending task timeout check.", s.logCtx()) for _, t := range s.state.Pending { time.AfterFunc(s.timeoutDur, s.checkTimeoutFunc(t.Task.Meta.ID, t.Task.Meta.Epoch)) } @@ -224,7 +224,7 @@ func (s *Service) snapshot() error { } state := buf.Bytes() - log.Infof("Saving snapshot of size: %d bytes.", len(state)) + log.Info("Saving snapshot.", log.Ctx{"size bytes": len(state)}) return s.store.Save(state) } @@ -260,7 +260,7 @@ func readChunks(globPaths []string) ([]Chunk, error) { } count := index.NumChunks() - log.Infof("readChunks: file %s has %d chunks", path, count) + log.Info("reading chunks.", log.Ctx{"path": path, "num chunks": count}) for i := 0; i < count; i++ { chunk := Chunk{ Path: path, @@ -300,7 +300,7 @@ func (s *Service) SetDataset(globPaths []string, _ *int) error { err = s.snapshot() if err != nil { - log.Errorln(err) + log.Error("snapshot error", log.Ctx{"error": err}) return err } close(s.ready) @@ -320,7 +320,7 @@ func (s *Service) processFailedTask(t taskEntry, epoch int) { defer func() { err := s.snapshot() if err != nil { - log.Errorln(err) + log.Error("snapshot error", log.Ctx{"error": err}) } }() @@ -328,12 +328,12 @@ func (s *Service) processFailedTask(t taskEntry, epoch int) { t.NumFailure++ if t.NumFailure > s.failureMax { - log.Warningf("Task %v failed %d times, discard.", t.Task, t.NumFailure) + log.Warn("Task failed to many times, discard.", log.Ctx{"task": t.Task, "num failed": t.NumFailure}) s.state.Failed = append(s.state.Failed, t) return } - log.Warningf("Task %v failed %d times, re-dispatch.", t.Task, t.NumFailure) + log.Warn("Task failed, re-dispatch.", log.Ctx{"task": t.Task, "num failed": t.NumFailure}) s.state.Todo = append(s.state.Todo, t) return } @@ -353,8 +353,8 @@ func (s *Service) checkTimeoutFunc(taskID int, epoch int) func() { } // must be called with lock held. -func (s *Service) logFields() log.Fields { - return log.Fields{ +func (s *Service) logCtx() log.Ctx { + return log.Ctx{ "todoLen": len(s.state.Todo), "pendingLen": len(s.state.Pending), "doneLen": len(s.state.Done), @@ -383,10 +383,10 @@ func (s *Service) GetTask(passID int, task *Task) error { if len(s.state.Todo) == 0 { if len(s.state.Done) == 0 && len(s.state.Pending) == 0 { - log.WithFields(s.logFields()).Warningln("All tasks failed, may start next pass") + log.Warn("All tasks failed, may start next pass", s.logCtx()) return ErrAllTaskFailed } - log.WithFields(s.logFields()).Warningln("No more available task.") + log.Warn("No more available task.", s.logCtx()) return ErrNoMoreAvailable } @@ -400,8 +400,9 @@ func (s *Service) GetTask(passID int, task *Task) error { } *task = t.Task - log.WithFields(s.logFields()).Infof("Task #%v dispatched.", t.Task.Meta) - + ctx := s.logCtx() + ctx["task meta"] = t.Task.Meta + log.Info("Task dispatched.", ctx) time.AfterFunc(s.timeoutDur, s.checkTimeoutFunc(t.Task.Meta.ID, t.Task.Meta.Epoch)) return nil } @@ -417,7 +418,9 @@ func (s *Service) TaskFinished(taskID int, dummy *int) error { t, ok := s.state.Pending[taskID] if !ok { - log.WithFields(s.logFields()).Warningln("Pending task #%d not found.", taskID) + ctx := s.logCtx() + ctx["task id"] = taskID + log.Warn("Pending task not found.", ctx) return nil } @@ -426,7 +429,9 @@ func (s *Service) TaskFinished(taskID int, dummy *int) error { s.state.Done = append(s.state.Done, t) delete(s.state.Pending, taskID) - log.WithFields(s.logFields()).Infof("Task #%d finished.", taskID) + ctx := s.logCtx() + ctx["task id"] = taskID + log.Info("Task finished.", ctx) if len(s.state.Todo) == 0 && len(s.state.Pending) == 0 { // increase master side pass count if all tasks finished s.state.CurPass++ @@ -434,12 +439,14 @@ func (s *Service) TaskFinished(taskID int, dummy *int) error { s.state.Done = []taskEntry{} // TODO(typhoonzero): deal with failed tasks s.state.Failed = []taskEntry{} - log.WithFields(s.logFields()).Warningf("all task finished, add new pass data, newpass: %d.", s.state.CurPass) + ctx := s.logCtx() + ctx["new pass"] = s.state.CurPass + log.Warn("all task finished, add new pass data.", ctx) } err := s.snapshot() if err != nil { - log.Errorln(err) + log.Error("snapshot error", log.Ctx{"error": err}) } return err } @@ -455,7 +462,7 @@ func (s *Service) TaskFailed(meta TaskMeta, dummy *int) error { t, ok := s.state.Pending[meta.ID] if !ok { - log.WithFields(s.logFields()).Warningln("TaskFailed:Pending task #%v not found.", t.Task.Meta) + log.Warn("TaskFailed:Pending task not found.", log.Ctx{"task": t.Task.Meta}) return nil } diff --git a/go/pserver/client/c/cclient.go b/go/pserver/client/c/cclient.go index a49cd01522b8b49a74f21fcb97e9eeb1fbb2d272..2eeec1b6b3c28556e02780e40ae5d6b693dce484 100644 --- a/go/pserver/client/c/cclient.go +++ b/go/pserver/client/c/cclient.go @@ -45,9 +45,15 @@ import ( "github.com/PaddlePaddle/Paddle/go/pserver" "github.com/PaddlePaddle/Paddle/go/pserver/client" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) +func init() { + log.Root().SetHandler( + log.LvlFilterHandler(log.LvlWarn, log.CallerStackHandler("%+v", log.StderrHandler)), + ) +} + var mu sync.Mutex var handleMap = make(map[C.paddle_pserver_client]*client.Client) var curHandle C.paddle_pserver_client @@ -164,10 +170,13 @@ func paddle_init_param(client C.paddle_pserver_client, param C.paddle_parameter, if err != nil { if err.Error() == pserver.AlreadyInitialized { - log.Warningf("parameter %s already initialized, treat paddle_init_param as successful.", name) + log.Warn( + "parameter already initialized, treat paddle_init_param as successful.", + log.Ctx{"parameter": name}, + ) return C.PSERVER_OK } - log.Errorln(err) + log.Error("error init param", log.Ctx{"error": err}) return C.PSERVER_ERROR } @@ -180,11 +189,11 @@ func paddle_finish_init_params(client C.paddle_pserver_client) C.int { err := c.FinishInitParams() if err != nil { if err.Error() == pserver.AlreadyInitialized { - log.Warningln("parameters already initialized, treat paddle_finish_init_params as successful.") + log.Warn("parameters already initialized, treat paddle_finish_init_params as successful.") return C.PSERVER_OK } - log.Errorln(err) + log.Error("error finish init params", log.Ctx{"error": err}) return C.PSERVER_ERROR } @@ -205,7 +214,7 @@ func paddle_send_grads(client C.paddle_pserver_client, grads **C.paddle_gradient c := get(client) err := c.SendGrads(gs) if err != nil { - log.Errorln(err) + log.Error("error send grads", log.Ctx{"error": err}) return C.PSERVER_ERROR } @@ -222,7 +231,7 @@ func paddle_get_params(client C.paddle_pserver_client, dst **C.paddle_parameter, c := get(client) ps, err := c.GetParams(ns) if err != nil { - log.Errorln(err) + log.Error("error get params", log.Ctx{"error": err}) return C.PSERVER_ERROR } @@ -231,7 +240,13 @@ func paddle_get_params(client C.paddle_pserver_client, dst **C.paddle_parameter, for i, p := range ps { pn[i] = p.Name } - log.Errorf("pserver returned wrong number of parameters. Requested: %s, returned: %s.", strings.Join(pn, ", "), strings.Join(ns, ", ")) + log.Error( + "pserver returned wrong number of parameters.", + log.Ctx{ + "Requested": strings.Join(pn, ", "), + "Returned": strings.Join(ns, ", "), + }, + ) return C.PSERVER_ERROR } @@ -241,7 +256,13 @@ func paddle_get_params(client C.paddle_pserver_client, dst **C.paddle_parameter, for i, p := range ps { pn[i] = p.Name } - log.Errorf("pserver returned wrong parameters, or not in requested order. Requested: %s, returned: %s.", strings.Join(pn, ", "), strings.Join(ns, ", ")) + log.Error( + "pserver returned wrong parameters, or not in requested order.", + log.Ctx{ + "Requested": strings.Join(pn, ", "), + "Returned": strings.Join(ns, ", "), + }, + ) return C.PSERVER_ERROR } } @@ -251,13 +272,19 @@ func paddle_get_params(client C.paddle_pserver_client, dst **C.paddle_parameter, param := *(**C.paddle_parameter)(unsafe.Pointer((uintptr(unsafe.Pointer(dst)) + uintptr(i)*unsafe.Sizeof(*dst)))) if unsafe.Pointer(param) == nil { - log.Errorln("must pre-allocate parameter.") + log.Error("must pre-allocate parameter.") return C.PSERVER_ERROR } if unsafe.Pointer(param.content) != nil { if int(param.content_len) != len(p.Content) { - log.Errorf("the pre-allocated content len does not match parameter content len. Pre-allocated len: %d, returned len: %d", param.content_len, len(p.Content)) + log.Error( + "the pre-allocated content len does not match parameter content len.", + log.Ctx{ + "Pre-allocated len": param.content_len, + "Returned len": len(p.Content), + }, + ) return C.PSERVER_ERROR } } diff --git a/go/pserver/client/client.go b/go/pserver/client/client.go index 20d91e77034e1a0c6825bc401175e6dc1afec52f..18fce34b376a8f60900700c588e30f92ef3514ed 100644 --- a/go/pserver/client/client.go +++ b/go/pserver/client/client.go @@ -22,7 +22,7 @@ import ( "github.com/PaddlePaddle/Paddle/go/connection" "github.com/PaddlePaddle/Paddle/go/pserver" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) // TODO(helin): add RPC call retry logic @@ -84,7 +84,7 @@ func (c *Client) monitorPservers(l Lister, pserverNum int) { if curServers[i].Addr == "" { err := c.pservers[i].Close() if err != nil { - log.Errorln(err) + log.Error("error closing connection to pserver", log.Ctx{"error": err}) } continue @@ -92,7 +92,7 @@ func (c *Client) monitorPservers(l Lister, pserverNum int) { err := c.pservers[i].Connect(curServers[i].Addr) if err != nil { - log.Errorln(err) + log.Error("error connecting to pserver", log.Ctx{"error": err}) // connect to addr failed, set // to last known addr in order @@ -137,7 +137,7 @@ func (c *Client) FinishInitParams() error { return err } } - return nil + return c.sel.Done() } // SendGrads sends gradients to parameter servers for updating diff --git a/go/pserver/client/client_test.go b/go/pserver/client/client_test.go index c3d88e926d7cb5f3027be26a270bee6f2db65f31..ec832305ee8e24967b06b6b621c44cde30c09e55 100644 --- a/go/pserver/client/client_test.go +++ b/go/pserver/client/client_test.go @@ -30,7 +30,7 @@ import ( "github.com/PaddlePaddle/Paddle/go/pserver" "github.com/PaddlePaddle/Paddle/go/pserver/client" "github.com/coreos/etcd/clientv3" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) const ( @@ -90,7 +90,7 @@ func initEtcdClient() { DialTimeout: time.Second * time.Duration(1), }) if err != nil { - log.Errorf("err %v", err) + log.Error("error init etcd client", log.Ctx{"error": err}) } ctx, cancel := context.WithTimeout(context.Background(), timeout) _, err = client.Delete(ctx, pserver.PsDesired) diff --git a/go/pserver/client/etcd_client.go b/go/pserver/client/etcd_client.go index f9071caaa8f5ac32d426b1d4344a30262202b96d..16d0c3b943050f05c54a3e010054fd7c2f33b6d6 100644 --- a/go/pserver/client/etcd_client.go +++ b/go/pserver/client/etcd_client.go @@ -25,7 +25,7 @@ import ( "github.com/PaddlePaddle/Paddle/go/pserver" "github.com/coreos/etcd/clientv3" "github.com/coreos/etcd/clientv3/concurrency" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) const ( @@ -54,26 +54,29 @@ func (e *Etcd) Desired() int { resp, err := e.client.Get(ctx, pserver.PsDesired) cancel() if err != nil { - log.Errorf("Get ps dresire number failed! recnnectiong..., %v", err) + log.Error( + "Get ps dresire number failed! reconnecting...", + log.Ctx{"error": err}, + ) time.Sleep(e.timeout) continue } kvs := resp.Kvs if len(kvs) == 0 { - log.Infoln("Waiting for ps desired registered ...") + log.Info("Waiting for ps desired registered ...") time.Sleep(e.timeout) continue } psDesired, err = strconv.Atoi(string(resp.Kvs[0].Value)) if err != nil { - log.Errorf("psDesired %d invalid %v", psDesired, err) + log.Error("atoi failed", log.Ctx{"error": err}) time.Sleep(e.timeout) continue } - log.Debugf("Get psDesired number: %d", psDesired) + log.Debug("Got psDesired", log.Ctx{"psDesired": psDesired}) break } return psDesired @@ -88,17 +91,20 @@ func (e *Etcd) List() []Server { for i := 0; i < psDesired; i++ { ctx, cancel := context.WithTimeout(context.Background(), e.timeout) psKey := pserver.PsPath + strconv.Itoa(i) - log.Debugf("checking %s", psKey) + log.Debug("looking for pserver", log.Ctx{"ps key": psKey}) resp, err := e.client.Get(ctx, psKey) cancel() if err != nil { - log.Infof("Get psKey= %s error, %v", psKey, err) + log.Info( + "Get psKey error", + log.Ctx{"ps key": psKey, "error": err}, + ) time.Sleep(e.timeout) continue } kvs := resp.Kvs if len(kvs) == 0 { - log.Infof("Waiting for ps addr registered ...") + log.Info("Waiting for ps addr registered ...") time.Sleep(e.timeout) continue } @@ -106,11 +112,17 @@ func (e *Etcd) List() []Server { psAddr := string(resp.Kvs[0].Value) // TODO(Longfei) check the ps address if psAddr == "" { - log.Infof("Get psKey = %s, psAddr is empty", psKey) + log.Info( + "Value under psKey is empty", + log.Ctx{"psKey": psKey}, + ) time.Sleep(e.timeout) continue } - log.Debugf("got value (%s) for key: %s", psAddr, psKey) + log.Debug( + "got psAddr given psKey", + log.Ctx{"psAddr": psAddr, "psKey": psKey}, + ) servers[i].Index = i servers[i].Addr = psAddr } @@ -130,13 +142,13 @@ func NewEtcd(endpoints string) *Etcd { DialTimeout: defaultEtcdTimeout, }) if err != nil { - log.Errorf("Init etcd connection failed: %v", err) + log.Error("Init etcd connection failed", log.Ctx{"error": err}) time.Sleep(defaultEtcdTimeout) continue } break } - log.Infof("Connected to etcd: %s\n", endpoints) + log.Info("Connected to etcd endpoint", log.Ctx{"endpoint": endpoints}) client := &Etcd{ client: cli, timeout: defaultEtcdTimeout, @@ -154,7 +166,7 @@ func (e *Etcd) Select() (bool, error) { } lock := concurrency.NewMutex(sess, initLockPath) - log.Infof("Trying to acquire lock at %s.", initLockPath) + log.Info("Trying to acquire lock", log.Ctx{"lock path": initLockPath}) // Do not use timeout context here, since we don't know how // long does it take for other trainers to initialize the // parameters. @@ -162,7 +174,7 @@ func (e *Etcd) Select() (bool, error) { if err != nil { return false, err } - log.Infof("Successfully acquired lock at %s.", initLockPath) + log.Info("Successfully acquired lock", log.Ctx{"lock path": initLockPath}) get := clientv3.OpGet(initDonePath) ctx, cancel := context.WithTimeout(context.Background(), e.timeout) @@ -181,17 +193,17 @@ func (e *Etcd) Select() (bool, error) { if len(resp.Kvs) == 0 { // Key value not set, select current trainer. e.lock = lock - log.Infoln("Trainer selected.") + log.Info("Trainer selected.") return true, nil } if string(resp.Kvs[0].Value) == initDoneVal { - log.Infoln("Initialization is already done.") + log.Info("Initialization is already done.") ctx, cancel = context.WithTimeout(context.Background(), e.timeout) err = lock.Unlock(ctx) cancel() if err != nil { - log.Errorln(err) + log.Error("error unlocking", log.Ctx{"error": err}) } return false, nil } @@ -221,7 +233,7 @@ func (e *Etcd) Done() error { err = e.lock.Unlock(ctx) cancel() if err != nil { - log.Errorln(err) + log.Error("error unlocking", log.Ctx{"error": err}) } else { e.lock = nil } @@ -244,7 +256,7 @@ func (e *Etcd) Close() error { cErr := e.client.Close() if cErr != nil { if err != nil { - log.Errorln(cErr) + log.Error("error closing etcd client", log.Ctx{"error": cErr}) return err } return cErr diff --git a/go/pserver/etcd_client.go b/go/pserver/etcd_client.go index 41f0640fc09a3265c0e11c06255c7ee834983203..08ddb247f26379da80d485b1a6059f793864b786 100644 --- a/go/pserver/etcd_client.go +++ b/go/pserver/etcd_client.go @@ -24,7 +24,7 @@ import ( "github.com/PaddlePaddle/Paddle/go/utils/networkhelper" "github.com/coreos/etcd/clientv3" "github.com/coreos/etcd/clientv3/concurrency" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) const ( @@ -82,19 +82,19 @@ func (e *EtcdClient) Register(port int) (int, error) { DialTimeout: e.dialTimeout, }) if err != nil { - log.Errorf("connect to etcd error: %v", err) + log.Error("connect to etcd error", log.Ctx{"error": err}) time.Sleep(retryTimeout) continue } e.client = cli sess, err := concurrency.NewSession(cli, concurrency.WithTTL(e.ttlSec)) if err != nil { - log.Errorf("create etcd session error: %v", err) + log.Error("create etcd session error", log.Ctx{"error": err}) time.Sleep(retryTimeout) continue } e.sess = sess - log.Debugf("inited client to %s", e.endpoints) + log.Debug("connected to etcd", log.Ctx{"endpoint": e.endpoints}) break } // init /ps_desired using transaction, for multiple pservers may want to write @@ -104,7 +104,7 @@ func (e *EtcdClient) Register(port int) (int, error) { _, err := e.initDesiredPservers(ctx, e.numPservers) cancel() if err != nil { - log.Warn(err) + log.Warn("pserver init error", log.Ctx{"error": err, "num pservers": e.numPservers}) time.Sleep(retryTimeout) continue } @@ -119,14 +119,17 @@ func (e *EtcdClient) Register(port int) (int, error) { resp, err := e.client.Get(ctx, PsDesired) cancel() if err != nil { - log.Errorf("getting %s error: %v", PsDesired, err) + log.Error("get etcd key error", log.Ctx{"key": PsDesired, "error": err}) time.Sleep(retryTimeout) continue } if len(resp.Kvs) != 0 { e.desired, err = strconv.Atoi(string(resp.Kvs[0].Value)) if err != nil { - log.Errorf("value of %s invalid %v\n", PsDesired, err) + log.Error( + "psDesired atoi error", + log.Ctx{"error": err, "value": string(resp.Kvs[0].Value)}, + ) time.Sleep(retryTimeout) // NOTE: wait util ps_desired value change continue @@ -143,7 +146,7 @@ func (e *EtcdClient) Register(port int) (int, error) { pserverIdx, err = e.registerPserverEtcd(ctx, port) cancel() if err != nil { - log.Warn(err) + log.Warn("register pserver on etcd error", log.Ctx{"error": err}) time.Sleep(retryTimeout) continue } @@ -170,16 +173,17 @@ func (e *EtcdClient) registerPserverEtcd(ctx context.Context, port int) (int, er registered := false for i := 0; i < e.desired; i++ { psKey := PsPath + strconv.Itoa(i) - log.Debugf("checking %s", psKey) ps := c.Get(psKey) - log.Debugf("got value (%s) for key: %s", ps, psKey) + log.Debug( + "register pserver got value", + log.Ctx{"value": ps, "key": psKey}, + ) if ps == "" { // find the first id and write info pserverAddr := e.externalIP + ":" + strconv.Itoa(port) c.Put(psKey, pserverAddr, clientv3.WithLease(e.sess.Lease())) - log.Debugf("set pserver node %s with value %s", psKey, pserverAddr) - log.Debug("register finished") + log.Debug("register finished", log.Ctx{"key": psKey, "value": pserverAddr}) idx = i registered = true break @@ -239,7 +243,7 @@ func (e *EtcdClient) Shutdown() error { newErr := e.client.Close() if newErr != nil { if err != nil { - log.Errorln(newErr) + log.Error("shutdown error", log.Ctx{"error": newErr}) } else { err = newErr } diff --git a/go/pserver/optimizer.go b/go/pserver/optimizer.go index ae7359073494bd9cb6b70b12af4daca064179556..e04c86de0a9317a63bbf3216ee32091ab564e369 100644 --- a/go/pserver/optimizer.go +++ b/go/pserver/optimizer.go @@ -25,7 +25,7 @@ import ( "fmt" "unsafe" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) type optimizer struct { @@ -56,12 +56,12 @@ func newOptimizer(paramWithConfigs ParameterWithConfig, State []byte) *optimizer c := paramWithConfigs.Config s := State paramBufferSize := C.size_t(len(p.Content)) - log.WithFields(log.Fields{ + log.Info("New Optimizer Created with config", log.Ctx{ "ElementType": p.ElementType, "ParamSize": paramBufferSize, "ConfigSize": len(c), "StateSize": len(s), - }).Info("New Optimizer Created with config:") + }) var cbuffer unsafe.Pointer cbuffer = C.malloc(paramBufferSize) @@ -72,21 +72,34 @@ func newOptimizer(paramWithConfigs ParameterWithConfig, State []byte) *optimizer } o.config = c - o.opt = C.paddle_create_optimizer((*C.uchar)(&c[0]), C.int(len(c)), - C.paddle_element_type(p.ElementType), cbuffer, C.int(paramBufferSize), (*C.char)(cstate), C.int(len(s))) + o.opt = C.paddle_create_optimizer( + (*C.uchar)(&c[0]), + C.int(len(c)), + C.paddle_element_type(p.ElementType), + cbuffer, + C.int(paramBufferSize), + (*C.char)(cstate), + C.int(len(s)), + ) return o } func (o *optimizer) GetWeights() []byte { var buffer unsafe.Pointer + // we do not own the buffer, no need to free later. bufferLen := C.paddle_optimizer_get_weights(o.opt, &buffer) return cArrayToSlice(buffer, int(bufferLen)*C.sizeof_float) } func (o *optimizer) GetStates() []byte { var cbuffer *C.char + // we owns the state buffer, need to free later. cbufferLen := C.paddle_optimizer_get_state(o.opt, &cbuffer) - return cArrayToSlice(unsafe.Pointer(cbuffer), int(cbufferLen)) + buf := cArrayToSlice(unsafe.Pointer(cbuffer), int(cbufferLen)) + cpy := make([]byte, len(buf)) + copy(cpy, buf) + C.free(unsafe.Pointer(cbuffer)) + return cpy } func (o *optimizer) UpdateParameter(g Gradient) error { diff --git a/go/pserver/optimizer_test.go b/go/pserver/optimizer_test.go index d001e6993e6aed2f5829c1b86928af30f4900c8a..565f56dc286d214e7e9a3ddce389d92d21569cd5 100644 --- a/go/pserver/optimizer_test.go +++ b/go/pserver/optimizer_test.go @@ -15,8 +15,12 @@ package pserver import ( + "encoding/binary" "io/ioutil" + "math" "testing" + + "github.com/stretchr/testify/assert" ) func TestOptimizerCreateRelease(t *testing.T) { @@ -36,3 +40,39 @@ func TestOptimizerCreateRelease(t *testing.T) { o := newOptimizer(param, nil) o.Cleanup() } + +func float32Bytes(float float32) []byte { + bits := math.Float32bits(float) + bytes := make([]byte, 4) + binary.LittleEndian.PutUint32(bytes, bits) + return bytes +} + +func TestOptimizerState(t *testing.T) { + p := Parameter{ + Name: "a", + ElementType: Int32, + } + weights := float32Bytes(100) + p.Content = weights + config, err := ioutil.ReadFile("./client/c/test/testdata/optimizer.pb") + if err != nil { + t.Fatalf("read optimizer proto failed") + } + param := ParameterWithConfig{ + Param: p, + Config: config, + } + o := newOptimizer(param, nil) + s := o.GetStates() + + // clear param content and check if the state is restored. + param.Param.Content = float32Bytes(300) + o1 := newOptimizer(param, s) + s1 := o1.GetStates() + assert.Equal(t, s, s1) + assert.Equal(t, weights, o.GetWeights()) + assert.Equal(t, weights, o1.GetWeights()) + o.Cleanup() + o1.Cleanup() +} diff --git a/go/pserver/service.go b/go/pserver/service.go index 25751540a9a2dff043c14e0912bfab1aaa938ab4..6f66faaf27bf41133783888369ed9b4cec7edea0 100644 --- a/go/pserver/service.go +++ b/go/pserver/service.go @@ -32,7 +32,7 @@ import ( uuid "github.com/satori/go.uuid" - log "github.com/sirupsen/logrus" + log "github.com/inconshreveable/log15" ) // ElementType is the type of elements of a Parameter. @@ -124,6 +124,9 @@ func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) { // LoadCheckpoint loads checkpoint from file. func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) { + log.Info("Loading checkpoint", "pserver index", idx) + defer traceTime(time.Now(), "load checkpoint") + cpMeta, err := loadMeta(e, idx) if err != nil { return nil, err @@ -178,6 +181,7 @@ func NewService(idx int, interval time.Duration, path string, client *EtcdClient func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, _ *int) error { select { case <-s.initialized: + log.Warn("init param called but parameters already initialized.") return errors.New(AlreadyInitialized) default: } @@ -191,6 +195,13 @@ func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, _ *int) error // properly memory aligned, if not, make copy to a memory // aligned region. s.optMap[paramWithConfigs.Param.Name] = newOptimizer(paramWithConfigs, nil) + log.Info( + "init parameter", + "name", paramWithConfigs.Param.Name, + "config len", len(paramWithConfigs.Config), + "param len", len(paramWithConfigs.Param.Content), + "type", paramWithConfigs.Param.ElementType, + ) return nil } @@ -199,6 +210,7 @@ func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, _ *int) error func (s *Service) FinishInitParams(_ int, _ *int) error { select { case <-s.initialized: + log.Warn("finished init param called but parameters already initialized.") return errors.New(AlreadyInitialized) default: } @@ -209,10 +221,12 @@ func (s *Service) FinishInitParams(_ int, _ *int) error { for range t { err := s.checkpoint() if err != nil { - log.Errorln(err) + log.Error("finish init params error", log.Ctx{"error": err}) } } }() + + log.Info("init parameter finished.") return nil } @@ -222,6 +236,7 @@ func (s *Service) SendGrad(g Gradient, _ *int) error { select { case <-s.initialized: default: + log.Warn("received gradient before initialization.", "name", g.Name, "size", len(g.Content), "type", g.ElementType) return errors.New(Uninitialized) } @@ -233,6 +248,7 @@ func (s *Service) SendGrad(g Gradient, _ *int) error { return fmt.Errorf("parameter: %s does not exist", g.Name) } + log.Info("received gradient from trainer, updating gradient.", "name", g.Name, "size", len(g.Content), "type", g.ElementType) return o.UpdateParameter(g) } @@ -244,6 +260,7 @@ func (s *Service) GetParam(name string, parameter *Parameter) error { opt, ok := s.optMap[name] if !ok { + log.Warn("trainer wants to get a parameter that does not exist.", "name", name) return fmt.Errorf("parameter: %s does not exist", name) } @@ -257,12 +274,13 @@ func (s *Service) GetParam(name string, parameter *Parameter) error { parameter.Name = name parameter.ElementType = opt.elementType parameter.Content = opt.GetWeights() + log.Info("sending parameter to the trainer", "name", parameter.Name, "size", len(parameter.Content), "type", parameter.ElementType) return nil } func traceTime(start time.Time, name string) { elapsed := time.Since(start) - log.Infof("%s took %v", name, elapsed) + log.Info("time elapsed", log.Ctx{"name": name, "elapsed": elapsed}) } // checkpoint saves checkpoint to disk. @@ -270,7 +288,7 @@ func traceTime(start time.Time, name string) { // checkpoint should be only called after the parameters are // initialized. func (s *Service) checkpoint() (err error) { - log.Infoln("Begin save checkpoint.") + log.Info("Begin save checkpoint.") defer traceTime(time.Now(), "save checkpoint") s.mu.Lock() @@ -297,6 +315,13 @@ func (s *Service) checkpoint() (err error) { return } + if _, err = os.Stat(s.checkpointPath); os.IsNotExist(err) { + err = os.MkdirAll(s.checkpointPath, os.ModePerm) + if err != nil { + return + } + } + id := uuid.NewV4().String() p := path.Join(s.checkpointPath, id) f, err := os.Create(p) @@ -308,7 +333,7 @@ func (s *Service) checkpoint() (err error) { closeErr := f.Close() if closeErr != nil { if err != nil { - log.Errorln(closeErr) + log.Error("error close checkpoint file", log.Ctx{"error": closeErr}) } else { // Set closeErr as return value. err = closeErr @@ -329,7 +354,7 @@ func (s *Service) checkpoint() (err error) { oldMeta, err := loadMeta(s.client, s.idx) if err == ErrCheckpointNotFound { - log.Infoln("Do not have existing checkpoint.") + log.Info("Do not have existing checkpoint.") err = nil } @@ -361,7 +386,7 @@ func (s *Service) checkpoint() (err error) { if rmErr != nil { // log error, but still treat checkpoint as // successful. - log.Errorln(rmErr) + log.Error("remove old meta file error", log.Ctx{"error": rmErr}) } } diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt index 2c458a78c598bf206b30c0c07599ce605af77701..e767856d5012fd205f6b57f9721d0cbca8dc46ed 100644 --- a/paddle/capi/CMakeLists.txt +++ b/paddle/capi/CMakeLists.txt @@ -28,23 +28,37 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER} add_dependencies(paddle_capi paddle_proto) -# combine all paddle static libraries together, into libpaddle_capi_whole.a -# user should use PaddleCAPI as -lpaddle_capi_whole -set(PADDLE_CAPI_INFER_LIBS - paddle_utils - paddle_parameter - paddle_math - paddle_cuda - paddle_function - paddle_gserver - paddle_proto) - +# TODO: paddle_capi_whole will be removed. +if(MOBILE_INFERENCE) + set(PADDLE_CAPI_INFER_LIBS + paddle_utils + paddle_parameter + paddle_math + paddle_cuda + paddle_function + paddle_gserver + paddle_proto) +else() + set(PADDLE_CAPI_INFER_LIBS + paddle_utils + paddle_parameter + paddle_math + paddle_cuda + paddle_function + paddle_gserver + paddle_proto + paddle_pserver + paddle_network) +endif() cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS}) -# No shared library for iOS +# Link the static library for inference +cc_library(paddle_capi_engine DEPS paddle_capi paddle_utils paddle_parameter paddle_math paddle_cuda paddle_proto) +cc_library(paddle_capi_layers DEPS paddle_function paddle_gserver) + +# Link the shared library for inference if(NOT IOS) - set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") - # TODO: merge mkl into paddle_capi_shared + set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_capi.map") add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) @@ -53,9 +67,10 @@ endif() # install library & headers. install(FILES ${CAPI_HEADERS} DESTINATION include/paddle) +install(FILES paddle_capi.map DESTINATION include/paddle) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle) if(ANDROID) - install(TARGETS paddle_capi_whole paddle_capi_shared + install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers paddle_capi_shared ARCHIVE DESTINATION lib/${ANDROID_ABI} LIBRARY DESTINATION lib/${ANDROID_ABI}) execute_process( @@ -80,7 +95,7 @@ if(ANDROID) )" ) else(ANDROID) - install(TARGETS paddle_capi_whole ARCHIVE DESTINATION lib) + install(TARGETS paddle_capi_whole paddle_capi_engine paddle_capi_layers ARCHIVE DESTINATION lib) if(NOT IOS) install(TARGETS paddle_capi_shared DESTINATION lib) endif() diff --git a/paddle/capi/export.sym b/paddle/capi/export.sym deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/paddle/capi/export.map b/paddle/capi/paddle_capi.map similarity index 100% rename from paddle/capi/export.map rename to paddle/capi/paddle_capi.map diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 4bc3fdeeea461ea2a1f82caa00d6c0c11a2775d0..85374a476d51dc4c0e22793e8b53d6d7ba21c8da 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -1,4 +1,7 @@ # ddim lib +proto_library(framework_proto SRCS framework.proto) +proto_library(saver_proto SRCS framework.proto saver.proto) + cc_library(ddim SRCS ddim.cc DEPS eigen3) cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim) @@ -7,8 +10,8 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) -cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor) -cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor) +cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor saver_proto framework_proto) +cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor paddle_memory) nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) cc_test(variable_test SRCS variable_test.cc) @@ -16,17 +19,17 @@ cc_test(variable_test SRCS variable_test.cc) cc_library(scope SRCS scope.cc) cc_test(scope_test SRCS scope_test.cc DEPS scope) -proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) -cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info) +cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc) cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) -cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope proto_desc) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) +cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info operator) -cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator) +cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) py_proto_compile(framework_py_proto SRCS framework.proto) @@ -42,7 +45,10 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) -cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward) +cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog) + +cc_library(prune SRCS prune.cc DEPS framework_proto) +cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor) cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index d6a2975aaa419406aef7b228e78381dbce78890d..29fe352ca450740e55ee87b63392e3aabac8aa40 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -19,19 +19,7 @@ limitations under the License. */ namespace paddle { namespace framework { -static ProgramDesc* g_program_desc = nullptr; - -ProgramDesc& GetProgramDesc() { - if (g_program_desc == nullptr) { - g_program_desc = new ProgramDesc(); - auto root_block = g_program_desc->mutable_blocks()->Add(); - root_block->set_idx(0); - root_block->set_parent_idx(-1); - } - return *g_program_desc; -} - -Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { +Attribute GetAttrValue(const OpDesc::Attr& attr_desc, ProgramDesc* program) { switch (attr_desc.type()) { case framework::AttrType::BOOLEAN: { return attr_desc.b(); @@ -74,7 +62,9 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { return val; } case framework::AttrType::BLOCK: { - return GetProgramDesc().mutable_blocks(attr_desc.block_idx()); + PADDLE_ENFORCE(program != nullptr, + "Need to specify ProgramDesc when get a block attr"); + return program->mutable_blocks(attr_desc.block_idx()); } } PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !"); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 8a7a949346e73ca9d2a813ca2888755a23bb7d7b..9744662b8f7229b0b17e910ae5cd997fa7d31e06 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -26,16 +26,13 @@ limitations under the License. */ namespace paddle { namespace framework { - -ProgramDesc& GetProgramDesc(); - template inline AttrType AttrTypeID() { Attribute tmp = T(); return static_cast(tmp.which() - 1); } -Attribute GetAttrValue(const OpDesc::Attr& attr_desc); +Attribute GetAttrValue(const OpDesc::Attr& attr_desc, ProgramDesc* desc); class AttrReader { public: diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index c78e05607179387e1c015f6fd24669c538587759..1ae7fb60f01e4925ceb310f661171eb231eb6c96 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -21,6 +21,7 @@ #include "paddle/framework/block_desc.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/dynamic_recurrent_op.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" @@ -220,8 +221,7 @@ static std::unique_ptr BackwardRecursive( // process recurrent gradient op as a special operator. if (forwardOp.Type() == "recurrent") { // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), - // or - // this will result in infinite loop. + // or this will result in infinite loop. const auto& rnnop = *static_cast(&forwardOp); auto rnn_grad_op = @@ -231,6 +231,18 @@ static std::unique_ptr BackwardRecursive( // create stepnet's gradient op rnn_grad_op->set_stepnet( BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id)); + } else if (forwardOp.Type() == "dynamic_recurrent") { + // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), + // or this will result in infinite loop. + const auto& rnnop = + *static_cast(&forwardOp); + auto rnn_grad_op = + static_cast(grad_op.get()); + const auto& stepnet_op = + *static_cast(&rnnop.rnn.GetStepUnit()); + // create stepnet's gradient op + rnn_grad_op->rnn.SetStepUnit( + BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id)); } if (net->ops_.empty()) { // Current no aux op is added to network @@ -281,12 +293,16 @@ static void CreateGradVarInBlock( auto ops = block_desc->AllOps(); for (size_t op_index = grad_op_start_index; op_index < ops.size(); ++op_index) { + bool need_infer_shape = false; ForEachVarName(ops[op_index]->Outputs(), [&](const std::string& grad_var_name) { if (block_desc->HasVar(grad_var_name)) { return false; } - block_desc->Var(grad_var_name); + need_infer_shape = true; + auto var = block_desc->Var(grad_var_name); + // FIXME(qiao) infer the datatype + var->SetDataType(framework::DataType::FP32); auto it = param_name_map.find(grad_var_name); if (it == param_name_map.end()) { return false; @@ -298,12 +314,14 @@ static void CreateGradVarInBlock( grad_record.op_idx_ = static_cast(op_index); return false; /* not break */ }); + if (need_infer_shape) { + ops[op_index]->InferShape(*block_desc); + } } } std::vector> MakeOpGrad( - const std::unique_ptr& op_desc, - std::unordered_set* no_grad_vars, + const OpDescBind* op_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { std::vector> grad_op_descs; // All input gradients of forwarding operator do not need to calculate. @@ -350,7 +368,7 @@ std::vector> MakeBlockBackward( std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { BlockDescBind* cur_block = program_desc.Block(block_idx); - std::deque>& op_descs = cur_block->ops_; + std::vector op_descs = cur_block->AllOps(); std::unordered_map> dup_out_ops; size_t grad_desc_idx = 0; std::vector> backward_descs; @@ -368,7 +386,7 @@ std::vector> MakeBlockBackward( program_desc, step_block_idx, no_grad_vars, grad_to_var); BlockDescBind* backward_block = program_desc.AppendBlock(*cur_block); for (auto& ptr : backward_block_op_descs) { - backward_block->ops_.push_back(std::move(ptr)); + backward_block->AppendAllocatedOp(std::move(ptr)); } op_grads[0]->SetBlockAttr("step_block", *backward_block); } @@ -425,17 +443,22 @@ ParamGradInfoMap AppendBackward( const int root_block_idx = 0; auto root_block = program_desc.Block(root_block_idx); - auto& all_ops = root_block->ops_; // insert fill one op for target + // TODO(qiao) add some check to the target. std::string fill_one_op_out = GradVarName(target.Name()); + std::vector target_shape_desc = target.Shape(); + std::vector target_shape; + std::transform(target_shape_desc.begin(), target_shape_desc.end(), + std::back_inserter(target_shape), + [](int64_t dim) { return static_cast(dim); }); std::unique_ptr fill_one_op( new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}}, - {{"shape", std::vector{1}}, + {{"shape", target_shape}, {"value", static_cast(1.0)}, {"data_type", framework::DataType::FP32}})); - all_ops.push_back(std::move(fill_one_op)); - size_t forward_op_num = all_ops.size(); + root_block->AppendAllocatedOp(std::move(fill_one_op)); + size_t forward_op_num = root_block->OpSize(); size_t forward_block_num = program_desc.Size(); // Insert backward operators @@ -443,13 +466,22 @@ ParamGradInfoMap AppendBackward( auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx, &no_grad_var_names, &grad_to_var); - std::unordered_map retv; - - // Create Variable for (auto& ptr : backward_op_descs) { - all_ops.push_back(std::move(ptr)); + root_block->AppendAllocatedOp(std::move(ptr)); } - root_block->Var(fill_one_op_out); + // Create Variable + + // Create target gradient variable + std::unordered_map retv; + + auto var = root_block->Var(fill_one_op_out); + // FIXME(qiao) infer the data type + var->SetDataType(framework::DataType::FP32); + var->SetShape(target.Shape()); + auto& target_grad = retv[target.Name()]; + target_grad.name_ = fill_one_op_out; + target_grad.block_idx_ = root_block_idx; + target_grad.op_idx_ = static_cast(forward_op_num); // create grad_var for all blocks in this program CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv); diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 5302afcafb5c0e1c057302dac174be935649ef11..10301f7e39423c8ff0eba33277edecab14c119bf 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -26,6 +26,20 @@ namespace framework { using DeviceContext = platform::DeviceContext; +class NoneOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override {} +}; + +template +class NoneKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override {} +}; + class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { public: RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) @@ -215,19 +229,51 @@ class MinusOpMaker : public OpProtoAndCheckerMaker { namespace f = paddle::framework; namespace ops = paddle::operators; using EnforceNotMet = paddle::platform::EnforceNotMet; -REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker, +// rowwise_add +REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker, f::RowWiseAddGradMaker); -REGISTER_OPERATOR(rowwise_add_grad, f::NOP); -REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP); -REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP); -REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker); -REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker); -REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP); +REGISTER_OP_CPU_KERNEL(rowwise_add, + f::NoneKernel); +REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(rowwise_add_grad, + f::NoneKernel); +// mul +REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel); +REGISTER_OP_CPU_KERNEL(mul_grad, + f::NoneKernel); +// sigmoid +REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(sigmoid, + f::NoneKernel); +REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker); +// fill_zeros_like +REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker); +REGISTER_OP_CPU_KERNEL(fill_zeros_like, + f::NoneKernel); +// sum +REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp); +REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel); +REGISTER_OP_CPU_KERNEL(sum_grad, + f::NoneKernel); +// fc REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker); -REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad, - f::NOP); -REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP); -REGISTER_OPERATOR(minus, f::NOP, f::MinusOpMaker, f::MinusGradOpDescMaker); +// many_output_op +REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker, + many_output_op_grad, f::NoneOp); +// mult_in_out +REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad, + f::NoneOp); +REGISTER_OP_CPU_KERNEL(mult_in_out, + f::NoneKernel); +REGISTER_OP_CPU_KERNEL(mult_in_out_grad, + f::NoneKernel); +// minus +REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker); +REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel); +// scale +REGISTER_OPERATOR(scale, f::NoneOp); +REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel); TEST(Backward, simple_op_not_need_grad) { auto fwd = f::OpRegistry::CreateOp( @@ -449,20 +495,10 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL); } -// =================================== // - -f::ProgramDesc *GetNewProgramDesc() { - auto *program_desc = new f::ProgramDesc(); - auto *root_block = program_desc->add_blocks(); - root_block->set_idx(0); - root_block->set_parent_idx(-1); - return program_desc; -} - TEST(Backward, simple_single_op) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); + f::OpDescBind *op = block->AppendOp(); op->SetType("rowwise_add"); op->SetInput("X", {"x"}); @@ -487,7 +523,7 @@ TEST(Backward, simple_single_op) { EXPECT_EQ(grad_op->Output(f::GradVarName("b")), std::vector({f::GradVarName("b")})); - EXPECT_EQ(var_to_grad.size(), 2UL); + EXPECT_EQ(var_to_grad.size(), 3UL); EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2)); EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2)); @@ -496,8 +532,7 @@ TEST(Backward, simple_single_op) { } TEST(Backward, default_attribute) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op = block->AppendOp(); op->SetType("mul"); @@ -523,8 +558,7 @@ TEST(Backward, default_attribute) { } TEST(Backward, simple_mult_op) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -588,7 +622,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), std::vector({f::GradVarName("b3")})); - EXPECT_EQ(var_to_grad.size(), 6UL); + EXPECT_EQ(var_to_grad.size(), 7UL); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6)); EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6)); EXPECT_EQ(var_to_grad.at("out1"), @@ -607,8 +641,7 @@ TEST(Backward, simple_mult_op) { } TEST(Backward, intermedia_var_no_grad) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -666,7 +699,7 @@ TEST(Backward, intermedia_var_no_grad) { std::vector({f::GradVarName("out1")})); EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector()); - EXPECT_EQ(var_to_grad.size(), 3UL); + EXPECT_EQ(var_to_grad.size(), 4UL); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6)); EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6)); EXPECT_EQ(var_to_grad.at("out1"), @@ -678,8 +711,7 @@ TEST(Backward, intermedia_var_no_grad) { } TEST(Backward, var_no_grad) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("mult_in_out"); @@ -744,7 +776,7 @@ TEST(Backward, var_no_grad) { EXPECT_EQ(grad_op1->Output(f::GradVarName("H")), std::vector({f::GradVarName("h1")})); - EXPECT_EQ(var_to_grad.size(), 3UL); + EXPECT_EQ(var_to_grad.size(), 4UL); EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3)); EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5)); EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5)); @@ -755,8 +787,7 @@ TEST(Backward, var_no_grad) { } TEST(Backward, shared_var) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); f::OpDescBind *op1 = block->AppendOp(); op1->SetType("rowwise_add"); @@ -830,7 +861,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - EXPECT_EQ(var_to_grad.size(), 5UL); + EXPECT_EQ(var_to_grad.size(), 6UL); EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4)); EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5)); EXPECT_EQ(var_to_grad.at("out1"), @@ -846,8 +877,7 @@ TEST(Backward, shared_var) { } TEST(Backward, half_backward) { - f::ProgramDesc *program_desc = GetNewProgramDesc(); - f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc); + f::ProgramDescBind program; f::BlockDescBind *block = program.Block(0); auto *op1 = block->AppendOp(); op1->SetType("minus"); @@ -863,7 +893,7 @@ TEST(Backward, half_backward) { auto ops = block->AllOps(); ASSERT_EQ(3UL, ops.size()); - EXPECT_EQ(var_to_grad.size(), 1UL); + EXPECT_EQ(var_to_grad.size(), 2UL); EXPECT_EQ(var_to_grad.at("a"), f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1)); } diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 47b75228cdbd2a8b4f0c5ad33aa82f5e43044606..251e340e6ddcc17ba16bdcab63f2a8c907122eab 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -19,11 +19,11 @@ namespace paddle { namespace framework { VarDescBind *BlockDescBind::Var(const std::string &name) { - need_update_ = true; auto it = vars_.find(name); if (it != vars_.end()) { return it->second.get(); } + need_update_ = true; auto *var = new VarDescBind(name); vars_[name].reset(var); return var; @@ -41,6 +41,19 @@ bool BlockDescBind::HasVar(const std::string &name) const { return vars_.find(name) != vars_.end(); } +VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { + auto it = vars_.find(name); + if (it == vars_.end()) { + return Parent() == kNoneBlockIndex ? nullptr + : ParentBlock()->FindVarRecursive(name); + } + return it->second.get(); +} + +bool BlockDescBind::HasVarRecursive(const std::string &name) const { + return FindVarRecursive(name) != nullptr; +} + std::vector BlockDescBind::AllVars() const { std::vector res; for (const auto &p : vars_) { @@ -55,6 +68,11 @@ OpDescBind *BlockDescBind::AppendOp() { return ops_.back().get(); } +void BlockDescBind::AppendAllocatedOp(std::unique_ptr &&op_desc) { + need_update_ = true; + ops_.emplace_back(std::move(op_desc)); +} + OpDescBind *BlockDescBind::PrependOp() { need_update_ = true; ops_.emplace_front(new OpDescBind()); @@ -70,15 +88,19 @@ std::vector BlockDescBind::AllOps() const { } void BlockDescBind::Flush() { + for (auto &op_desc : ops_) { + op_desc->Flush(); + } + if (need_update_) { auto &op_field = *this->desc_->mutable_ops(); - op_field.Clear(); + this->ClearPBOps(); op_field.Reserve(static_cast(ops_.size())); for (auto &op_desc : ops_) { op_field.AddAllocated(op_desc->Proto()); } auto &var_field = *this->desc_->mutable_vars(); - var_field.Clear(); + this->ClearPBVars(); var_field.Reserve(static_cast(vars_.size())); for (auto &var_desc : vars_) { var_field.AddAllocated(var_desc.second->Proto()); @@ -88,7 +110,7 @@ void BlockDescBind::Flush() { } BlockDescBind *BlockDescBind::ParentBlock() const { - if (this->desc_->parent_idx() == -1) { + if (this->desc_->parent_idx() == kNoneBlockIndex) { return nullptr; } return prog_->Block(static_cast(this->desc_->parent_idx())); @@ -98,6 +120,35 @@ BlockDesc *BlockDescBind::Proto() { Flush(); return desc_; } +BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc, + ProgramDescBind *prog) + : prog_(prog), desc_(desc) { + need_update_ = true; + for (auto &op : other.ops_) { + ops_.emplace_back(new OpDescBind(*op)); + } + + for (auto &it : other.vars_) { + auto *var = new VarDescBind(*it.second); + vars_[it.first].reset(var); + } +} + +void BlockDescBind::ClearPBOps() { + auto ops = this->desc_->mutable_ops(); + while (!ops->empty()) { + // we do not own the OpDesc, so release the ownership. + ops->ReleaseLast(); + } +} + +void BlockDescBind::ClearPBVars() { + auto vars = this->desc_->mutable_vars(); + while (!vars->empty()) { + // we do not own the VarDesc, so release the ownership. + vars->ReleaseLast(); + } +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 9fb88f963283c72e1ec389b72dd2d98049c74f6d..c685050850dc25f346df49b5ce1d897974870460 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -16,9 +16,12 @@ limitations under the License. */ #include #include +#include #include #include + #include "paddle/framework/op_desc.h" +#include "paddle/framework/proto_desc.h" #include "paddle/framework/var_desc.h" #include "paddle/platform/macros.h" @@ -36,6 +39,14 @@ class BlockDescBind { BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) : prog_(prog), desc_(desc), need_update_(false) {} + BlockDescBind(const BlockDescBind &other, BlockDesc *desc, + ProgramDescBind *prog); + + ~BlockDescBind() { + this->ClearPBVars(); + this->ClearPBOps(); + } + int32_t ID() const { return desc_->idx(); } int32_t Parent() const { return desc_->parent_idx(); } @@ -46,23 +57,43 @@ class BlockDescBind { bool HasVar(const std::string &var_name) const; + VarDescBind *FindVarRecursive(const std::string &name_bytes) const; + + bool HasVarRecursive(const std::string &var_name) const; + + std::set LocalVarNames() const { + std::set var_names; + for (auto &var : vars_) { + var_names.insert(var.first); + } + return var_names; + } + std::vector AllVars() const; BlockDescBind *ParentBlock() const; OpDescBind *AppendOp(); + void AppendAllocatedOp(std::unique_ptr &&op_desc); + OpDescBind *PrependOp(); std::vector AllOps() const; + size_t OpSize() const { return ops_.size(); } + + OpDescBind *Op(int idx) { return ops_.at(idx).get(); } + void Flush(); BlockDesc *Proto(); - // FIXME(yuyang18): backward will access private data of BlockDesc. - // Mark it public temporary. We can fix it later. - public: + private: + void ClearPBOps(); + void ClearPBVars(); + + private: ProgramDescBind *prog_; // not_own BlockDesc *desc_; // not_own bool need_update_; diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h index 649899d42572c9a22adca5337dcd56b0bcf42e7c..c25a62c2b11ead614d93a4be8d63d40d0cc0165a 100644 --- a/paddle/framework/data_type.h +++ b/paddle/framework/data_type.h @@ -26,6 +26,8 @@ inline DataType ToDataType(std::type_index type) { return DataType::FP64; } else if (typeid(int).hash_code() == type.hash_code()) { return DataType::INT32; + } else if (typeid(int64_t).hash_code() == type.hash_code()) { + return DataType::INT64; } else { PADDLE_THROW("Not supported"); } diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 8e82e28bac478ad93ece3fcec9730c6cbabc392a..1f1e4edda823d62b169422672c855d96a2bd2ede 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -64,99 +64,27 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) { auto& block = pdesc.blocks(block_id); auto& device = device_contexts_[0]; - // Instantiate all the vars in the global scope - for (auto& var : block.vars()) { - scope->Var(var.name()); - } - Scope& local_scope = scope->NewScope(); - std::vector should_run = Prune(pdesc, block_id); - PADDLE_ENFORCE_EQ(should_run.size(), static_cast(block.ops_size())); - for (size_t i = 0; i < should_run.size(); ++i) { - if (should_run[i]) { - for (auto& var : block.ops(i).outputs()) { - for (auto& argu : var.arguments()) { - if (local_scope.FindVar(argu) == nullptr) { - local_scope.Var(argu); - } - } - } - auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i)); - op->Run(local_scope, *device); - } - } - - // TODO(tonyyang-svail): - // - Destroy local_scope -} - -std::vector Prune(const ProgramDesc& pdesc, int block_id) { - // TODO(tonyyang-svail): - // - will change to use multiple blocks for RNN op and Cond Op - - auto& block = pdesc.blocks(block_id); - auto& ops = block.ops(); - - bool expect_feed = true; - for (auto& op_desc : ops) { - PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed, - "All FeedOps are at the beginning of the ProgramDesc"); - expect_feed = (op_desc.type() == kFeedOpType); - } - - bool expect_fetch = true; - for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { - auto& op_desc = *op_iter; - PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch, - "All FetchOps must at the end of the ProgramDesc"); - expect_fetch = (op_desc.type() == kFetchOpType); - } - - std::set dependent_vars; - std::vector should_run; - for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { - auto& op_desc = *op_iter; - - bool found_dependent_vars = false; - for (auto& var : op_desc.outputs()) { - for (auto& argu : var.arguments()) { - if (dependent_vars.count(argu) != 0) { - found_dependent_vars = true; - } - } - } - - if (op_desc.type() == kFetchOpType || found_dependent_vars) { - // erase its output to the dependency graph - for (auto& var : op_desc.outputs()) { - for (auto& argu : var.arguments()) { - dependent_vars.erase(argu); - } - } - - // insert its input to the dependency graph - for (auto& var : op_desc.inputs()) { - for (auto& argu : var.arguments()) { - dependent_vars.insert(argu); - } - } - - should_run.push_back(true); + for (auto& var : block.vars()) { + if (var.persistable()) { + auto* ptr = scope->Var(var.name()); + VLOG(3) << "Create Variable " << var.name() + << " global, which pointer is " << ptr; } else { - should_run.push_back(false); + auto* ptr = local_scope.Var(var.name()); + VLOG(3) << "Create Variable " << var.name() + << " locally, which pointer is " << ptr; } } - // TODO(tonyyang-svail): - // - check this after integration of Init - // PADDLE_ENFORCE(dependent_vars.empty()); - - // since we are traversing the ProgramDesc in reverse order - // we reverse the should_run vector - std::reverse(should_run.begin(), should_run.end()); + for (auto& op_desc : block.ops()) { + auto op = paddle::framework::OpRegistry::CreateOp( + op_desc, const_cast(&pdesc)); + op->Run(local_scope, *device); + } - return should_run; + scope->DeleteScope(&local_scope); } } // namespace framework diff --git a/paddle/framework/executor.h b/paddle/framework/executor.h index 4e3bc2c0a59dfee5b9993037671f14a109dc8a74..793ee954e25f7da6c9d04ea6acc2ad78812e8329 100644 --- a/paddle/framework/executor.h +++ b/paddle/framework/executor.h @@ -40,16 +40,5 @@ class Executor { std::vector device_contexts_; }; -/* @Brief - * Pruning the graph - * - * @param - * ProgramDesc - * - * @return - * vector Same size as ops. Indicates whether an op should be run. - */ -std::vector Prune(const ProgramDesc& pdesc, int block_id); - } // namespace framework } // namespace paddle diff --git a/paddle/framework/feed_fetch_method.h b/paddle/framework/feed_fetch_method.h index 826d180bfc5445224a8d9292f06eeb58d9a46b29..7feacb1e24708411e7fbb610f9909447cba9e291 100644 --- a/paddle/framework/feed_fetch_method.h +++ b/paddle/framework/feed_fetch_method.h @@ -13,37 +13,45 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "glog/logging.h" +#include "paddle/framework/feed_fetch_type.h" #include "paddle/framework/scope.h" #include "paddle/framework/variable.h" namespace paddle { namespace framework { -template -void SetFeedVariable(const LoDTensor& input, const std::string& var_name, - size_t index) { +void SetFeedVariable(Scope* scope, const LoDTensor& input, + const std::string& var_name, size_t index) { // If var_name Variable is not found in GlobalScope, a new variable will // be created. - Variable* g_feed_value = GetGlobalScope().Var(var_name); + VLOG(3) << "SetFeedVariable name=" << var_name << " index=" << index; + Variable* g_feed_value = scope->Var(var_name); auto& feed_inputs = *(g_feed_value->GetMutable>()); if (index >= feed_inputs.size()) { feed_inputs.resize(index + 1); } // shared data with input tensor - feed_inputs[index].ShareDataWith(input); + feed_inputs[index].ShareDataWith(input); // set lod feed_inputs[index].set_lod(input.lod()); } -LoDTensor& GetFetchVariable(const std::string& var_name, size_t index) { +LoDTensor& GetFetchVariable(const Scope& scope, const std::string& var_name, + size_t index) { // Since we want to fetch LodTensor from a variable, the variable must // be created alreadly. - Variable* g_fetch_value = GetGlobalScope().FindVar(var_name); - auto& fetch_outputs = - *(g_fetch_value->GetMutable>()); + Variable* g_fetch_value = scope.FindVar(var_name); + PADDLE_ENFORCE(g_fetch_value->IsType(), + "Only %s can be invoked by GetFetchVariable", + typeid(FeedFetchList).name()); + auto& fetch_outputs = *g_fetch_value->GetMutable(); + auto& tensor = fetch_outputs[index]; + VLOG(3) << "Fetch " << var_name << " with index " << index + << " shape= " << tensor.dims(); PADDLE_ENFORCE_LT(index, fetch_outputs.size()); - return fetch_outputs[index]; + return tensor; } } // namespace framework diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index 65760b07ada7a63a568cb8296eef35a8aa18d9ff..8f2df3dc0e29f96b3aea58b6761d1ccb4cd7c624 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -55,6 +55,7 @@ message OpDesc { repeated Var inputs = 1; repeated Var outputs = 2; repeated Attr attrs = 4; + optional bool is_target = 5 [ default = false ]; }; // OpProto describes a C++ framework::OperatorBase derived class. @@ -67,6 +68,7 @@ message OpProto { optional bool duplicable = 3 [ default = false ]; optional bool intermediate = 4 [ default = false ]; + optional bool dispensable = 5 [ default = false ]; } // AttrProto describes the C++ type Attribute. @@ -111,6 +113,9 @@ message VarDesc { enum VarType { LOD_TENSOR = 1; SELECTED_ROWS = 2; + FEED_MINIBATCH = 3; + FETCH_LIST = 4; + STEP_SCOPES = 5; } required string name = 1; required VarType type = 2; diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 5b7badf89c1714331bae9fc8cf94c8da2c66dbad..731235cd986c152c9504a49c6c07ed17d16bfdfb 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -13,6 +13,15 @@ limitations under the License. */ #include "paddle/framework/lod_tensor.h" +#include "paddle/framework/saver.pb.h" + +#include "paddle/memory/memcpy.h" +#include "paddle/memory/memory.h" + +#include +#include +#include +#include #include @@ -25,31 +34,50 @@ LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end) { for (size_t i = level_begin; i < level_end; i++) { new_lod.emplace_back(in.at(i)); } + // transform the lowest level to absolute offset. + LoD abs_offset_lod = ToAbsOffset(in); + new_lod.back() = abs_offset_lod[level_end - 1]; return new_lod; } LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end) { - // slice the lod. - LoD new_lod; - new_lod.reserve(in.size() - level); - auto start = in.at(level)[elem_begin]; - auto end = in.at(level)[elem_end]; - - for (auto it = in.begin() + level; it != in.end(); it++) { - auto it_begin = std::find(it->begin(), it->end(), start); - auto it_end = std::find(it_begin, it->end(), end); - PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info"); - PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info"); - new_lod.emplace_back(it_begin, it_end + 1); - // reset offset if tensor is copyed and sliced. - std::transform(new_lod.back().begin(), new_lod.back().end(), - new_lod.back().begin(), - [start](int v) { return v - start; }); - PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LoD"); + PADDLE_ENFORCE_LT(level, in.size()); + PADDLE_ENFORCE_LT(elem_end, in[level].size()); + + LoD res; + res.resize(in.size() - level); + // copy the first level + res[0].assign(in[level].begin() + elem_begin, + in[level].begin() + elem_end + 1); + for (size_t lvl = 1; lvl < res.size(); lvl++) { + const auto& in_level = in[level + lvl]; + const auto& above_level = res[lvl - 1]; + auto& out_level = res[lvl]; + out_level.assign(in_level.begin() + above_level.front(), + in_level.begin() + above_level.back() + 1); } - PADDLE_ENFORCE_LE(new_lod.size(), in.size()); - return new_lod; + for (size_t lvl = 0; lvl < res.size(); lvl++) { + // to make the first offset equals 0, all the elements minus the first + // element + size_t front = res[lvl].front(); + for (auto& ele : res[lvl]) { + ele -= front; + } + } + return res; +} + +LoD ToAbsOffset(const LoD& in) { + // the lowest level stores relative offsets + if (in.empty() || in.size() == 1) return in; + LoD result = in; + for (int level = result.size() - 2; level >= 0; level--) { + for (auto& ele : result[level]) { + ele = result[level + 1][ele]; + } + } + return result; } bool operator==(const LoD& a, const LoD& b) { @@ -75,17 +103,16 @@ bool operator==(const LoD& a, const LoD& b) { size_t LoDTensor::NumElements(size_t level, size_t idx) const { PADDLE_ENFORCE_LT(level, NumLevels()); PADDLE_ENFORCE_LT(idx, NumElements(level)); - // the last level of LoD, just return number of records in Tensor - if (level == NumLevels() - 1) { - return lod_[level][idx + 1] - lod_[level][idx]; - } - // high level of LoD, and there is another lower level, return number of - // lower-level elements - auto tmp = SliceInLevel(lod_, level, idx, idx + 1); - PADDLE_ENFORCE_GE(tmp.size(), 2); - // there is a 0 as a placeholder stored in LoD, so the number of elements - // equals lod.size() - 1 - return tmp[1].size() - 1; + return lod_[level][idx + 1] - lod_[level][idx]; +} + +size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const { + PADDLE_ENFORCE_LT(level, NumLevels()); + PADDLE_ENFORCE_LT(idx, NumElements(level)); + auto abs_lod = ToAbsOffset(lod()); + size_t begin = abs_lod[level][idx]; + size_t end = abs_lod[level][idx + 1]; + return end - begin; } void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) { @@ -99,8 +126,150 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin, PADDLE_ENFORCE_LT(elem_begin, NumElements(level)); PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1); + auto abs_lod = framework::ToAbsOffset(lod()); auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end); lod_ = new_lod; + + // slice the underlying tensor + size_t begin = abs_lod[level][elem_begin]; + size_t end = abs_lod[level][elem_end]; + PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty."); + ShareDataWith(Slice(begin, end)); +} + +std::string LoDTensor::SerializeToString() const { + LoDTensorProto desc; + + // set data_type + if (this->type() == typeid(int8_t)) desc.set_data_type(DataType::BOOL); + if (this->type() == typeid(int16_t)) desc.set_data_type(DataType::INT16); + if (this->type() == typeid(int32_t)) desc.set_data_type(DataType::INT32); + if (this->type() == typeid(int64_t)) desc.set_data_type(DataType::INT64); + // FIXME(dzh): there is no fp16 in standard c++ + + if (this->type() == typeid(float)) // NOLINT + desc.set_data_type(DataType::FP32); + if (this->type() == typeid(double)) // NOLINT + desc.set_data_type(DataType::FP64); + + for (int i = 0; i < dims().size(); ++i) { + desc.add_dims(dims()[i]); + } + + // set lod information + desc.set_lod_level(this->NumLevels()); + for (size_t i = 0; i < this->NumLevels(); ++i) { + LoDInfo* lod = desc.add_levels(); + for (size_t j = 0; j < lod_[i].size(); ++j) { + lod->add_level(lod_[i][j]); + } + } + + desc.set_version(0); + + std::string desc_bytes = desc.SerializeAsString(); + + // FIXME(dzh) : implement fix chunk size buffer. + size_t DESC_SIZE = desc_bytes.size(); + size_t DATA_SIZE = holder_->size() - offset_; + + const size_t BUFFER_SIZE = DESC_SIZE + DATA_SIZE + 2 * sizeof(size_t); + char* buffer = + static_cast(memory::Alloc(platform::CPUPlace(), BUFFER_SIZE)); + + // format: desc_size data_size, desc_bytes, data_bytes. + platform::CPUPlace src_place; + platform::CPUPlace dst_place; + + memory::Copy(dst_place, buffer, src_place, &BUFFER_SIZE, sizeof(size_t)); + memory::Copy(dst_place, buffer + sizeof(size_t), src_place, &DESC_SIZE, + sizeof(size_t)); + memory::Copy(dst_place, buffer + sizeof(size_t) * 2, src_place, + desc_bytes.c_str(), desc_bytes.size()); + + PADDLE_ENFORCE(this->numel() != 0, "Serialize a empty Tensor!"); + + platform::Place place = holder_->place(); + int element_width = holder_->size() / this->numel(); + + if (platform::is_cpu_place(place)) { + memory::Copy(dst_place, buffer + sizeof(size_t) * 2 + desc_bytes.size(), + boost::get(place), + static_cast(holder_->ptr()) + offset_ / element_width, + DATA_SIZE); + } +#ifdef PADDLE_WITH_GPU + if (platform::is_gpu_place(place)) { + memory::Copy(dst_place, buffer + sizeof(size_t) * 2 + desc_bytes.size(), + boost::get(place), + static_cast(holder_->ptr()) + offset_ / element_width, + DATA_SIZE); + } +#endif + + std::string ret(buffer, BUFFER_SIZE); + memory::Free(platform::CPUPlace(), buffer); + return ret; +} + +void LoDTensor::DeserializeFromString(const std::string& s, + const platform::Place& dst_place) { + size_t DESC_SIZE, BUFFER_SIZE; + platform::CPUPlace src_place; + + memory::Copy(src_place, &BUFFER_SIZE, src_place, s.c_str(), sizeof(size_t)); + memory::Copy(src_place, &DESC_SIZE, src_place, s.c_str() + sizeof(size_t), + sizeof(size_t)); + + const size_t DATA_SIZE = BUFFER_SIZE - DESC_SIZE - sizeof(size_t) * 2; + + // parse LoDTensorDesc + LoDTensorProto desc; + desc.ParseFromArray(s.c_str() + sizeof(size_t) * 2, DESC_SIZE); + + std::vector dims; + std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); + this->Resize(make_ddim(dims)); + + // parse data type + void* ptr = nullptr; + if (desc.data_type() == DataType::BOOL) + ptr = this->mutable_data(dst_place); + if (desc.data_type() == DataType::INT16) + ptr = this->mutable_data(dst_place); + if (desc.data_type() == DataType::INT32) + ptr = this->mutable_data(dst_place); + if (desc.data_type() == DataType::INT64) + ptr = this->mutable_data(dst_place); + // FIXME(dzh): there is no fp16 in standard c++ + + if (desc.data_type() == DataType::FP32) + ptr = this->mutable_data(dst_place); + if (desc.data_type() == DataType::FP64) + ptr = this->mutable_data(dst_place); + + LoD lod; + std::vector levels; + for (int i = 0; i < desc.levels().size(); ++i) { + auto current_level = desc.levels()[i].level(); + std::copy(current_level.begin(), current_level.end(), + std::back_inserter(levels)); + lod.emplace_back(levels); + levels.clear(); + } + + this->set_lod(lod); + + if (platform::is_cpu_place(dst_place)) { + memory::Copy(boost::get(dst_place), ptr, src_place, + s.c_str() + sizeof(size_t) * 2 + DESC_SIZE, DATA_SIZE); + } +#ifdef PADDLE_WITH_GPU + if (platform::is_gpu_place(dst_place)) { + memory::Copy(boost::get(dst_place), ptr, src_place, + s.c_str() + sizeof(size_t) * 2 + DESC_SIZE, DATA_SIZE); + } +#endif } } // namespace framework diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 4db36ee76609ac6360fe2fc7b4a366e0284d1016..735d85f750c30c78e74018b971f8e32fe9f4c8bb 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -25,6 +25,7 @@ #include "paddle/framework/ddim.h" #include "paddle/framework/tensor.h" #include "paddle/platform/enforce.h" +#include "paddle/platform/place.h" namespace paddle { namespace framework { @@ -39,23 +40,36 @@ using Vector = thrust::host_vector< #endif /* - * 3-level LoD stores + * LoD is short for Level of Details. * - * 0 10 20 - * 0 5 10 15 20 - * 0 2 5 7 10 12 15 20 - * - * - in a level, each element indicates offset in the underlying Tensor + * - in a level, each element indicates relative offset of the lower level * - the first element should be 0 and that indicates that this sequence start * from 0 * - each sequence's begin and end(no-inclusive) is level[id, id+1] + * + * For example: + * 3-level LoD stores + * + * 0 2 3 + * 0 2 4 7 + * 0 2 5 7 10 12 15 20 */ using LoD = std::vector>; +/* + * Slice levels from a LoD. + * NOTE the lowest level should always be the absolute offsets of the underlying + * tensor instances. So if higher layers are sliced without the lowest level, + * the lower level of the sliced LoD will be transformed to the absolute offset. + */ LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end); LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin, size_t elem_end); +/* + * Transform an LoD from relative offsets to absolute offsets. + */ +LoD ToAbsOffset(const LoD& in); bool operator==(const LoD& a, const LoD& b); @@ -74,12 +88,12 @@ class LoDTensor : public Tensor { LoD lod() const { return lod_; } /* - * Get a element from LoD. + * Get the start offset and end offset of an element from LoD. */ - size_t lod_element(size_t level, size_t elem) const { + std::pair lod_element(size_t level, size_t elem) const { PADDLE_ENFORCE_LT(level, NumLevels()); PADDLE_ENFORCE_LT(elem, NumElements(level)); - return (lod_)[level][elem]; + return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]); } /* @@ -108,6 +122,12 @@ class LoDTensor : public Tensor { */ size_t NumElements(size_t level, size_t idx) const; + /* + * Get the number of instances in the underlying tensor in the `idx`-th + * element. + */ + size_t NumInstancesInElement(size_t level, size_t idx) const; + /* * Shrink levels[level_begin:level_end] */ @@ -119,8 +139,66 @@ class LoDTensor : public Tensor { */ void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end); + /** + * @brief Serialize tensor to char bytes. + * Please check model_format.md for the format detail. + * NOTE: GPUTensor will copy data to cpu implicitly. + * @return return string + */ + + // FIXME(dzh) : Currently, this interface should only be used in + // save/restore model and checkpoint. ParameterServer do not use shape + // information to do the optimization, as a result, when we serialize + // parameter/gradient to string, we should serialize the tensor + // to string in the ps trainer instead of LoDTensor. + std::string SerializeToString() const; + + /** + * @brief Deserialize char bytes to tensor. + * @return return string + */ + void DeserializeFromString(const std::string& s, + const platform::Place& dst_place); + private: LoD lod_; }; + +/* + * Expand the `source` to fit the LoD of `lod`. For example, a `source` + * LoDTensor is + * - LoD: [0, 2] + * - tensor: [a0, a1] + * a `lod` is + * - LoD: [0 3 5] + * returns a new LoDTensor + * - [a0 a0 a0 a1 a1] + */ +template +LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, + const platform::Place& place) { + LoD abs_lod = ToAbsOffset(lod); + const auto& lod_level = lod[level]; + size_t num_instances = source.dims()[0]; + + // new tensor + LoDTensor tensor; + tensor.set_lod(lod); + auto dims = source.dims(); + dims[0] = lod_level.back(); + tensor.Resize(dims); + tensor.mutable_data(place); + + PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1); + for (size_t ins = 0; ins < num_instances; ins++) { + for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) { + tensor.Slice(elem, elem + 1) + .CopyFrom(source.Slice(ins, ins + 1), platform::CPUPlace(), + platform::CPUDeviceContext()); + } + } + return tensor; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 44f09f584fb752d7003baa804979f3bb5cd9d651..f309376c8b65e2ce83d0df20496d53cf7e9f3ea9 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -17,10 +17,13 @@ #include #include #include +#include namespace paddle { namespace framework { +const int kLodTensorSize = 20 * 128; + class LoDTensorTester : public ::testing::Test { public: virtual void SetUp() override { @@ -30,15 +33,18 @@ class LoDTensorTester : public ::testing::Test { // 0 5 10 15 20 // 0 2 5 7 10 12 15 20 LoD lod; - lod.push_back(std::vector{0, 10, 20}); - lod.push_back(std::vector{0, 5, 10, 15, 20}); + lod.push_back(std::vector{0, 2, 3}); + lod.push_back(std::vector{0, 2, 5, 8}); lod.push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); ASSERT_EQ(lod.size(), 3UL); lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/}); // malloc memory - lod_tensor_.mutable_data(place); + float* dst_ptr = lod_tensor_.mutable_data(place); + for (int i = 0; i < kLodTensorSize; ++i) { + dst_ptr[i] = i; + } lod_tensor_.set_lod(lod); } @@ -52,14 +58,14 @@ TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); } TEST_F(LoDTensorTester, NumElements) { ASSERT_EQ(lod_tensor_.NumElements(0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1), 4UL); + ASSERT_EQ(lod_tensor_.NumElements(1), 3UL); ASSERT_EQ(lod_tensor_.NumElements(2), 8UL); } TEST_F(LoDTensorTester, NumElements2) { ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(0, 1), 2UL); - ASSERT_EQ(lod_tensor_.NumElements(1, 1), 2UL); + ASSERT_EQ(lod_tensor_.NumElements(0, 1), 1UL); + ASSERT_EQ(lod_tensor_.NumElements(1, 1), 3UL); } TEST_F(LoDTensorTester, ShrinkLevels) { @@ -68,17 +74,16 @@ TEST_F(LoDTensorTester, ShrinkLevels) { LoDTensor new_lod_tensor = lod_tensor_; new_lod_tensor.ShrinkLevels(level, level + 1); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } // shrink 2 level for (size_t level = 0; level < 2UL; ++level) { LoDTensor new_lod_tensor = lod_tensor_; new_lod_tensor.ShrinkLevels(level, level + 2); + // the lowest level's last element should be the tensor's batch_size. + ASSERT_EQ(new_lod_tensor.lod().back().back(), + lod_tensor_.lod().back().back()); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); - ASSERT_EQ(new_lod_tensor.NumElements(1), - lod_tensor_.NumElements(level + 1)); ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } } @@ -86,20 +91,73 @@ TEST_F(LoDTensorTester, ShrinkLevels) { TEST_F(LoDTensorTester, ShrinkInLevel) { size_t level = 0; LoDTensor new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 2); - EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL); - EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL); - EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL); - EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); + new_lod_tensor.ShrinkInLevel(level, 0, 1); + ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); + ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); + ASSERT_EQ(new_lod_tensor.NumElements(1), 2UL); + ASSERT_EQ(new_lod_tensor.NumElements(2), 5UL); + ASSERT_EQ(new_lod_tensor.dims()[0], 12); + for (int i = 0; i < 12 * 128; i++) { + ASSERT_EQ(new_lod_tensor.data()[i], i); + } level = 1; new_lod_tensor = lod_tensor_; - new_lod_tensor.ShrinkInLevel(level, 0, 2); + new_lod_tensor.ShrinkInLevel(level, 1, 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); + ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL); + ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL); + ASSERT_EQ(new_lod_tensor.dims()[0], 7); + for (int i = 5 * 128; i < 12 * 128; i++) { + ASSERT_EQ(new_lod_tensor.data()[i - 5 * 128], i); + } + + LoDTensor t1; + t1.set_lod(lod_tensor_.lod()); + t1.ShareDataWith(lod_tensor_); + + LoDTensor t2; + t2.set_lod(lod_tensor_.lod()); + t2.ShareDataWith(lod_tensor_); + + t1.ShrinkInLevel(0, 1, 2); + t2.ShrinkInLevel(0, 0, 1); + EXPECT_NE(t1.data(), t2.data()); + EXPECT_NE(t1.data(), lod_tensor_.data()); +} + +TEST(LodExpand, test) { + LoD lod{{0, 2}}; + LoDTensor tensor; + tensor.set_lod(lod); + tensor.Resize({2, 1}); + tensor.mutable_data(platform::CPUPlace()); + tensor.data()[0] = 0; + tensor.data()[1] = 1; + + LoD target; + target.emplace_back(std::vector{0, 3, 5}); + auto new_tensor = LodExpand(tensor, target, 0UL, platform::CPUPlace()); + std::vector result{{0, 0, 0, 1, 1}}; + for (size_t i = 0; i < 5; i++) { + ASSERT_EQ(new_tensor.data()[i], result[i]); + } +} + +TEST_F(LoDTensorTester, SerializeDeserialize) { + LoDTensor new_lod_tensor = lod_tensor_; + float* src_ptr = lod_tensor_.data(); + std::string s = lod_tensor_.SerializeToString(); + LoDTensor dst; + dst.DeserializeFromString(s, platform::CPUPlace()); + float* dst_ptr = dst.data(); + for (int i = 0; i < kLodTensorSize; ++i) { + EXPECT_EQ(dst_ptr[i], src_ptr[i]); + } + + ASSERT_EQ(dst.NumElements(0), 2UL); + ASSERT_EQ(dst.NumElements(1), 3UL); + ASSERT_EQ(dst.NumElements(2), 8UL); } } // namespace framework diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu index 647d07536dd070bc37137fc01f683ec07ba7d6f4..11659be02ac340728150cf0a6438db8626c8e611 100644 --- a/paddle/framework/lod_tensor_test.cu +++ b/paddle/framework/lod_tensor_test.cu @@ -36,8 +36,8 @@ TEST(LoDTensor, LoDInGPU) { lod_tensor.mutable_data(place); lod_tensor.set_lod(src_lod); - CHECK_EQ(lod_tensor.lod_element(0, 2), 4UL); - CHECK_EQ(lod_tensor.lod_element(0, 4), 8UL); + CHECK_EQ(lod_tensor.lod_element(0, 2).first, 4UL); + CHECK_EQ(lod_tensor.lod_element(0, 4).first, 8UL); auto lod = lod_tensor.lod(); @@ -48,3 +48,30 @@ TEST(LoDTensor, LoDInGPU) { CHECK_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2); } } + +TEST(LoDTensor, SerializeDeserialize) { + paddle::framework::LoDTensor lod_tensor; + paddle::platform::GPUPlace place(0); + + paddle::framework::LoD src_lod; + src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14}); + + lod_tensor.Resize({14, 16}); + lod_tensor.mutable_data(place); + + lod_tensor.set_lod(src_lod); + CHECK_EQ(lod_tensor.lod_element(0, 2).first, 4UL); + CHECK_EQ(lod_tensor.lod_element(0, 4).first, 8UL); + + test<<<1, 8>>>(src_lod[0].data(), src_lod[0].size()); + cudaDeviceSynchronize(); + + std::string s = lod_tensor.SerializeToString(); + paddle::framework::LoDTensor dst; + dst.DeserializeFromString(s, place); + paddle::framework::LoD dst_lod = dst.lod(); + + for (size_t i = 0; i < dst_lod[0].size(); ++i) { + CHECK_EQ(src_lod[0].data()[i], dst_lod[0].data()[i] * 2); + } +} diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index e926180780609c0a8ffc6270627835c50bbce782..59a64d71371b546f76eabdeed7e7514e8fb0f84a 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -87,11 +87,8 @@ class OpInfoMap { } } - template - void IterAllInfo(Callback callback) { - for (auto& it : map_) { - callback(it.first, it.second); - } + const std::unordered_map& map() const { + return map_; } private: diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h index a134befd90a1eaeff6f6ea62f11412df63cdc394..44e8ab16895cc604f85bb83e240eab55739f8ba0 100644 --- a/paddle/framework/op_proto_maker.h +++ b/paddle/framework/op_proto_maker.h @@ -44,6 +44,11 @@ class OpProtoAndCheckerMaker { var_->set_intermediate(true); return *this; } + + VariableBuilder& AsDispensable() { + var_->set_dispensable(true); + return *this; + } }; VariableBuilder AddInput(const std::string& name, const std::string& comment); diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 504afbd5dbacf7185f92e0000d19666230e2fb42..c2f2438edf6daadf26cbc6db37f6668739ab1726 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -43,12 +43,13 @@ static VariableNameMap ConvertOpDescVarsToVarNameMap( return ret_val; } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc, + ProgramDesc* program) { VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); AttributeMap attrs; for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); + attrs[attr.name()] = GetAttrValue(attr, program); } return CreateOp(op_desc.type(), inputs, outputs, attrs); diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 0bda87dfa193b58798da6addf485f870bd0d7e83..ed85c386ec2632604bf5faf0ff9b1a087eb9c276 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -20,6 +20,8 @@ limitations under the License. */ #include #include #include + +#include "glog/logging.h" // For VLOG() #include "paddle/framework/attribute.h" #include "paddle/framework/details/op_registry.h" #include "paddle/framework/framework.pb.h" @@ -45,18 +47,15 @@ class Registrar { template struct OperatorRegistrar : public Registrar { - explicit OperatorRegistrar(const char* op_type) : op_type(op_type) { + explicit OperatorRegistrar(const char* op_type) { PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); static_assert(sizeof...(ARGS) != 0, "OperatorRegistrar should be invoked at least by OpClass"); + OpInfo info; details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info); OpInfoMap::Instance().Insert(op_type, info); } - - const char* op_type; - - OpInfo info; }; class OpRegistry { @@ -77,7 +76,8 @@ class OpRegistry { const VariableNameMap& outputs, AttributeMap attrs); - static std::unique_ptr CreateOp(const OpDesc& op_desc); + static std::unique_ptr CreateOp(const OpDesc& op_desc, + ProgramDesc* program); static std::unique_ptr CreateOp(const OpDescBind& op_desc); }; diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index b860fe6cac773d1e85adecc43f5dfec42b6c7661..6289125d7c782e542e5c55e1d4403836351b7e05 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -74,7 +74,7 @@ TEST(OpRegistry, CreateOp) { attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_f(scale); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); @@ -95,7 +95,7 @@ TEST(OpRegistry, IllegalAttr) { bool caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "larger_than check fail"; @@ -115,7 +115,7 @@ TEST(OpRegistry, DefaultValue) { ASSERT_TRUE(op_desc.IsInitialized()); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); @@ -131,7 +131,7 @@ TEST(OpRegistry, CustomChecker) { // attr 'test_attr' is not set bool caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "Attribute 'test_attr' is required!"; @@ -149,7 +149,7 @@ TEST(OpRegistry, CustomChecker) { attr->set_i(3); caught = false; try { - paddle::framework::OpRegistry::CreateOp(op_desc); + paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = "'test_attr' must be even!"; @@ -166,7 +166,7 @@ TEST(OpRegistry, CustomChecker) { attr->set_name("test_attr"); attr->set_type(paddle::framework::AttrType::INT); attr->set_i(4); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); paddle::platform::CPUDeviceContext dev_ctx; paddle::framework::Scope scope; op->Run(scope, dev_ctx); diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 2fca816f353635d3bff184323755961ee82fbb68..a67625fa88fd2fbe4db43241ee824519ceac7017 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -252,5 +252,20 @@ std::ostream& operator<<(std::ostream& os, return os; } +bool OpSupportGPU(const std::string& op_type) { + auto& all_kernels = OperatorWithKernel::AllOpKernels(); + auto it = all_kernels.find(op_type); + if (it == all_kernels.end()) { + // All control operator must support GPU + return true; + } + for (auto& kern_pair : it->second) { + if (platform::is_gpu_place(kern_pair.first.place_)) { + return true; + } + } + return false; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index cf15f9933ab3bc881add3d45b7ca17194a70e0f1..0d0304ac9e13089ef533b0a47f0ec989c8fd7078 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -20,12 +20,13 @@ limitations under the License. */ #include #include -#include "op_info.h" +#include "glog/logging.h" // For VLOG #include "paddle/framework/attribute.h" #include "paddle/framework/block_desc.h" #include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/scope.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/tensor.h" @@ -326,37 +327,47 @@ class CompileTimeInferShapeContext : public InferShapeContext { bool HasInput(const std::string& name) const override { const std::vector& input_names = op_.Input(name); auto length = input_names.size(); + if (length == 0) { + return false; + } PADDLE_ENFORCE_EQ(length, 1UL, "Input(%s) should have only one value, " "but it have %d now", name, length); - return block_.HasVar(input_names[0]); + return block_.HasVarRecursive(input_names[0]); } bool HasOutput(const std::string& name) const override { const std::vector& output_names = op_.Output(name); auto length = output_names.size(); + if (length == 0) { + return false; + } PADDLE_ENFORCE_EQ(length, 1UL, "Output(%s) should have only one value, " "but it have %d now", name, length); - return block_.HasVar(output_names[0]); + return block_.HasVarRecursive(output_names[0]); } bool HasInputs(const std::string& name) const override { const std::vector& input_names = op_.Input(name); - PADDLE_ENFORCE(!input_names.empty(), "Inputs(%s) length is 0", name); + if (input_names.empty()) { + return false; + } for (auto& input : input_names) { - if (!block_.HasVar(input)) return false; + if (!block_.HasVarRecursive(input)) return false; } return true; } bool HasOutputs(const std::string& name) const override { const std::vector& output_names = op_.Output(name); - PADDLE_ENFORCE(!output_names.empty(), "Inputs(%s) length is 0", name); + if (output_names.empty()) { + return false; + } for (auto& output : output_names) { - if (!block_.HasVar(output)) return false; + if (!block_.HasVarRecursive(output)) return false; } return true; } @@ -403,11 +414,11 @@ class CompileTimeInferShapeContext : public InferShapeContext { private: DDim GetDim(const std::string& name) const override { - return framework::make_ddim(block_.FindVar(name)->Shape()); + return framework::make_ddim(block_.FindVarRecursive(name)->Shape()); } void SetDim(const std::string& name, const DDim& dim) override { - block_.FindVar(name)->SetShape(framework::vectorize(dim)); + block_.FindVarRecursive(name)->SetShape(framework::vectorize(dim)); } const OpDescBind& op_; @@ -420,13 +431,27 @@ class RuntimeInferShapeContext : public InferShapeContext { : op_(op), scope_(scope) {} bool HasInput(const std::string& name) const override { - auto ipt = op_.Input(name); + auto& ins = Inputs(name); + size_t length = ins.size(); + if (length == 0) { + return false; + } + PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs", + name); + auto ipt = ins[0]; auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } bool HasOutput(const std::string& name) const override { - auto ipt = op_.Output(name); + auto& outs = Outputs(name); + size_t length = outs.size(); + if (length == 0) { + return false; + } + PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs", + name); + auto ipt = outs[0]; auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); return var != nullptr; } @@ -573,6 +598,7 @@ class OperatorWithKernel : public OperatorBase { void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const final { + VLOG(3) << "Running operator " << this->Type(); RuntimeInferShapeContext infer_shape_ctx(*this, scope); this->InferShape(&infer_shape_ctx); @@ -647,5 +673,7 @@ class OperatorWithKernel : public OperatorBase { std::ostream& operator<<(std::ostream& os, const OperatorWithKernel::OpKernelKey& kernel_key); +extern bool OpSupportGPU(const std::string& op_type); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index d7890ac8d0af2171271a0cfccd356563c7604e72..c358f1a2b6ee3174b8c336ba1d212be7c5aa15c6 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -83,7 +83,7 @@ TEST(OperatorBase, all) { paddle::platform::CPUDeviceContext device_context; paddle::framework::Scope scope; - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); scope.Var("OUT1"); ASSERT_EQ(paddle::framework::op_run_num, 0); op->Run(scope, device_context); @@ -208,7 +208,7 @@ TEST(OpKernel, all) { paddle::platform::CPUDeviceContext cpu_device_context; paddle::framework::Scope scope; - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0); op->Run(scope, cpu_device_context); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); @@ -244,7 +244,7 @@ TEST(OpKernel, multi_inputs) { scope.Var("y0")->GetMutable(); scope.Var("y1")->GetMutable(); - auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); op->Run(scope, cpu_device_context); } diff --git a/paddle/framework/program_desc.cc b/paddle/framework/program_desc.cc index fcb7292884275d972377983cb3ba1bcd86fb8348..8e99bba81117c9cc50227122527d6ab9a421c251 100644 --- a/paddle/framework/program_desc.cc +++ b/paddle/framework/program_desc.cc @@ -18,27 +18,10 @@ limitations under the License. */ namespace paddle { namespace framework { -using ProgDescMap = - std::unordered_map>; -static ProgDescMap *g_bind_map = nullptr; - -ProgramDescBind &ProgramDescBind::Instance(ProgramDesc *prog) { - if (g_bind_map == nullptr) { - g_bind_map = new ProgDescMap(); - } - auto &map = *g_bind_map; - auto &ptr = map[prog]; - - if (ptr == nullptr) { - ptr.reset(new ProgramDescBind(prog)); - } - return *ptr; -} - BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) { - auto *b = prog_->add_blocks(); + auto *b = prog_.add_blocks(); b->set_parent_idx(parent.ID()); - b->set_idx(prog_->blocks_size() - 1); + b->set_idx(prog_.blocks_size() - 1); blocks_.emplace_back(new BlockDescBind(this, b)); return blocks_.back().get(); } @@ -47,13 +30,22 @@ ProgramDesc *ProgramDescBind::Proto() { for (auto &block : blocks_) { block->Flush(); } - return prog_; + return &prog_; +} + +ProgramDescBind::ProgramDescBind() { + auto *block = prog_.mutable_blocks()->Add(); + block->set_idx(kRootBlockIndex); + block->set_parent_idx(kNoneBlockIndex); + blocks_.emplace_back(new BlockDescBind(this, block)); } -ProgramDescBind::ProgramDescBind(ProgramDesc *prog) { - prog_ = prog; - for (auto &block : *prog->mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block)); +ProgramDescBind::ProgramDescBind(const ProgramDescBind &o) { + prog_ = o.prog_; + + for (int i = 0; i < prog_.blocks_size(); ++i) { + auto *block = prog_.mutable_blocks(i); + blocks_.emplace_back(new BlockDescBind(*o.blocks_[i], block, this)); } } } // namespace framework diff --git a/paddle/framework/program_desc.h b/paddle/framework/program_desc.h index f29b1c54e7160ac477229f64e5471939131a2d8f..dc4cd7cc735b5e4e3466d9b82dc5eb8647c80ef9 100644 --- a/paddle/framework/program_desc.h +++ b/paddle/framework/program_desc.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include "paddle/framework/framework.pb.h" +#include "paddle/framework/proto_desc.h" #include "paddle/platform/macros.h" namespace paddle { @@ -26,7 +27,9 @@ class BlockDescBind; class ProgramDescBind { public: - static ProgramDescBind &Instance(ProgramDesc *prog); + ProgramDescBind(); + + ProgramDescBind(const ProgramDescBind &o); BlockDescBind *AppendBlock(const BlockDescBind &parent); @@ -37,14 +40,9 @@ class ProgramDescBind { ProgramDesc *Proto(); private: - explicit ProgramDescBind(ProgramDesc *prog); - - // Not owned - ProgramDesc *prog_; + ProgramDesc prog_; std::vector> blocks_; - - DISABLE_COPY_AND_ASSIGN(ProgramDescBind); }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/program_desc_test.cc b/paddle/framework/program_desc_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..c9709a2d3f1d9e0be2bda1e8e9e7835ca49141b1 --- /dev/null +++ b/paddle/framework/program_desc_test.cc @@ -0,0 +1,83 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/program_desc.h" +#include "gtest/gtest.h" +#include "paddle/framework/block_desc.h" + +namespace paddle { +namespace framework { +TEST(ProgramDesc, copy_ctor) { + ProgramDescBind program; + auto* global_block = program.Block(0); + auto* x = global_block->Var("X"); + x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetLoDLevel(0); + x->SetDataType(FP32); + x->SetShape({1000, 784}); + + auto* y = global_block->Var("Y"); + y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetLoDLevel(0); + y->SetDataType(FP32); + y->SetShape({784, 100}); + + auto* op = global_block->AppendOp(); + op->SetType("mul"); + op->SetInput("X", {x->Name()}); + op->SetInput("Y", {y->Name()}); + + auto* out = global_block->Var("Out"); + out->SetType(VarDesc_VarType_LOD_TENSOR); + op->SetOutput("Y", {out->Name()}); + + ProgramDescBind program_copy(program); + + auto* global_block_copy = program_copy.Block(0); + ASSERT_NE(global_block, global_block_copy); + + auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + ASSERT_TRUE(global_block_copy->HasVar(name)); + auto* copy = global_block_copy->Var(name); + ASSERT_NE(copy, var_before); + ASSERT_EQ(copy->Name(), var_before->Name()); + ASSERT_EQ(copy->GetType(), var_before->GetType()); + ASSERT_EQ(copy->Shape(), var_before->Shape()); + ASSERT_EQ(copy->Proto()->SerializeAsString(), + var_before->Proto()->SerializeAsString()); + }; + + ASSERT_EQ(global_block->LocalVarNames(), global_block_copy->LocalVarNames()); + ASSERT_EQ(3, global_block_copy->LocalVarNames().size()); + assert_same_var("X", x); + assert_same_var("Y", y); + assert_same_var("Out", out); + + for (size_t i = 0; i < global_block->OpSize(); ++i) { + auto op_origin = global_block->Op(i); + auto op_copy = global_block->Op(i); + + ASSERT_EQ(op_origin->Type(), op_copy->Type()); + ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs()); + ASSERT_EQ(op_origin->Outputs(), op_copy->Outputs()); + + ASSERT_EQ(op_copy->Proto()->SerializeAsString(), + op_origin->Proto()->SerializeAsString()); + } + + // Not check block's protostr are same it because the order of vars could be + // different and it is correct. +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/proto_desc.h b/paddle/framework/proto_desc.h new file mode 100644 index 0000000000000000000000000000000000000000..fa01224fefce50eb3688ff407f0a7c948c5b7cfc --- /dev/null +++ b/paddle/framework/proto_desc.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { +namespace framework { + +// The Index of first Block in Program. also called root block. +constexpr int kRootBlockIndex = 0; +// The Parent Index of root Block, this block does not exist. +constexpr int kNoneBlockIndex = -1; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune.cc b/paddle/framework/prune.cc new file mode 100644 index 0000000000000000000000000000000000000000..95833692925af4477fe575d6bd908a2ce7653c1b --- /dev/null +++ b/paddle/framework/prune.cc @@ -0,0 +1,109 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/prune.h" + +#include +#include +#include +#include + +#include + +namespace paddle { +namespace framework { + +const std::string kFeedOpType = "feed"; +const std::string kFetchOpType = "fetch"; + +bool HasDependentVar(const OpDesc& op_desc, + const std::set& dependent_vars) { + for (auto& var : op_desc.outputs()) { + for (auto& argu : var.arguments()) { + if (dependent_vars.count(argu) != 0) { + return true; + } + } + } + return false; +} + +bool IsTarget(const OpDesc& op_desc) { + if (op_desc.has_is_target()) { + return op_desc.is_target(); + } + return false; +} + +void prune_impl(const ProgramDesc& input, ProgramDesc& output, int block_id) { + // TODO(tonyyang-svail): + // - will change to use multiple blocks for RNN op and Cond Op + + auto& block = input.blocks(block_id); + auto& ops = block.ops(); + + bool expect_feed = true; + for (auto& op_desc : ops) { + PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed, + "All FeedOps are at the beginning of the ProgramDesc"); + expect_feed = (op_desc.type() == kFeedOpType); + } + + bool expect_fetch = true; + for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { + auto& op_desc = *op_iter; + PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch, + "All FetchOps must at the end of the ProgramDesc"); + expect_fetch = (op_desc.type() == kFetchOpType); + } + + std::set dependent_vars; + std::vector should_run; + for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) { + auto& op_desc = *op_iter; + + if (IsTarget(op_desc) || HasDependentVar(op_desc, dependent_vars)) { + // insert its input to the dependency graph + for (auto& var : op_desc.inputs()) { + for (auto& argu : var.arguments()) { + dependent_vars.insert(argu); + } + } + + should_run.push_back(true); + } else { + should_run.push_back(false); + } + } + + // since we are traversing the ProgramDesc in reverse order + // we reverse the should_run vector + std::reverse(should_run.begin(), should_run.end()); + + output = input; + auto* op_field = output.mutable_blocks(block_id)->mutable_ops(); + op_field->Clear(); + for (size_t i = 0; i < should_run.size(); ++i) { + if (should_run[i]) { + *op_field->Add() = input.blocks(block_id).ops(i); + } + } +} + +void Prune(const ProgramDesc& input, ProgramDesc& output) { + prune_impl(input, output, 0); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune.h b/paddle/framework/prune.h new file mode 100644 index 0000000000000000000000000000000000000000..9414ac64f9491c07aabb216a4c81dfe6e78e8043 --- /dev/null +++ b/paddle/framework/prune.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/framework.pb.h" +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace framework { + +void Prune(const ProgramDesc& input, ProgramDesc& output); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/prune_test.cc b/paddle/framework/prune_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..3ab4b43d9256af5880083b00df446c451e3f598b --- /dev/null +++ b/paddle/framework/prune_test.cc @@ -0,0 +1,138 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/prune.h" + +#include "paddle/framework/attribute.h" +#include "paddle/framework/operator.h" +#include "paddle/operators/net_op.h" + +#include "paddle/framework/block_desc.h" +#include "paddle/framework/op_desc.h" +#include "paddle/framework/program_desc.h" + +#include + +namespace f = paddle::framework; +namespace ops = paddle::operators; + +void AddOp(const std::string &type, const f::VariableNameMap &inputs, + const f::VariableNameMap &outputs, f::AttributeMap attrs, + paddle::framework::BlockDescBind *block) { + // insert output + for (auto kv : outputs) { + for (auto v : kv.second) { + auto var = block->Var(v); + var->SetDataType(paddle::framework::DataType::FP32); + } + } + + // insert op + auto op = block->AppendOp(); + op->SetType(type); + for (auto &kv : inputs) { + op->SetInput(kv.first, kv.second); + } + for (auto &kv : outputs) { + op->SetOutput(kv.first, kv.second); + } + op->SetAttrMap(attrs); +} + +TEST(Prune, one_operator) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + f::ProgramDesc pruned; + + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 0); + + pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true); + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 1); +} + +TEST(Prune, forward) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, {}, block); + AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + + for (int i = 0; i < pdesc->blocks(0).ops_size(); ++i) { + f::ProgramDesc pruned; + pdesc->mutable_blocks(0)->mutable_ops(i)->set_is_target(true); + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), i + 1); + } +} + +TEST(Prune, multi_input_op) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, {}, block); + AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, {}, block); + AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, {}, + block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 4); +} + +TEST(Prune, multi_output_op) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 2); +} + +TEST(Prune, multi_target) { + f::ProgramDescBind program; + f::BlockDescBind *block = program.Block(0); + + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + + f::ProgramDesc *pdesc = program.Proto(); + pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true); + pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); + + f::ProgramDesc pruned; + Prune(*pdesc, pruned); + PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 3); +} diff --git a/paddle/framework/saver.proto b/paddle/framework/saver.proto new file mode 100644 index 0000000000000000000000000000000000000000..90a191a6a79250761489b68916b1fa09116830f2 --- /dev/null +++ b/paddle/framework/saver.proto @@ -0,0 +1,39 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +syntax = "proto2"; +option optimize_for = LITE_RUNTIME; +package paddle.framework; + +import "framework.proto"; + +/** + * This file contains necessary information for model, checkpoint. + * etc. + */ + +message LoDInfo { repeated int64 level = 1; } + +/** + * Save the LoDTensorDesc information through LoDTensorProto, its data memory + * is copyed to c buffer immediately. See model_format.md for details. + */ + +message LoDTensorProto { + optional DataType data_type = 1; + repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] + repeated LoDInfo levels = 3; + optional int32 lod_level = 4 [ default = 0 ]; + optional int32 version = 5; +} diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 5bf5e91f25ab1d920ae368eaf2000fce77d2eb07..19e25fba05f2f1c959da32c950320d3a44d5109d 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -65,12 +65,28 @@ void Scope::DropKids() { kids_.clear(); } -framework::Scope& GetGlobalScope() { - static framework::Scope* g_scope = nullptr; - if (g_scope == nullptr) { - g_scope = new framework::Scope(); +std::vector Scope::GetAllNames(bool recursive) const { + std::vector known_vars(vars_.size()); + + if (recursive) { + for (auto& kid : kids_) { + auto kid_vars = kid->GetAllNames(); + for (auto& p : kid_vars) { + known_vars.emplace_back(p); + } + } + } + for (auto& p : vars_) { + known_vars.emplace_back(p.first); } - return *g_scope; + return known_vars; +} + +void Scope::DeleteScope(Scope* scope) { + auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); + PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope); + this->kids_.erase(it); + delete scope; } } // namespace framework diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index a7fce3514b163d78bf96b3cc19d188744a383395..ac334da5ef0c8ad563b6be5413df33f5d0bdbcf8 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include +#include #include "paddle/framework/variable.h" #include "paddle/platform/macros.h" @@ -59,9 +60,14 @@ class Scope { /// Find the scope or an ancestor scope that contains the given variable. const Scope* FindScope(const Variable* var) const; + void DeleteScope(Scope* scope); + /// Drop all kids scopes belonged to this scope. void DropKids(); + // enumerate all the variables current contains. + std::vector GetAllNames(bool recursive = false) const; + private: // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} @@ -72,8 +78,5 @@ class Scope { DISABLE_COPY_AND_ASSIGN(Scope); }; - -framework::Scope& GetGlobalScope(); - } // namespace framework } // namespace paddle diff --git a/paddle/framework/scope_test.cc b/paddle/framework/scope_test.cc index 7cc5e3510d978fae81d1e36da7ca35d4b3a04098..f738d5ba9ecda57ea25bb5f84057d1d0106eef66 100644 --- a/paddle/framework/scope_test.cc +++ b/paddle/framework/scope_test.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/scope.h" +#include "glog/logging.h" #include "gtest/gtest.h" using paddle::framework::Scope; @@ -54,3 +55,17 @@ TEST(Scope, FindScope) { EXPECT_EQ(&s, s.FindScope(v)); EXPECT_EQ(&s, ss.FindScope(v)); } + +TEST(Scope, GetAllNames) { + Scope s; + Variable* v = s.Var("a"); + EXPECT_EQ(&s, s.FindScope(v)); + + std::vector ans = s.GetAllNames(); + std::string str; + for (auto& var : ans) { + str += var; + } + + EXPECT_STREQ("a", str.c_str()); +} diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index bc430852de6384ce8a02780d4e90787d58f5574c..e31472327dbca45dc12ea2c9e494beddd36860dc 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -31,6 +31,8 @@ namespace paddle { namespace framework { +class LoDTensor; + class Tensor { public: template @@ -60,6 +62,10 @@ class Tensor { template inline T* mutable_data(platform::Place place); + inline void* mutable_data(platform::Place place, std::type_index type); + + inline void* mutable_data(platform::Place place); + /** * @brief Return a pointer to mutable memory block. * @@ -81,7 +87,6 @@ class Tensor { inline Tensor& Resize(const DDim& dims); /*! The internal of two tensors share the same memory block. */ - template inline Tensor& ShareDataWith(const Tensor& src); /** @@ -96,26 +101,9 @@ class Tensor { // TODO(qijun): https://github.com/PaddlePaddle/Paddle/issues/4647 // Remove `CopyFrom` and `CopyFromVector` from Tensor interface // and make them global functions - template inline void CopyFrom(const Tensor& src, const platform::Place& dst_place, const platform::DeviceContext& ctx); - // FIXME(yuyang18): CopyFrom should without template T, use the replace - // `CopyFrom` with `CopyFromTensor` - inline void CopyFromTensor(const Tensor& src, - const platform::Place& dst_place, - const platform::DeviceContext& ctx) { - // NOLINTNEXTLINES_8 cpplint.py will recognize below lines as functions. - // That is a bug of cpplint.py. Just ignore lint these lines. - if (src.type() == std::type_index(typeid(double))) { - CopyFrom(src, dst_place, ctx); - } else if (src.type() == std::type_index(typeid(float))) { - CopyFrom(src, dst_place, ctx); - } else if (src.type() == std::type_index(typeid(int))) { - CopyFrom(src, dst_place, ctx); - } - } - /** * @brief Copy the content of an external vector to a tensor. * @@ -135,7 +123,6 @@ class Tensor { * @param[in] begin_idx The begin index of the slice. * @param[in] end_idx The end index of the slice. */ - template inline Tensor Slice(const int& begin_idx, const int& end_idx) const; platform::Place place() const { @@ -146,29 +133,32 @@ class Tensor { std::type_index type() const { return holder_->type(); } private: - template inline void check_memory_size() const; private: + friend class LoDTensor; + /** * @note Placeholder hides type T, so it doesn't appear as a template * parameter of Variable. */ struct Placeholder { - virtual ~Placeholder() {} + virtual ~Placeholder() = default; virtual void* ptr() const = 0; virtual size_t size() const = 0; virtual std::type_index type() const = 0; virtual platform::Place place() const = 0; + virtual void set_type(std::type_index type) = 0; }; - template + template struct PlaceholderImpl : public Placeholder { - PlaceholderImpl(Place place, size_t size) - : ptr_(static_cast(memory::Alloc(place, size)), - memory::PODDeleter(place)), + PlaceholderImpl(Place place, size_t size, std::type_index type) + : ptr_(static_cast(memory::Alloc(place, size)), + memory::PODDeleter(place)), place_(place), - size_(size) { + size_(size), + type_(type) { PADDLE_ENFORCE_NOT_NULL(ptr_, "Insufficient %s memory to allocation.", (is_cpu_place(place_) ? "CPU" : "GPU")); } @@ -176,22 +166,31 @@ class Tensor { virtual size_t size() const { return size_; } virtual platform::Place place() const { return place_; } virtual void* ptr() const { return static_cast(ptr_.get()); } - virtual std::type_index type() const { return std::type_index(typeid(T)); } + virtual std::type_index type() const { return type_; } + virtual void set_type(std::type_index type) { type_ = type; } /*! the pointer of memory block. */ - std::unique_ptr> ptr_; + std::unique_ptr> ptr_; /*! the place of memory block. */ platform::Place place_; /*! the size of memory block. */ size_t size_; + + /* the current type of memory */ + std::type_index type_; }; /*! holds the memory block if allocated. */ std::shared_ptr holder_; - /*! points to dimensions of memory block. */ + /** + * @brief points to elements dimensions. + * + * @note dims_ do not indicate the memory block size. + */ + DDim dims_; /** diff --git a/paddle/framework/tensor_array.cc b/paddle/framework/tensor_array.cc index 06459cbfd7b8c19c176452ff73c9f3a81ba1dc03..6f0b84dd1adac5f2fc043eb4abbf8c2d021d81f1 100644 --- a/paddle/framework/tensor_array.cc +++ b/paddle/framework/tensor_array.cc @@ -20,6 +20,8 @@ #include #include +#include "paddle/framework/eigen.h" + namespace paddle { namespace framework { @@ -104,10 +106,10 @@ void TensorArray::Write(size_t index, const LoDTensor& value) { values_.resize(index + 1); } + values_[index].set_lod(value.lod()); values_[index].Resize(value.dims()); - values_[index].mutable_data(platform::CPUPlace()); - values_[index].CopyFrom(value, platform::CPUPlace(), - platform::CPUDeviceContext()); + values_[index].mutable_data(value.place()); + values_[index].CopyFrom(value, value.place(), platform::CPUDeviceContext()); } void TensorArray::WriteShared(size_t index, const LoDTensor& value) { @@ -116,7 +118,8 @@ void TensorArray::WriteShared(size_t index, const LoDTensor& value) { values_.resize(index + 1); } - values_[index].ShareDataWith(value); + values_[index].set_lod(value.lod()); + values_[index].ShareDataWith(value); } LoDTensor TensorArray::Pack(size_t level, const std::vector& meta, @@ -144,6 +147,156 @@ DySeqMetaBatch TensorArray::Unpack(const LoDTensor& source, int level, return unpacker.meta; } +LoDTensor TensorArray::LodPack(size_t level) const { + PADDLE_ENFORCE_GT(size(), 0UL, "no time step exists"); + // the levels should be no less than 2 + LoDTensor merged; + const LoDTensor *pre, *cur; + pre = &Read(0); + + for (size_t step = 1; step < size(); step++) { + cur = &Read(step); + PADDLE_ENFORCE_GT(cur->NumLevels(), 0); + PADDLE_ENFORCE_GT(pre->NumLevels(), 0); + PADDLE_ENFORCE_EQ(pre->NumLevels(), cur->NumLevels()); + PADDLE_ENFORCE_EQ(pre->NumElements(level), cur->NumElements(level)); + + merged = LodPackTwo(*pre, *cur, level); + pre = &merged; + } + return merged; +} + +/* + * NOTE currently, only the lowest level supports packing. + * The lowest LoD will be changed, while the relative offsets in levels above + * stay unchanged. + * + * previous step : [0] [1] [3] + * current step: [0 1 2] [2 3] [] + * packed to + * [0 0] [0 1] [0 2] [1 2] [1 3] [3] + */ +LoDTensor TensorArray::LodPackTwo(const LoDTensor& pre, const LoDTensor& cur, + size_t level) const { + PADDLE_ENFORCE_EQ(pre.NumLevels(), cur.NumLevels()); + PADDLE_ENFORCE_EQ(pre.NumLevels(), level + 1, + "Only the lowest LoD level supports pack temporarily."); + // calculate the result tensor's shape first + size_t num_instances = 0; + for (size_t elem = 0; elem < pre.NumElements(level); elem++) { + size_t prefix_size = pre.NumElements(level, elem); + size_t num_candidates = cur.NumElements(level, elem); + if (num_candidates > 0) { + num_instances += num_candidates * (prefix_size + 1); + } else { + num_instances += prefix_size; + } + } + + auto res_dims = pre.dims(); + res_dims[0] = num_instances; + LoDTensor result; + result.Resize(res_dims); + result.mutable_data(cur.place()); + + Vector last_lod_level; + // copy data + size_t index = 0; + last_lod_level.push_back(index); + for (size_t elem = 0; elem < pre.NumElements(level); elem++) { + size_t prefix_size = pre.NumElements(level, elem); + size_t num_candidates = cur.NumElements(level, elem); + + // slice the prefix Tensor + LoDTensor prefix = pre; + prefix.ShrinkInLevel(level, elem, elem + 1); + LoDTensor candidate = cur; + if (num_candidates > 0) { + candidate.ShrinkInLevel(level, elem, elem + 1); + } else { // just push prefix + result.Slice(index, index + prefix_size) + .CopyFrom(prefix, result.place(), platform::CPUDeviceContext()); + index += prefix_size; + last_lod_level.push_back(index); + } + for (size_t candi = 0; candi < num_candidates; candi++) { + // TODO(superjom) support GPU + result.Slice(index, index + prefix_size) + .CopyFrom(prefix, result.place(), platform::CPUDeviceContext()); + index += prefix_size; + // copy candidate record + result.Slice(index, index + 1) + .CopyFrom(candidate.Slice(candi, candi + 1), result.place(), + platform::CPUDeviceContext()); + index++; + last_lod_level.push_back(index); + } + } + + // update lod + auto lod = cur.lod(); + lod.back() = last_lod_level; + result.set_lod(lod); + return result; +} + +/* + * source [0 1 2] [3 4] [5 6 7] will be transformd to a list of LoDTensors such + * as + * [0 3 5] [1 4 6] [2 7] with 1-level LoDs: + * - [0 1 2 3] + * - [0 1 2 3] + * - [0 1 1 2], the [1,1) here means the second sequence is empty + * + * NOTE Unpack a LoDTensor in this approach may result in a big LoD. + */ +void TensorArray::LodUnpack(const LoDTensor& source, size_t level) { + PADDLE_ENFORCE_EQ(level, source.NumLevels() - 1, + "only the lowest LoD level supports unpack."); + int non_empty_instances = -1; + size_t index = 0; + Vector lowest_lod_level; + lowest_lod_level.push_back(index); + + for (size_t step = 0; non_empty_instances > 0 || non_empty_instances == -1; + step++) { + size_t num_instances = 0; + for (size_t id = 0; id < source.NumElements(level); id++) { + auto instance = source; + instance.ShrinkInLevel(level, id, id + 1); + if (static_cast(instance.dims()[0]) > step) { + num_instances++; + index++; + } + lowest_lod_level.push_back(index); + } + + // create tensor for this time step + LoDTensor tensor; + auto dims = source.dims(); + dims[0] = num_instances; + // set lod + auto lod = source.lod(); + lod.back() = lowest_lod_level; + tensor.set_lod(lod); + + index = 0; + for (size_t id = 0; id < source.NumElements(level); id++) { + auto instance = source; + instance.ShrinkInLevel(level, id, id + 1); + if (static_cast(instance.dims()[0]) > step) { + // copy this instance + tensor.Slice(index, index + 1) + .CopyFrom(instance.Slice(step, step + 1), tensor.place(), + platform::CPUDeviceContext()); + index++; + } + } + Write(step, tensor); + } +} + LoDTensor TensorArray::Stack() const { LoDTensor result; if (size() == 0) return result; @@ -163,9 +316,9 @@ LoDTensor TensorArray::Stack() const { result.mutable_data(platform::CPUPlace()); for (size_t idx = 0; idx < size(); idx++) { - result.Slice(idx, idx + 1) - .CopyFrom(Read(idx), platform::CPUPlace(), - platform::CPUDeviceContext()); + result.Slice(idx, idx + 1) + .CopyFrom(Read(idx), platform::CPUPlace(), + platform::CPUDeviceContext()); } return result; } @@ -191,13 +344,12 @@ void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const { auto& value = values_[elem]; if (data_shared) { // share memory - value.ShareDataWith(source.Slice(elem, elem + 1)); + value.ShareDataWith(source.Slice(elem, elem + 1)); } else { // copy value.Resize(value_dims); - value.CopyFrom(source.Slice(elem, elem + 1), - platform::CPUPlace(), - platform::CPUDeviceContext()); + value.CopyFrom(source.Slice(elem, elem + 1), platform::CPUPlace(), + platform::CPUDeviceContext()); } } } @@ -242,11 +394,10 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { for (size_t i = 0; i < indice.size(); i++) { auto index = indice[i]; - auto target = result.Slice(i, i + 1); - auto slice = source->Slice(index, index + 1); + auto target = result.Slice(i, i + 1); + auto slice = source->Slice(index, index + 1); - target.CopyFrom(slice, platform::CPUPlace(), - platform::CPUDeviceContext()); + target.CopyFrom(slice, platform::CPUPlace(), platform::CPUDeviceContext()); } return result; @@ -277,10 +428,10 @@ LoDTensor PackDynamicBatch(const std::vector& source, // target is result[index] auto index = seq_meta.begin + batch_id; if (index >= seq_meta.end) break; - auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); - auto target = result.Slice(index, index + 1); - target.CopyFrom(source_, platform::CPUPlace(), - platform::CPUDeviceContext()); + auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); + auto target = result.Slice(index, index + 1); + target.CopyFrom(source_, platform::CPUPlace(), + platform::CPUDeviceContext()); } } diff --git a/paddle/framework/tensor_array.h b/paddle/framework/tensor_array.h index 046ecb5221b7ed9d88e5017348ee8fcde23c7677..78fad8cab7e27a7f07ca542c2a083460ee9e2b79 100644 --- a/paddle/framework/tensor_array.h +++ b/paddle/framework/tensor_array.h @@ -86,6 +86,16 @@ class TensorArray { */ DySeqMetaBatch Unpack(const LoDTensor &source, int level, bool length_desend); + /* + * Pack an array of LoDTensors to a LoDTensor. + */ + LoDTensor LodPack(size_t level) const; + + /* + * Unpack a LoDTensor to an array of LoDTensors. + */ + void LodUnpack(const LoDTensor &source, size_t level); + /* * Pack the values into a tensor with rank one higher than each tensor in * values. @@ -111,6 +121,9 @@ class TensorArray { protected: void Unstack(const LoDTensor &source, bool data_shared) const; + LoDTensor LodPackTwo(const LoDTensor &pre, const LoDTensor &cur, + size_t level) const; + private: mutable std::vector values_; }; // class TensorArray diff --git a/paddle/framework/tensor_array_test.cc b/paddle/framework/tensor_array_test.cc index d9f52509cdd1b79f6d53b5d4922f9e44279de08b..83b52b442daf9b2f1fc40f23e458fcb67c5040e8 100644 --- a/paddle/framework/tensor_array_test.cc +++ b/paddle/framework/tensor_array_test.cc @@ -91,7 +91,7 @@ class TensorArrayPackTester : public ::testing::Test { size_t begin = level[i]; size_t end = level[i + 1]; for (size_t j = begin; j < end; j++) { - auto record = source.Slice(j, j + 1); + auto record = source.Slice(j, j + 1); for (int dim = 0; dim < 128; dim++) { record.mutable_data(platform::CPUPlace())[dim] = j - begin; } @@ -126,5 +126,57 @@ TEST_F(TensorArrayTester, size) { ASSERT_EQ(ta.size(), static_cast(batch_size)); } +TEST(TensorArray, LodPack) { + // three time steps, each step stores a LoDTensors + // - [0] [1] + // - [2 3], [4 5] + // - [6 7] [] [8], [9, 10] + // try to get a LoDTensor with content: + // - [0 2 6] + // - [0 2 7] + // - [0 3] + // - [1 4 8] + // - [1 5 9] + // - [1 5 10] + std::array tensors; + tensors[0].Resize(make_ddim({2, 1})); + tensors[1].Resize(make_ddim({4, 1})); + tensors[2].Resize(make_ddim({5, 1})); + int index = 0; + for (auto& t : tensors) { + t.mutable_data(platform::CPUPlace()); + for (int i = 0; i < t.dims()[0]; i++) { + t.data()[i] = index; + index++; + } + } + + std::array lods; + std::vector> levels{ + {0, 1, 2}, {0, 2, 4}, {0, 2, 2, 3, 5}}; + for (int i = 0; i < 3; i++) { + lods[i].emplace_back(levels[i].begin(), levels[i].end()); + } + + TensorArray ta; + for (int i = 0; i < 3; i++) { + tensors[i].set_lod(lods[i]); + ta.Write(i, tensors[i]); + } + + auto merged = ta.LodPack(0); + + std::vector target_tensor_data{{0, 2, 6, // 0 + 0, 2, 7, // 1 + 0, 3, // 2 + 1, 4, 8, // 3 + 1, 5, 9, // 5 + 1, 5, 10}}; + EXPECT_EQ(merged.dims()[0], (int)target_tensor_data.size()); + for (size_t i = 0; i < target_tensor_data.size(); i++) { + EXPECT_EQ(target_tensor_data[i], merged.data()[i]); + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index ce73e0a9edbe340f1165e2dbcba8c976c55df348..f6e801bbb4a056b5590da95a4b140cb90638f322 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -19,12 +19,50 @@ limitations under the License. */ namespace paddle { namespace framework { +template +struct SizeOfTypeFunctor; + template +struct SizeOfTypeFunctor { + size_t operator()(std::type_index type) const { + if (typeid(T).hash_code() == type.hash_code()) { + return sizeof(T); + } else { + return 0UL; + } + } +}; + +template <> +struct SizeOfTypeFunctor<> { + size_t operator()(std::type_index type) const { return 0UL; } +}; + +template +struct SizeOfTypeFunctor { + size_t operator()(std::type_index type) const { + SizeOfTypeFunctor head; + size_t head_size = head(type); + if (head_size != 0) { + return head_size; + } + SizeOfTypeFunctor tail; + return tail(type); + } +}; + +static inline size_t SizeOfType(std::type_index type) { + SizeOfTypeFunctor functor; + size_t size = functor(type); + PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name()); + return size; +} + inline void Tensor::check_memory_size() const { PADDLE_ENFORCE_NOT_NULL( holder_, "Tensor holds no memory. Call Tensor::mutable_data first."); PADDLE_ENFORCE_GE( - holder_->size(), numel() * sizeof(T) + offset_, + holder_->size(), numel() * SizeOfType(type()) + offset_, "Tensor's dims_ is out of bound. Call Tensor::mutable_data " "first to re-allocate memory.\n" "or maybe the required data-type mismatches the data already stored."); @@ -32,14 +70,23 @@ inline void Tensor::check_memory_size() const { template inline const T* Tensor::data() const { - check_memory_size(); + check_memory_size(); + PADDLE_ENFORCE(std::is_same::value || + holder_->type().hash_code() == typeid(T).hash_code(), + "Tensor holds the wrong type, it holds %s", + this->holder_->type().name()); + return reinterpret_cast( reinterpret_cast(holder_->ptr()) + offset_); } template inline T* Tensor::data() { - check_memory_size(); + check_memory_size(); + PADDLE_ENFORCE(std::is_same::value || + holder_->type().hash_code() == typeid(T).hash_code(), + "Tensor holds the wrong type, it holds %s", + this->holder_->type().name()); return reinterpret_cast(reinterpret_cast(holder_->ptr()) + offset_); } @@ -54,51 +101,62 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) { template inline T* Tensor::mutable_data(platform::Place place) { static_assert(std::is_pod::value, "T must be POD"); + return reinterpret_cast(mutable_data(place, typeid(T))); +} + +inline void* Tensor::mutable_data(platform::Place place, std::type_index type) { + if (holder_ != nullptr) { + holder_->set_type(type); + } PADDLE_ENFORCE_GT(numel(), 0, "Tensor's numel must be larger than zero to call " "Tensor::mutable_data. Call Tensor::set_dim first."); + int64_t size = numel() * SizeOfType(type); /* some versions of boost::variant don't have operator!= */ - int64_t size = numel() * sizeof(T); if (holder_ == nullptr || !(holder_->place() == place) || holder_->size() < size + offset_) { if (platform::is_cpu_place(place)) { - holder_.reset(new PlaceholderImpl( - boost::get(place), size)); + holder_.reset(new PlaceholderImpl( + boost::get(place), size, type)); } else if (platform::is_gpu_place(place)) { #ifndef PADDLE_WITH_CUDA PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); } #else - holder_.reset(new PlaceholderImpl( - boost::get(place), size)); + holder_.reset(new PlaceholderImpl( + boost::get(place), size, type)); } #endif offset_ = 0; } - return reinterpret_cast(reinterpret_cast(holder_->ptr()) + - offset_); + return reinterpret_cast(reinterpret_cast(holder_->ptr()) + + offset_); +} + +inline void* Tensor::mutable_data(platform::Place place) { + PADDLE_ENFORCE(this->holder_ != nullptr, + "Cannot invoke mutable data if current hold nothing"); + return mutable_data(place, holder_->type()); } -template inline Tensor& Tensor::ShareDataWith(const Tensor& src) { - src.check_memory_size(); + src.check_memory_size(); *this = src; return *this; } -template inline void Tensor::CopyFrom(const Tensor& src, const platform::Place& dst_place, const platform::DeviceContext& ctx) { - src.check_memory_size(); + src.check_memory_size(); Resize(src.dims()); auto src_place = src.holder_->place(); - auto src_ptr = static_cast(src.data()); + auto src_ptr = src.data(); - auto dst_ptr = static_cast(mutable_data(dst_place)); + auto dst_ptr = mutable_data(dst_place, src.type()); - auto size = src.numel() * sizeof(T); + auto size = src.numel() * SizeOfType(src.type()); if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, @@ -165,9 +223,8 @@ inline void Tensor::CopyFromVector(const std::vector& src, #endif } -template inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { - check_memory_size(); + check_memory_size(); PADDLE_ENFORCE_GE(begin_idx, 0, "Slice begin index is less than zero."); PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound."); PADDLE_ENFORCE_LT(begin_idx, end_idx, @@ -182,7 +239,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { DDim dst_dims = dims_; dst_dims[0] = end_idx - begin_idx; dst.Resize(dst_dims); - dst.offset_ = offset_ + begin_idx * base * sizeof(T); + dst.offset_ = offset_ + begin_idx * base * SizeOfType(type()); return dst; } } @@ -196,10 +253,9 @@ inline const DDim& Tensor::dims() const { return dims_; } inline int64_t Tensor::numel() const { return product(dims_); } -template inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) { Tensor res; - res.ShareDataWith(src); + res.ShareDataWith(src); res.Resize(flatten_to_2d(src.dims(), num_col_dims)); return res; } diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 0b62fe08ce9e592384e55432861a943403453bb7..1bb0fb71b079940d35a995b78e04a531c074a8b2 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -108,7 +108,7 @@ TEST(Tensor, ShareDataWith) { // Try to share data form uninitialized tensor bool caught = false; try { - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = @@ -122,7 +122,7 @@ TEST(Tensor, ShareDataWith) { ASSERT_TRUE(caught); src_tensor.mutable_data(make_ddim({2, 3, 4}), CPUPlace()); - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } @@ -131,7 +131,7 @@ TEST(Tensor, ShareDataWith) { Tensor src_tensor; Tensor dst_tensor; src_tensor.mutable_data(make_ddim({2, 3, 4}), GPUPlace()); - dst_tensor.ShareDataWith(src_tensor); + dst_tensor.ShareDataWith(src_tensor); ASSERT_EQ(src_tensor.data(), dst_tensor.data()); } #endif @@ -143,7 +143,7 @@ TEST(Tensor, Slice) { { Tensor src_tensor; src_tensor.mutable_data(make_ddim({5, 3, 4}), CPUPlace()); - Tensor slice_tensor = src_tensor.Slice(1, 3); + Tensor slice_tensor = src_tensor.Slice(1, 3); DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 3); EXPECT_EQ(slice_dims[0], 2); @@ -167,7 +167,7 @@ TEST(Tensor, Slice) { { Tensor src_tensor; src_tensor.mutable_data(make_ddim({6, 9}), GPUPlace()); - Tensor slice_tensor = src_tensor.Slice(2, 6); + Tensor slice_tensor = src_tensor.Slice(2, 6); DDim slice_dims = slice_tensor.dims(); ASSERT_EQ(arity(slice_dims), 2); EXPECT_EQ(slice_dims[0], 4); @@ -202,7 +202,7 @@ TEST(Tensor, CopyFrom) { memcpy(src_ptr, arr, 9 * sizeof(int)); auto cpu_place = new paddle::platform::CPUPlace(); - dst_tensor.CopyFrom(src_tensor, *cpu_place, cpu_ctx); + dst_tensor.CopyFrom(src_tensor, *cpu_place, cpu_ctx); const int* dst_ptr = dst_tensor.data(); ASSERT_NE(src_ptr, dst_ptr); @@ -210,8 +210,8 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(src_ptr[i], dst_ptr[i]); } - Tensor slice_tensor = src_tensor.Slice(1, 2); - dst_tensor.CopyFrom(slice_tensor, *cpu_place, cpu_ctx); + Tensor slice_tensor = src_tensor.Slice(1, 2); + dst_tensor.CopyFrom(slice_tensor, *cpu_place, cpu_ctx); const int* slice_ptr = slice_tensor.data(); dst_ptr = dst_tensor.data(); ASSERT_NE(dst_ptr, slice_ptr); @@ -233,11 +233,11 @@ TEST(Tensor, CopyFrom) { // CPU Tensor to GPU Tensor auto gpu_place = new paddle::platform::GPUPlace(0); CUDADeviceContext gpu_ctx(*gpu_place); - gpu_tensor.CopyFrom(src_tensor, *gpu_place, gpu_ctx); + gpu_tensor.CopyFrom(src_tensor, *gpu_place, gpu_ctx); // GPU Tensor to CPU Tensor auto cpu_place = new paddle::platform::CPUPlace(); - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -247,13 +247,13 @@ TEST(Tensor, CopyFrom) { EXPECT_EQ(src_ptr[i], dst_ptr[i]); } - Tensor slice_tensor = src_tensor.Slice(1, 2); + Tensor slice_tensor = src_tensor.Slice(1, 2); // CPU Slice Tensor to GPU Tensor - gpu_tensor.CopyFrom(slice_tensor, *gpu_place, gpu_ctx); + gpu_tensor.CopyFrom(slice_tensor, *gpu_place, gpu_ctx); // GPU Tensor to CPU Tensor - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Slice Tensors gpu_ctx.Wait(); @@ -320,7 +320,7 @@ TEST(Tensor, CopyFromVector) { CUDADeviceContext gpu_ctx(*gpu_place); gpu_tensor.CopyFromVector(src_vec, gpu_ctx); // Copy from GPU to CPU tensor for comparison - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -340,7 +340,7 @@ TEST(Tensor, CopyFromVector) { cpu_tensor.CopyFromVector(src_vec, cpu_ctx); gpu_tensor.Resize(make_ddim({2, 2})); gpu_tensor.CopyFromVector(src_vec, gpu_ctx); - dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); + dst_tensor.CopyFrom(gpu_tensor, *cpu_place, gpu_ctx); // Sync before Compare Tensors gpu_ctx.Wait(); @@ -368,7 +368,7 @@ TEST(Tensor, ReshapeToMatrix) { for (int i = 0; i < 2 * 3 * 4 * 9; ++i) { src_ptr[i] = i; } - Tensor res = ReshapeToMatrix(src, 2); + Tensor res = ReshapeToMatrix(src, 2); ASSERT_EQ(res.dims()[0], 2 * 3); ASSERT_EQ(res.dims()[1], 4 * 9); } diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc index c302217e5aacdc17800238770d689b7fb65804f3..8e92c81d1137472737230be79d71824593d3256f 100644 --- a/paddle/framework/var_desc.cc +++ b/paddle/framework/var_desc.cc @@ -18,6 +18,10 @@ limitations under the License. */ namespace paddle { namespace framework { +VarDesc::VarType VarDescBind::GetType() const { return desc_.type(); } + +void VarDescBind::SetType(VarDesc::VarType type) { desc_.set_type(type); } + void VarDescBind::SetShape(const std::vector &dims) { VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims()); } diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 688a46f83982fc464c7602ec1041ad3f42122211..929de1f836fa906966ff125c70380d85d062afdf 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -75,9 +75,13 @@ class VarDescBind { int32_t GetLodLevel() const; - VarDesc::VarType GetType() const { return desc_.type(); } + VarDesc::VarType GetType() const; - void SetType(VarDesc::VarType type) { desc_.set_type(type); } + void SetType(VarDesc::VarType type); + + bool Persistable() const { return desc_.persistable(); } + + void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } private: const TensorDesc &tensor_desc() const; diff --git a/paddle/framework/var_type_inference_test.cc b/paddle/framework/var_type_inference_test.cc index 87399208e924d85ed8463df9a8f2eb49b1277fe9..918de1fd055e32888f71ffea1f33993ba1210e86 100644 --- a/paddle/framework/var_type_inference_test.cc +++ b/paddle/framework/var_type_inference_test.cc @@ -62,7 +62,7 @@ namespace paddle { namespace framework { TEST(InferVarType, sum_op) { - auto &prog = ProgramDescBind::Instance(&GetProgramDesc()); + ProgramDescBind prog; auto *op = prog.Block(0)->AppendOp(); op->SetType("sum"); op->SetInput("X", {"test_a", "test_b", "test_c"}); @@ -83,7 +83,7 @@ TEST(InferVarType, sum_op) { } TEST(InferVarType, sum_op_without_infer_var_type) { - auto &prog = ProgramDescBind::Instance(&GetProgramDesc()); + ProgramDescBind prog; auto *op = prog.Block(0)->AppendOp(); op->SetType("sum_without_infer_var_type"); op->SetInput("X", {"test2_a", "test2_b", "test2_c"}); diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index 38fc2720a3023039aa113b32a394bda9c5def4c0..a80f0e66b5a59bf95efc200d159ad5dd9cf4111a 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -25,7 +25,10 @@ class Variable { public: template const T& Get() const { - PADDLE_ENFORCE(IsType(), "Variable must be type %s", typeid(T).name()); + PADDLE_ENFORCE(holder_ != nullptr, "Variable must hold some thing"); + PADDLE_ENFORCE(IsType(), + "Variable must be type %s, the holding type is %s", + typeid(T).name(), holder_->Type().name()); return *static_cast(holder_->Ptr()); } diff --git a/paddle/gserver/activations/MKLDNNActivation.cpp b/paddle/gserver/activations/MKLDNNActivation.cpp index 18c5638100065109fba1f0647a1c5f91256f7b9d..f3ccd68160859795f28a40f8d0d4032adb289ccf 100644 --- a/paddle/gserver/activations/MKLDNNActivation.cpp +++ b/paddle/gserver/activations/MKLDNNActivation.cpp @@ -126,7 +126,7 @@ void MKLDNNEltwiseActivation::resetFwd(Argument& act) { copyInVal_ = nullptr; if (act.grad && algo == algorithm::eltwise_tanh) { // tanh need save src input for backward - inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc()); + inVal_ = MKLDNNMatrix::create(val_->getPrimitiveDesc()); copyInVal_ = std::make_shared(*val_, *inVal_); CHECK(copyInVal_) << "should not be emptry"; pipelineFwd_.push_back(*copyInVal_); @@ -145,7 +145,7 @@ void MKLDNNEltwiseActivation::resetBwd(Argument& act) { algorithm algo = getAlgo(this->getName()); float alpha = getBwdAlpha(); float beta = getBeta(); - grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc()); + grad_ = MKLDNNMatrix::create(val_->getPrimitiveDesc(), act.grad); auto eng = CPUEngine::Instance().getEngine(); auto bwdDesc = eltwise_bwd::desc( algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta); @@ -230,7 +230,7 @@ void MKLDNNActivation::resetFwd(Argument& act) { int ic = cnt_ / bs / ih / iw; CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw); val_ = MKLDNNMatrix::create( - act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, *engine_); + {bs, ic, ih, iw}, mkldnn::memory::format::nchw, *engine_, act.value); CHECK(val_); val_->downSpatial(); } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index dcf0acb5a2cc7698625a2e254d4c12a32bc9631d..dbadc352a4ccd7483bf67e1025c212f514e32a24 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -21,6 +21,10 @@ limitations under the License. */ #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" +#ifdef PADDLE_USE_MKLDNN +#include "paddle/gserver/layers/MKLDNNLayer.h" +#endif + #ifndef PADDLE_MOBILE_INFERENCE #include "MultiNetwork.h" #include "RecurrentGradientMachine.h" @@ -300,6 +304,17 @@ void NeuralNetwork::backward(const UpdateCallback& callback) { } } +void NeuralNetwork::finish() { +#ifdef PADDLE_USE_MKLDNN + FOR_EACH_R(layer, layers_) { + MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(*layer); + if (dnnLayer) { + dnnLayer->convertWeightsToPaddle(); + } + } +#endif +} + Argument NeuralNetwork::getLayerOutput(const std::string& layerName) { return getLayer(layerName)->getOutput(); } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.h b/paddle/gserver/gradientmachines/NeuralNetwork.h index 56a1ec78460731554c9b47cf3f517f7654dc314f..6888380290074318fe7f94d168b2931e776dda47 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.h +++ b/paddle/gserver/gradientmachines/NeuralNetwork.h @@ -134,6 +134,9 @@ public: const std::string& getName() const { return subModelName_; } + /// some finish work, like convert the weight format of MKLDNNLayers + void finish(); + protected: /** * The constructor of NeuralNetwork. diff --git a/paddle/gserver/layers/MKLDNNBase.h b/paddle/gserver/layers/MKLDNNBase.h index 4c0234e7b3a91053596c32cea581fa5d1e26b9d5..af02a37cad668708f77ecf423549a8ec993e54fb 100644 --- a/paddle/gserver/layers/MKLDNNBase.h +++ b/paddle/gserver/layers/MKLDNNBase.h @@ -21,8 +21,8 @@ namespace paddle { typedef enum { MKLDNN_BASE = 1, // basical info of MKLDNN MKLDNN_TESTS = 1, // gtest info of MKLDNN - MKLDNN_SIZES = 2, // size info of MKLDNN - MKLDNN_FMTS = 3, // format info of MKLDNN + MKLDNN_FMTS = 2, // format info of MKLDNN + MKLDNN_SIZES = 3, // size info of MKLDNN MKLDNN_ALL = 4, // show all info of MKLDNN } MKLDNN_LOG_LEVEL; diff --git a/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp b/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f577616230be65e9581cf8f3ed5f63a77c7c3e21 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNBatchNormLayer.cpp @@ -0,0 +1,318 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNBatchNormLayer.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +REGISTER_LAYER(mkldnn_batch_norm, MKLDNNBatchNormLayer); + +const real MKLDNNBatchNormLayer::EPS = 1E-5; + +bool MKLDNNBatchNormLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + + // first one is input layer + // the other two are created in config_parser.py saving moving mean and var + CHECK_EQ(inputLayers_.size(), 3U); + CHECK_EQ(inputLayers_.size(), parameters_.size()); + CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size())); + + const ImageConfig& conf = config_.inputs(0).image_conf(); + ic_ = conf.channels(); + ih_ = inputLayers_[0]->getOutput().getFrameHeight(); + iw_ = inputLayers_[0]->getOutput().getFrameWidth(); + if (iw_ == 0 && ih_ == 0) { + iw_ = conf.img_size(); + ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); + } + oc_ = ic_; + oh_ = ih_; + ow_ = iw_; + if (config_.has_use_global_stats()) { + useGlobalStats_ = config_.use_global_stats(); + } + movingAvgFraction_ = config_.moving_average_fraction(); + VLOG(MKLDNN_BASE) << "--- " << (useGlobalStats_ ? "use" : "do not use") + << " --- global stats"; + VLOG(MKLDNN_BASE) << "Moving average fraction: " << movingAvgFraction_; + + initWeight(); + movingMean_.reset(new Weight(oc_, 1, parameters_[1], 0)); + movingVar_.reset(new Weight(oc_, 1, parameters_[2], 0)); + return true; +} + +void MKLDNNBatchNormLayer::initWeight() { + weight_.reset(new Weight(1, oc_, parameters_[0])); + if (biasParameter_.get() != NULL) { + biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_)); + } + CHECK_EQ(weight_ != nullptr, biases_ != nullptr) + << "only support have both weight and bias, or neither"; + if (weight_ && weight_->getW()) { + CHECK(biases_ && biases_->getW()); + valueScaleShift_ = Matrix::create(2, oc_, false, false); + valueScaleShift_->zeroMem(); + VectorPtr scale(new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), 0)); + VectorPtr shift( + new CpuVector(oc_, valueScaleShift_->getMemoryHandle(), oc_)); + const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_VALUE); + const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_VALUE); + scale->copyFrom(*wgt); + shift->copyFrom(*bias); + wgt->setData(valueScaleShift_->getData()); + bias->setData(valueScaleShift_->getData() + oc_); + } + if (weight_ && weight_->getWGrad()) { + CHECK(biases_ && biases_->getWGrad()); + gradScaleShift_ = Matrix::create(2, oc_, false, false); + gradScaleShift_->zeroMem(); + const VectorPtr& wgt = parameters_[0]->getBuf(PARAMETER_GRADIENT); + const VectorPtr& bias = biasParameter_->getBuf(PARAMETER_GRADIENT); + wgt->setData(gradScaleShift_->getData()); + bias->setData(gradScaleShift_->getData() + oc_); + } +} + +void MKLDNNBatchNormLayer::convertWeightsFromPaddle() { + if (hasInitedWgt_) { + return; + } + // prepare mean and var if necessary + if (useGlobalStats_) { + CHECK(mean_); + CHECK(var_); + mean_->copyFrom(*(movingMean_->getW())); + var_->copyFrom(*(movingVar_->getW())); + } + hasInitedWgt_ = true; +} + +void MKLDNNBatchNormLayer::calMovingMeanAndVar() { + // calculating and saving moving mean and variance + CHECK_EQ(useGlobalStats_, false); + movingMean_->getW()->add( + *mean_, movingAvgFraction_, 1.0 - movingAvgFraction_); + // here var is v^2 + movingVar_->getW()->add(*var_, movingAvgFraction_, 1.0 - movingAvgFraction_); +} + +void MKLDNNBatchNormLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); + oh = ih; + ow = ow; + // ic_ and oc can not be changed + CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic) + << "Input channel can not be changed"; + reshapeOutput(oh, ow); + resizeOutput(bs, oc * oh * ow); + printSizeInfo(); +} + +void MKLDNNBatchNormLayer::resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + // In training phase, it will always calculate mean and var, + // so useGlobalStats must be false. + // In scoring phase, it depends on useGlobalStats choice. + if (passType_ != PASS_TEST && useGlobalStats_ == true) { + LOG(WARNING) << "use_global_stats is invalid setting in training phase"; + useGlobalStats_ = false; + } + + resetFwdBuffers(in, wgt, out); + + resetFwdPD(fwdPD_, in, wgt, out); + + resetFwdPipeline(pipeline, fwdPD_, in, wgt, out); +} + +void MKLDNNBatchNormLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + std::shared_ptr pd; + + resetBwdBuffers(in, wgt, out); + + resetBwdPD(pd, in, wgt, out); + + resetBwdPipeline(pipeline, pd, in, wgt, out); +} + +void MKLDNNBatchNormLayer::forward(PassType passType) { + MKLDNNLayer::forward(passType); + + // calculate and save moving mean and variance + if (passType_ != PASS_TEST) { + calMovingMeanAndVar(); + } +} + +void MKLDNNBatchNormLayer::updateWeights(const UpdateCallback& callback) { + weight_->getParameterPtr()->incUpdate(callback); + if (biases_ && biases_->getWGrad()) { + biases_->getParameterPtr()->incUpdate(callback); + } +} + +void MKLDNNBatchNormLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out) { + resetInValue(in); + + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + CHECK(in); + auto outPD = + MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_); + resetOutValue(out, outPD); + + if (valueScaleShift_) { + auto pd = MKLDNNMatrix::createPrimitiveDesc({2, oc_}, format::nc, engine_); + resetWithMatrix(wgt, valueScaleShift_, pd); + } + if (passType_ != PASS_TEST || useGlobalStats_) { + auto pd = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_); + mean_ = MKLDNNMatrix::create(pd); + var_ = MKLDNNMatrix::create(pd); + } +} + +void MKLDNNBatchNormLayer::resetFwdPD( + std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr wgt, + MKLDNNMatrixPtr out) { + flags_ = 0u; + prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring + : prop_kind::forward_training; + if (useGlobalStats_) { + flags_ = (flags_ | batch_normalization_flag::use_global_stats); + } + if (wgt) { + flags_ = (flags_ | batch_normalization_flag::use_scale_shift); + } + auto fwdDesc = bn_fwd::desc(pk, in->getMemoryDesc(), EPS, flags_); + pd.reset(new bn_fwd::primitive_desc(fwdDesc, engine_)); + // TODO(TJ): use check macro + CHECK(out); + CHECK(out->getPrimitiveDesc() == pd->dst_primitive_desc()); + if (wgt) { + CHECK(wgt->getPrimitiveDesc() == pd->weights_primitive_desc()); + } + if (passType_ != PASS_TEST || useGlobalStats_) { + CHECK(mean_); + CHECK(mean_->getPrimitiveDesc() == pd->mean_primitive_desc()); + CHECK(var_); + CHECK(var_->getPrimitiveDesc() == pd->variance_primitive_desc()); + } +} + +void MKLDNNBatchNormLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out) { + if (passType_ == PASS_TEST) { + if (useGlobalStats_) { + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, + *in, + (const primitive::at)(*mean_), + (const primitive::at)(*var_), + *wgt, + *out) + : new bn_fwd(*pd, + *in, + (const primitive::at)(*mean_), + (const primitive::at)(*var_), + *out)); + } else { + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out) + : new bn_fwd(*pd, *in, *out)); + } + } else { + CHECK_EQ(useGlobalStats_, false) + << "useGlobalStats should be false in training"; + fwd_.reset(wgt != nullptr ? new bn_fwd(*pd, *in, *wgt, *out, *mean_, *var_) + : new bn_fwd(*pd, *in, *out, *mean_, *var_)); + } + pipeline.push_back(*fwd_); +} + +void MKLDNNBatchNormLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out) { + CHECK(inVal_ && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVal_->getPrimitiveDesc()); + if (gradScaleShift_) { + CHECK(wgtVal_); + resetWithMatrix(wgt, gradScaleShift_, wgtVal_->getPrimitiveDesc()); + } +} + +void MKLDNNBatchNormLayer::resetBwdPD( + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out) { + pd = nullptr; + if (in == nullptr) { + return; + } + CHECK(out); + CHECK(out->getPrimitiveDesc() == in->getPrimitiveDesc()); + auto md = in->getMemoryDesc(); + auto bwdDesc = bn_bwd::desc(prop_kind::backward, md, md, EPS, flags_); + pd.reset(new bn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_)); + // TODO(TJ): use check macro + CHECK(wgt); + CHECK(wgt->getPrimitiveDesc() == pd->diff_weights_primitive_desc()); + CHECK(pd->weights_primitive_desc() == fwdPD_->weights_primitive_desc()); + CHECK(mean_); + CHECK(mean_->getPrimitiveDesc() == pd->mean_primitive_desc()); + CHECK(var_); + CHECK(var_->getPrimitiveDesc() == pd->variance_primitive_desc()); +} + +void MKLDNNBatchNormLayer::resetBwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out) { + if (pd == nullptr) { + return; + } + CHECK(inVal_); + bwdData_.reset( + wgt && wgtVal_ + ? new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *wgtVal_, *in, *wgt) + : new bn_bwd(*pd, *inVal_, *mean_, *var_, *out, *in)); + pipeline.push_back(*bwdData_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNBatchNormLayer.h b/paddle/gserver/layers/MKLDNNBatchNormLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..456c0424ecb8dde17f98a900c5d77268cc672e34 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNBatchNormLayer.h @@ -0,0 +1,138 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { +typedef mkldnn::batch_normalization_forward bn_fwd; +typedef mkldnn::batch_normalization_backward bn_bwd; + +/** + * @brief A subclass of MKLDNNLayer BatchNorm layer. + * + * The config file api is mkldnn_batch_norm + */ +class MKLDNNBatchNormLayer : public MKLDNNLayer { +protected: + // save forward primitive_desc, which can be used backward + std::shared_ptr fwdPD_; + + // Epsilon value used in the batch normalization formula. + static const real EPS; + // weight and bias in paddle + std::unique_ptr weight_; + std::unique_ptr biases_; + // mkldnn use a large buffer store both scale and shift + // which are weight and bias in paddle corresponding. + MatrixPtr valueScaleShift_; + MatrixPtr gradScaleShift_; + // Moving average of mean. + std::unique_ptr movingMean_; + // Moving average of variance. + std::unique_ptr movingVar_; + + // if useGlobalStats_ is true, will use the loaded mean and variance. + // otherwise, calculate mean and variance in every mini-batch. + bool useGlobalStats_; + // used in MKLDNN primitive desc + unsigned flags_; + // use to compute moving mean and variance. + real movingAvgFraction_; + // whether the weight has been init + bool hasInitedWgt_; + + // local mean and variance + // when useGlobalStats_ they are loaded from moving mean and variance + // when do not useGlobalStats_ they are calculated from this mini-batch + MKLDNNMatrixPtr mean_; + MKLDNNMatrixPtr var_; + +public: + explicit MKLDNNBatchNormLayer(const LayerConfig& config) + : MKLDNNLayer(config), useGlobalStats_(true), hasInitedWgt_(false) {} + + ~MKLDNNBatchNormLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void updateWeights(const UpdateCallback& callback) override; + + void convertWeightsFromPaddle() override; + +protected: + void initWeight(); + /** + * cal moving mean and variance. + * moving = moving * AvgFraction + local * (1 - AvgFraction) + */ + void calMovingMeanAndVar(); + /** + * Forward functions: reset buffers(input, weight, output), + * reset primitive descriptor, + * reset pipeline. + */ + void resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out); + void resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr wgt, + MKLDNNMatrixPtr out); + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out); + + /** + * Backward functions: reset buffers(input, weight, output), + * reset primitive descriptor, + * reset pipeline. + */ + void resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out); + void resetBwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out); + void resetBwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& out); +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp index 8b67a1ef4ffdd42559f8078873ed135751d56674..83f4e4e6151d727b3e6cf367bb7ecae55dd7df73 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.cpp +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -116,8 +116,6 @@ void MKLDNNConvLayer::resetFwd(std::vector& pipeline, resetFwdBuffers(fwdPD_, in, wgt, bias, out); resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); - - printValueFormatFlow(); } void MKLDNNConvLayer::resetBwd(std::vector& pipeline, @@ -135,12 +133,6 @@ void MKLDNNConvLayer::resetBwd(std::vector& pipeline, resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out); resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); - - printGradFormatFlow(); -} - -void MKLDNNConvLayer::updateInputData() { - cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) { @@ -211,11 +203,18 @@ void MKLDNNConvLayer::resetFwdBuffers( MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(pd); - resetInValue(pd, in); + resetInValue( + in, std::make_shared(pd->src_primitive_desc())); + + resetOutValue(out, pd->dst_primitive_desc()); - resetWgtBiasValue(pd, wgt, bias); + resetWithMatrix(wgt, weight_->getW(), pd->weights_primitive_desc()); - resetOutValue(pd, out); + if (biases_ && biases_->getW()) { + resetWithMatrix(bias, biases_->getW(), pd->bias_primitive_desc()); + } else { + bias = nullptr; + } } void MKLDNNConvLayer::resetFwdPipeline( @@ -225,103 +224,12 @@ void MKLDNNConvLayer::resetFwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - if (cvtInVal_) { - pipeline.push_back(*cvtInVal_); - } - if (bias) { fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out)); } else { fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out)); } pipeline.push_back(*fwd_); - - if (cvtOutVal_) { - pipeline.push_back(*cvtOutVal_); - } -} - -void MKLDNNConvLayer::resetInValue( - std::shared_ptr& pd, MKLDNNMatrixPtr& in) { - const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); - in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc()); - - // create buffer and reorder if input value do not match - cpuInVal_ = nullptr; - cvtInVal_ = nullptr; - - MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inMat); - CHECK_EQ(inputIsOnlyMKLDNN(), dnnIn != nullptr); - if (dnnIn != nullptr && dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { - in = dnnIn; - return; - } - if (dnnIn) { - if (dnnIn->getFormat() == format::nc) { - CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format"; - // create a new one with nchw format and same data - memory::dims inDims = memory::dims{bs_, ic_, 1, 1}; - dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); - } - if (dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { - in = dnnIn; - return; - } - cpuInVal_ = dnnIn; - in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); - cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; - } else { - memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; - cpuInVal_ = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); - if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) { - // create new mkldnn matrix - in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); - cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; - } else { - in = cpuInVal_; - } - } -} - -void MKLDNNConvLayer::resetWgtBiasValue( - std::shared_ptr& pd, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { - wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc()); - VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); - - bias = (biases_ && biases_->getW()) - ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc()) - : nullptr; -} - -void MKLDNNConvLayer::resetOutValue( - std::shared_ptr& pd, MKLDNNMatrixPtr& out) { - out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc()); - - // create reorder if output value has cpu device and pd do not match - cpuOutVal_ = nullptr; - cvtOutVal_ = nullptr; - if (!outputIsOnlyMKLDNN()) { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; - memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; - cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); - if (cpuOutVal_->getPrimitiveDesc() != pd->dst_primitive_desc()) { - out = MKLDNNMatrix::create(nullptr, pd->dst_primitive_desc()); - cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); - CHECK(cvtOutVal_) << "should not be empty"; - } else { - cpuOutVal_ = out; - } - // when output is cpu device, change the mkldnn output value and make them - // share the same data. Then if next layer use inputlayer->getOuputValue() - // to achieve the input value, it will get the right data. - output_.value = std::dynamic_pointer_cast(cpuOutVal_); - return; - } - output_.value = std::dynamic_pointer_cast(out); } void MKLDNNConvLayer::resetBwdWgtPD( @@ -330,8 +238,8 @@ void MKLDNNConvLayer::resetBwdWgtPD( loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); // create backward weight using input, output and weight value memory desc - CHECK(inVal_) << "Should have input value"; - CHECK(outVal_) << "Should have output value"; + CHECK(inVal_) << "Should have internal input value"; + CHECK(outVal_) << "Should have internal output value"; CHECK(wgtVal_) << "Should have weight value"; algorithm algo = algorithm::convolution_direct; padding_kind padKind = padding_kind::zero; @@ -371,8 +279,8 @@ void MKLDNNConvLayer::resetBwdDataPD( memory::dims wgtDims, biasDims, strides, dilations, padL, padR; loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); - CHECK(inVal_) << "Should have input value"; - CHECK(outVal_) << "Should have output value"; + CHECK(inVal_) << "Should have internal input value"; + CHECK(outVal_) << "Should have internal output value"; // create backward data using input and output value memory desc // but using weight memory desc with any format auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct, @@ -398,12 +306,27 @@ void MKLDNNConvLayer::resetBwdBuffers( MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(wgtPD); - resetOutGrad(wgtPD, out); + resetOutGrad(out, wgtPD->diff_dst_primitive_desc()); - resetWgtBiasGrad(wgtPD, wgt, bias); + resetWithMatrix( + wgt, weight_->getWGrad(), wgtPD->diff_weights_primitive_desc()); + CHECK(wgtVal_ != nullptr && + wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad and value should be equal"; - resetInGrad(dataPD, in); + bias = nullptr; + if (biases_ && biases_->getWGrad()) { + resetWithMatrix( + bias, biases_->getWGrad(), wgtPD->diff_bias_primitive_desc()); + CHECK(bias && biasVal_ && + bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) + << "primitive desc of bias grad should equal the bias value"; + } + if (dataPD == nullptr) { + return; + } + resetInGrad(in, dataPD->diff_src_primitive_desc()); resetWgtValBwdData(dataPD, wgtValBwdData_); } @@ -415,10 +338,7 @@ void MKLDNNConvLayer::resetBwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - if (cvtOutGrad_) { - pipeline.push_back(*cvtOutGrad_); - } - + CHECK(inVal_); // add bwdWgt handle if (bias) { bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias)); @@ -430,98 +350,13 @@ void MKLDNNConvLayer::resetBwdPipeline( if (dataPD == nullptr) { return; } - if (cvtWgtVal_) { pipeline.push_back(*cvtWgtVal_); } - // add bwdData handle CHECK(wgtValBwdData_) << "Should have weight memory"; bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in)); pipeline.push_back(*bwdData_); - - if (cvtInGrad_) { - pipeline.push_back(*cvtInGrad_); - } -} - -void MKLDNNConvLayer::resetOutGrad( - std::shared_ptr& wgtPD, MKLDNNMatrixPtr& out) { - cpuOutGrad_ = nullptr; - cvtOutGrad_ = nullptr; - CHECK(outVal_ != nullptr && - outVal_->getPrimitiveDesc() == wgtPD->diff_dst_primitive_desc()) - << "primitive desc of out grad and value should be equal"; - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - // same PrimitiveDesc with cpuInVal_ - CHECK(cpuOutVal_); - cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc()); - // create reorder if primitive desc does not match - if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc()); - cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); - CHECK(cvtOutGrad_); - } else { - // share the same data of CPU output - output_.grad->setData(cpuOut->getData()); - out = cpuOutGrad_; - } - } -} - -void MKLDNNConvLayer::resetWgtBiasGrad( - std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { - wgt = MKLDNNMatrix::create(weight_->getWGrad(), - wgtPD->diff_weights_primitive_desc()); - CHECK(nullptr != wgtVal_ && - wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) - << "primitive desc of weight grad and value should be equal"; - VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat(); - - bias = nullptr; - if (biasVal_ == nullptr) { - return; - } - bias = MKLDNNMatrix::create(biases_->getWGrad(), - wgtPD->diff_bias_primitive_desc()); - CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) - << "primitive desc of bias grad should equal the bias value"; -} - -void MKLDNNConvLayer::resetInGrad( - std::shared_ptr& dataPD, - MKLDNNMatrixPtr& in) { - in = nullptr; - cpuInGrad_ = nullptr; - cvtInGrad_ = nullptr; - if (dataPD == nullptr) { - return; - } - - if (inputIsOnlyMKLDNN()) { - MKLDNNLayer::resetInGrad(in, dataPD->diff_src_primitive_desc()); - CHECK(nullptr != inVal_ && - in->getPrimitiveDesc() == inVal_->getPrimitiveDesc()) - << "primitive desc of input grad and value should be equal"; - } else { - const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE); - // same PrimitiveDesc with cpuInVal_ - CHECK(cpuInVal_); - cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc()); - in = cpuInGrad_; - // create reorder if PrimitiveDesc does not match - if (cpuInGrad_->getPrimitiveDesc() != dataPD->diff_src_primitive_desc()) { - in = MKLDNNMatrix::create(getInputGrad(0, MKLDNN_DEVICE), - dataPD->diff_src_primitive_desc()); - cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_); - CHECK(cvtInGrad_); - } - } } void MKLDNNConvLayer::resetWgtValBwdData( @@ -535,8 +370,7 @@ void MKLDNNConvLayer::resetWgtValBwdData( // since the primitive_desc would be different with wgtVal_ CHECK(wgtVal_) << "should have weight value"; if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) { - wgtValBwdData_ = - MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc()); + wgtValBwdData_ = MKLDNNMatrix::create(dataPD->weights_primitive_desc()); cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_); CHECK(cvtWgtVal_); } else { diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h index f84f2f737c47a1b8adc2b83360a0396ffbc6ae24..1fed0e1c6565b763a3ee73a0853f560ddfbd44c6 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.h +++ b/paddle/gserver/layers/MKLDNNConvLayer.h @@ -48,17 +48,6 @@ protected: // save forward primitive_desc, which can be used backward std::shared_ptr fwdPD_; - // MKLDNNMatrixPtr which should be created from CPU Device - MKLDNNMatrixPtr cpuInVal_; - MKLDNNMatrixPtr cpuInGrad_; - MKLDNNMatrixPtr cpuOutVal_; - MKLDNNMatrixPtr cpuOutGrad_; - // convert handle between CPU device and MKLDNN device - std::shared_ptr cvtInVal_; - std::shared_ptr cvtInGrad_; - std::shared_ptr cvtOutVal_; - std::shared_ptr cvtOutGrad_; - // whether the weight has been init bool hasInitedWgt_; @@ -94,8 +83,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void updateWeights(const UpdateCallback& callback) override; void convertWeightsFromPaddle() override; @@ -109,26 +96,6 @@ public: << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_; } - void printValueFormatFlow() override { - if (cpuInVal_) { - VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>"; - } - MKLDNNLayer::printValueFormatFlow(); - if (cpuOutVal_) { - VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat(); - } - } - - void printGradFormatFlow() override { - if (cpuInGrad_) { - VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<"; - } - MKLDNNLayer::printGradFormatFlow(); - if (cpuOutGrad_) { - VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat(); - } - } - protected: /** * load the dims settings of this conv @@ -162,23 +129,6 @@ protected: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of input value - */ - void resetInValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& in); - /** - * reset MKLDNNMatrix of weight and bias value - */ - void resetWgtBiasValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias); - /** - * reset MKLDNNMatrix of output value - */ - void resetOutValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& out); - /** * reset the backward weight primitive descriptor. */ @@ -207,22 +157,6 @@ protected: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of output grad - */ - void resetOutGrad(std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of weight and bias grad - */ - void resetWgtBiasGrad(std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias); - /** - * reset MKLDNNMatrix of input grad - */ - void resetInGrad(std::shared_ptr& dataPD, - MKLDNNMatrixPtr& in); /** * reset MKLDNNMatrix of weight value for backward data * since the primitive_desc would be different with wgtVal_ diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index cf19a155681f3a1ceb20af67245c8f2b8fa8fa73..d82063a7130ca928ba042e210eb216f90c7207cd 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -62,7 +62,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() { CHECK(wgtVal_) << "should have been initialized"; bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; auto targetDim = wgtVal_->getDims(); - auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + auto srcFmt = hasNoSpatial_ ? format::io : format::ihwo; wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); hasInitedWgt_ = true; } @@ -71,7 +71,7 @@ void MKLDNNFcLayer::convertWeightsToPaddle() { CHECK(wgtVal_) << "should have been initialized"; bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; auto targetDim = wgtVal_->getDims(); - auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + auto dstFmt = hasNoSpatial_ ? format::io : format::ihwo; wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); } @@ -100,8 +100,6 @@ void MKLDNNFcLayer::resetFwd(std::vector& pipeline, resetFwdPD(fwdPD_, in, wgt, bias, out); resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); - - printValueFormatFlow(); } void MKLDNNFcLayer::resetBwd(std::vector& pipeline, @@ -119,12 +117,6 @@ void MKLDNNFcLayer::resetBwd(std::vector& pipeline, resetBwdDataPD(bwdDataPD, in, out); resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); - - printGradFormatFlow(); -} - -void MKLDNNFcLayer::updateInputData() { - inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { @@ -139,51 +131,30 @@ void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { resetInValue(in); - - resetWgtBiasValue(wgt, bias); - - resetOutValue(out); -} - -void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) { - if (inputIsOnlyMKLDNN()) { - const MatrixPtr& dnnIn = getInputValue(0); - in = std::dynamic_pointer_cast(dnnIn); - CHECK(in) << "Input should be MKLDNNMatrix"; - } else { - CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); - in = MKLDNNMatrix::create( - cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); - } + CHECK(in); in->downSpatial(); -} -void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { + auto outPD = + MKLDNNMatrix::createPrimitiveDesc({bs_, oc_}, format::nc, engine_); + resetOutValue(out, outPD); + format wgtFmt = format::oihw; - if (inVal_->getFormat() == format::nChw8c) { + if (in->getFormat() == format::nChw8c) { wgtFmt = format::oIhw8i; - } else if (inVal_->getFormat() == format::nChw16c) { + } else if (in->getFormat() == format::nChw16c) { wgtFmt = format::oIhw16i; } - wgt = MKLDNNMatrix::create( - weight_->getW(), {oc_, ic_, ih_, iw_}, wgtFmt, engine_); + auto wgtPD = + MKLDNNMatrix::createPrimitiveDesc({oc_, ic_, ih_, iw_}, wgtFmt, engine_); + resetWithMatrix(wgt, weight_->getW(), wgtPD); wgt->downSpatial(); - VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); - - bias = (biases_ && biases_->getW()) - ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_) - : nullptr; -} -void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) { - out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_); - if (!outputIsOnlyMKLDNN()) { - // fc cpu output value do not need create convert, just share data - getOutput(CPU_DEVICE).value->setData(out->getData()); + if (biases_ && biases_->getW()) { + auto biasPD = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_); + resetWithMatrix(bias, biases_->getW(), biasPD); + } else { + bias = nullptr; } - output_.value = std::dynamic_pointer_cast(out); } void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd, @@ -219,7 +190,6 @@ void MKLDNNFcLayer::resetFwdPipeline( } else { fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out)); } - pipeline.push_back(*fwd_); } @@ -227,44 +197,18 @@ void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - resetOutGrad(out); - - resetWgtBiasGrad(wgt, bias); - - resetInGrad(in); -} - -void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) { - CHECK(outVal_); - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - output_.grad->setData(cpuOut->getData()); - out = MKLDNNMatrix::create(cpuOut, outVal_->getPrimitiveDesc()); - } -} + CHECK(inVal_ && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVal_->getPrimitiveDesc()); -void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { CHECK(wgtVal_); - wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); + resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); - bias = nullptr; - if (biasVal_ == nullptr) { - return; - } - bias = - MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc()); -} - -void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) { - in = nullptr; - if (inputLayers_[0]->getOutput().grad == nullptr) { - return; + if (biasVal_) { + resetWithMatrix(bias, biases_->getWGrad(), biasVal_->getPrimitiveDesc()); + } else { + bias = nullptr; } - CHECK(inVal_); - MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc()); } void MKLDNNFcLayer::resetBwdWgtPD( diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index c76878aafab7e986d2bf478eaba02f2f0aced293..ee861763ff3dc10ddb4c119358b80dbe1614aecb 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -66,8 +66,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void updateWeights(const UpdateCallback& callback) override; void convertWeightsFromPaddle() override; @@ -84,9 +82,6 @@ protected: MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - void resetInValue(MKLDNNMatrixPtr& in); - void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); - void resetOutValue(MKLDNNMatrixPtr& out); void resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr wgt, @@ -109,9 +104,6 @@ protected: MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - void resetOutGrad(MKLDNNMatrixPtr& out); - void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); - void resetInGrad(MKLDNNMatrixPtr& in); void resetBwdWgtPD(std::shared_ptr& pd, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, diff --git a/paddle/gserver/layers/MKLDNNLayer.cpp b/paddle/gserver/layers/MKLDNNLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6bb19976b5552fcd2e420f03de45c77a90ffb9d2 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNLayer.cpp @@ -0,0 +1,333 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNLayer.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +bool MKLDNNLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." + << "Please set WITH_MKLDNN=ON " + << "and set use_mkldnn=True"; + CHECK(!useGpu_) << "Do not support GPU yet"; + + // set device id before Layer::init + setDevice(MKLDNN_DEVICE); + // change param device to MKLDNN device + setParamsDevice(MKLDNN_DEVICE, parameterMap); + if (!Layer::init(layerMap, parameterMap)) { + return false; + } + setOutputMap(); + checkCPUOutputsNumber(); + + stream_.reset(new MKLDNNStream()); + engine_ = CPUEngine::Instance().getEngine(); + return true; +} + +void MKLDNNLayer::forward(PassType passType) { + passType_ = passType; + + { + REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); + CHECK(!inputLayers_.empty()); + copySeqInfoToOutputs(); + size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt(); + if (inputElemenCnt_ != elemenCnt) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; + // reset when input total sizes changed, not only the batchsize + inputElemenCnt_ = elemenCnt; + pipelineFwd_.clear(); + reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); + // all cpu device output grad or value share output's + shareCPUDevice(); + resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); + // MKLDNNLayer output value should be MKLDNNMatrix + // so external output value is necessary. + // Then external input value is not necessary, + // since input may be mkldnn internal buffer. + CHECK(extOutVal_) << "external output value is necessary"; + output_.value = std::dynamic_pointer_cast(extOutVal_); + CHECK(inVal_ && outVal_) << "internal memories are necessary"; + if (cvtInVal_) { + pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_); + } + if (cvtOutVal_) { + pipelineFwd_.push_back(*cvtOutVal_); + } + convertWeightsFromPaddle(); + printSizeInfo(); + printValueFormat(); + needResetBwd_ = true; + } + + if (inputLayers_[0]->getType() == "data") { + // Update input value data when input layer is "data" type, + // since the input value data address might be changed. + CHECK(extInVal_); + extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); + } + + if (!outputOnlyMKLDNN_) { + clearGrads(); + } + stream_->submit(pipelineFwd_); + } + { + REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); + forwardActivation(); + } +} + +void MKLDNNLayer::backward(const UpdateCallback& callback) { + if (needResetBwd_) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; + pipelineBwd_.clear(); + pipelineMergeGrad_.clear(); + mergeGrad_ = nullptr; + resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); + // external output grad is not necessary + // since output may be mkldnn internal buffer or merge them directly. + CHECK(outGrad_) << "internal output grad is necessary"; + if (extOutGrad_) { + CHECK_EQ(extOutGrad_->getData(), output_.grad->getData()) + << "the external buffer should share the same data with output_.grad"; + } + if (cvtOutGrad_) { + pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_); + } + if (cvtInGrad_) { + pipelineBwd_.push_back(*cvtInGrad_); + } + printGradFormat(); + needResetBwd_ = false; + } + + // merge grad must before backward activation + if (mergeGrad_) { + REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str()); + stream_->submit(pipelineMergeGrad_); + } + { + REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); + backwardActivation(); + } + { + REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); + stream_->submit(pipelineBwd_); + } + { + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + updateWeights(callback); + } +} + +void MKLDNNLayer::reshapeInput(int& batchsize, int& height, int& width) { + const Argument& input = inputLayers_[0]->getOutput(); + batchsize = input.getBatchSize(); + int h = input.getFrameHeight(); + int w = input.getFrameWidth(); + if (h != 0) { + height = h; + } + if (w != 0) { + width = w; + } +} + +void MKLDNNLayer::reshapeOutput(size_t height, size_t width) { + output_.setFrameHeight(height); + output_.setFrameWidth(width); + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].setFrameHeight(height); + outputOtherDevice_[i].setFrameWidth(width); + } +} + +void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn, + const MatrixPtr& mat, + memory::primitive_desc pd) { + dnn = nullptr; + if (mat == nullptr) { + return; + } + dnn = MKLDNNMatrix::create(pd, mat); +} + +void MKLDNNLayer::resetInValue( + MKLDNNMatrixPtr& in, const std::shared_ptr& intPD) { + cvtInVal_ = nullptr; + extInVal_ = nullptr; + in = nullptr; + CHECK_GT(bs_ * ic_ * ih_ * iw_, 0); + auto extPD = MKLDNNMatrix::createPrimitiveDesc( + {bs_, ic_, ih_, iw_}, format::nchw, engine_); + const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); + in = std::dynamic_pointer_cast(inMat); + CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr); + if (in == nullptr || in->getFormat() == format::nc) { + in = MKLDNNMatrix::create(extPD, inMat); + } + extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr; + if (in->getFormat() == format::nc) { + CHECK(ih_ == 1 && iw_ == 1); + } + if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { + return; + } + // need create reorder + in = MKLDNNMatrix::create(*intPD); + extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat); + cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); + CHECK(cvtInVal_) << "should not be emptry"; +} + +void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out, + memory::primitive_desc intPD) { + cvtOutVal_ = nullptr; + out = MKLDNNMatrix::create(intPD, output_.value); + extOutVal_ = out; + if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) { + return; + } + // need create reorder + CHECK_GT(bs_ * oc_ * oh_ * ow_, 0); + extOutVal_ = MKLDNNMatrix::create( + memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value); + out = MKLDNNMatrix::create(intPD); + cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_); + CHECK(cvtOutVal_) << "should not be empty"; +} + +void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in, + memory::primitive_desc intPD) { + cvtInGrad_ = nullptr; + extInGrad_ = nullptr; + in = nullptr; + LayerPtr& input = inputLayers_[0]; + if (input->getOutputGrad() == nullptr) { + // no need input grad + return; + } + CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1) + << "only support input is MKLDNN layer or only have one output layer"; + // when input is a mkldnn branch node, + // this layer will save input grad to a internal buffer, + // and the mkldnn input layer will merge them to actual prev->output_.grad + const MatrixPtr& inMat = + input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr; + in = MKLDNNMatrix::create(intPD, inMat); + Argument& arg = input->getOutput(this->getName()); + arg.grad = std::dynamic_pointer_cast(in); + CHECK(inVal_); + CHECK(inVal_->getPrimitiveDesc() == intPD) << "the primitive desc must equal"; + if (inputIsOnlyMKLDNN()) { + return; + } + + extInGrad_ = in; + if (isPaddleFormat(extInGrad_->getFormat())) { + return; + } + // need create reorder + // TODO(TJ): add macro definition to simplify it + CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat())) + << "should have external input value and the format must be nchw(nc)"; + extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat); + CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) + << "should have internal input value and primitive desc must equal"; + in = MKLDNNMatrix::create(intPD); + cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_); + CHECK(cvtInGrad_); +} + +void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out, + memory::primitive_desc intPD) { + cvtOutGrad_ = nullptr; + extOutGrad_ = nullptr; + out = nullptr; + MatrixPtr& outMat = output_.grad; + out = MKLDNNMatrix::create(intPD, outMat); + resetMergeGrad(out); + if (outputIsOnlyMKLDNN()) { + return; + } + CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device"; + extOutGrad_ = out; + if (isPaddleFormat(extOutGrad_->getFormat())) { + return; + } + // need create reorder + CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat())) + << "should have external output value and the format must be nchw(nc)"; + extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat); + CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD) + << "should have internal output value and primitive desc must equal"; + out = MKLDNNMatrix::create(intPD); + cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out); + CHECK(cvtOutGrad_); +} + +void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) { + mergeGrad_ = nullptr; + pipelineMergeGrad_.clear(); + if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) { + // do not merge when output is not all MKLDNN or only one output + return; + } + CHECK(out) << "should have reset internal ouput grad"; + std::vector scales(outputMap_.size(), 1.0); + std::vector srcPDs; + std::vector srcs; + for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) { + MKLDNNMatrixPtr src = + std::dynamic_pointer_cast(it->second->grad); + CHECK(src) << "should be MKLDNNMatrix"; + auto srcDims = src->getDims(); + auto dstDims = out->getDims(); + CHECK_EQ(srcDims.size(), dstDims.size()); + for (size_t i = 0; i < srcDims.size(); ++i) { + CHECK_EQ(srcDims[i], dstDims[i]); + } + VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first + << ", format " << src->getFormat(); + srcPDs.push_back(src->getPrimitiveDesc()); + srcs.push_back(*src); + } + + // TODO(TJ): remove me when mkldnn sum support different formats + for (size_t i = 1; i < srcPDs.size(); ++i) { + CHECK(srcPDs[0] == srcPDs[i]); + } + tmpOutGrad_ = out; + tmpCvt_ = nullptr; + if (out->getPrimitiveDesc() != srcPDs[0]) { + tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]); + tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); + CHECK(tmpCvt_); + pipelineMergeGrad_.push_back(*tmpCvt_); + } + + auto sumPD = + sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs); + mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_)); + pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 5f9923da769781287e39a3aaaf92248dfe09f225..2c21a5b2aaecb17a52a5de9a98664068f2255d83 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -46,6 +46,9 @@ protected: // backward also need reset after reset forward handle bool needResetBwd_; + // is output only mkldnn + bool outputOnlyMKLDNN_; + // mkldnn engine, stream and primivtives mkldnn::engine engine_; std::shared_ptr stream_; @@ -55,11 +58,31 @@ protected: std::vector pipelineFwd_; std::vector pipelineBwd_; - // MKLDNNMatrixPtr with internal format + /* Value and grad are seperated as internal and external buffers. + * Each MKLDNNLayer must init or reset internal buffer at least, + * and the external buffer format is always nchw of nc(when h==w==1), + * which is the same format as paddle. + * The output_.value and output_.grad always save the external data, + * when mixed with cpu device. + * When all layers are mkldnn layers, they could save internal data. + */ + // below MKLDNNMatrix buffers are all internal buffers MKLDNNMatrixPtr inVal_; MKLDNNMatrixPtr inGrad_; MKLDNNMatrixPtr outVal_; MKLDNNMatrixPtr outGrad_; + // below are external value and grad + MKLDNNMatrixPtr extInVal_; + MKLDNNMatrixPtr extInGrad_; + MKLDNNMatrixPtr extOutVal_; + MKLDNNMatrixPtr extOutGrad_; + // convert handle between external and internal buffers + std::shared_ptr cvtInVal_; + std::shared_ptr cvtInGrad_; + std::shared_ptr cvtOutVal_; + std::shared_ptr cvtOutGrad_; + + // weight and bias are always internal buffers MKLDNNMatrixPtr wgtVal_; MKLDNNMatrixPtr wgtGrad_; MKLDNNMatrixPtr biasVal_; @@ -88,6 +111,7 @@ public: oh_(0), ow_(0), needResetBwd_(true), + outputOnlyMKLDNN_(false), engine_(mkldnn::engine::cpu, 0), stream_(nullptr), fwd_(nullptr), @@ -96,89 +120,9 @@ public: ~MKLDNNLayer() {} - virtual bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) { - CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." - << "Please set WITH_MKLDNN=ON " - << "and set use_mkldnn=True"; - CHECK(!useGpu_) << "Do not support GPU yet"; - - // set device id before Layer::init - setDevice(MKLDNN_DEVICE); - // change param device to MKLDNN device - setParamsDevice(MKLDNN_DEVICE, parameterMap); - if (!Layer::init(layerMap, parameterMap)) { - return false; - } - setOutputMap(); - checkCPUOutputsNumber(); - - stream_.reset(new MKLDNNStream()); - engine_ = CPUEngine::Instance().getEngine(); - return true; - } - - void forward(PassType passType) override { - passType_ = passType; - - { - REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); - CHECK(!inputLayers_.empty()); - copySeqInfoToOutputs(); - size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt(); - if (inputElemenCnt_ != elemenCnt) { - VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; - // reset when input total sizes changed, not only the batchsize - inputElemenCnt_ = elemenCnt; - pipelineFwd_.clear(); - reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); - resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); - convertWeightsFromPaddle(); - needResetBwd_ = true; - } - - if (inputLayers_[0]->getType() == "data") { - updateInputData(); - } - - stream_->submit(pipelineFwd_); - } - - /* activation */ { - REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); - forwardActivation(); - } - } - - void backward(const UpdateCallback& callback) override { - if (needResetBwd_) { - VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; - pipelineBwd_.clear(); - pipelineMergeGrad_.clear(); - mergeGrad_ = nullptr; - resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); - needResetBwd_ = false; - } - - // merge grad must before backward activation - if (mergeGrad_) { - REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str()); - stream_->submit(pipelineMergeGrad_); - } - { - REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); - backwardActivation(); - } - { - REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); - stream_->submit(pipelineBwd_); - } - - { - REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); - updateWeights(callback); - } - } + virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + virtual void forward(PassType passType); + virtual void backward(const UpdateCallback& callback); /** * reshape the input image sizes @@ -189,7 +133,7 @@ public: int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0; /** - * reset the mkldnn forward primitve and memory + * reset the mkldnn forward primitve and memories * only would be called when input size changes */ virtual void resetFwd(std::vector& pipeline, @@ -199,7 +143,7 @@ public: MKLDNNMatrixPtr& out) = 0; /** - * reset the mkldnn backward primitve and memory for mkldnn fc + * reset the mkldnn backward primitve and memories * only would be called when needed */ virtual void resetBwd(std::vector& pipeline, @@ -208,12 +152,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) = 0; - /** - * Update input value data when input layer is "data" type. - * Since the input value data address might be changed. - */ - virtual void updateInputData() {} - /** * Update weights and biases if necessary. */ @@ -240,131 +178,78 @@ protected: /** * reshape the input image sizes and input batchsize */ - virtual void reshapeInput(int& batchsize, int& height, int& width) { - const Argument& input = inputLayers_[0]->getOutput(); - batchsize = input.getBatchSize(); - int h = input.getFrameHeight(); - int w = input.getFrameWidth(); - if (h != 0) { - height = h; - } - if (w != 0) { - width = w; - } - } + void reshapeInput(int& batchsize, int& height, int& width); /** * reshape output image sizes */ - virtual void reshapeOutput(size_t height, size_t width) { - output_.setFrameHeight(height); - output_.setFrameWidth(width); - for (size_t i = 0; i < outputOtherDevice_.size(); i++) { - outputOtherDevice_[i].setFrameHeight(height); - outputOtherDevice_[i].setFrameWidth(width); - } - } + void reshapeOutput(size_t height, size_t width); /** - * reset the output grad matrix from primitive desc. - * and reset the merge grad primitive if needed. - * note: when this layer has serval outputs, - * it could not be mixed with cpu device, - * since it can not get memory desc from cpu device. + * reset MKLDNNMatrix from Matrix and internal primitive desc. + * reset nullptr if matrix or primitive desc is empty */ - virtual void resetOutGrad(MKLDNNMatrixPtr& out, - mkldnn::memory::primitive_desc pd) { - CHECK(outputIsOnlyMKLDNN()) << "do not support mixed with other device yet"; - mergeGrad_ = nullptr; - pipelineMergeGrad_.clear(); - out = MKLDNNMatrix::create(output_.grad, pd); - if (outputMap_.size() <= 1) { - return; - } - std::vector scales(outputMap_.size(), 1.0); - std::vector srcPDs; - std::vector srcs; - for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) { - MKLDNNMatrixPtr src = - std::dynamic_pointer_cast(it->second->grad); - VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first; - CHECK(src) << "should be MKLDNNMatrix"; - auto srcDims = src->getDims(); - auto dstDims = out->getDims(); - CHECK_EQ(srcDims.size(), dstDims.size()); - for (size_t i = 0; i < srcDims.size(); ++i) { - CHECK_EQ(srcDims[i], dstDims[i]); - } - srcPDs.push_back(src->getPrimitiveDesc()); - srcs.push_back(*src); - } + void resetWithMatrix(MKLDNNMatrixPtr& dnn, + const MatrixPtr& mat, + mkldnn::memory::primitive_desc pd); - // TODO(TJ): remove me when mkldnn sum support different formats - for (size_t i = 1; i < srcPDs.size(); ++i) { - CHECK(srcPDs[0] == srcPDs[i]); - } - tmpOutGrad_ = nullptr; - tmpCvt_ = nullptr; - if (out->getPrimitiveDesc() != srcPDs[0]) { - tmpOutGrad_ = MKLDNNMatrix::create(nullptr, srcPDs[0]); - tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); - CHECK(tmpCvt_); - pipelineMergeGrad_.push_back(*tmpCvt_); - } else { - tmpOutGrad_ = out; - } + /** + * reset input value from input MKLDNNMatrix and internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. + */ + void resetInValue( + MKLDNNMatrixPtr& in, + const std::shared_ptr& intPD = nullptr); - auto sumPD = mkldnn::sum::primitive_desc( - tmpOutGrad_->getMemoryDesc(), scales, srcPDs); - mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_)); - pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); - } + /** + * reset output value from internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. + */ + void resetOutValue(MKLDNNMatrixPtr& out, + mkldnn::memory::primitive_desc intPD); /** - * reset input grad from primitive desc. - * this function is avaiable for input is only mkldnn - * or input do not care cpu device + * reset input grad from internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. */ - virtual void resetInGrad(MKLDNNMatrixPtr& in, - mkldnn::memory::primitive_desc pd) { - LayerPtr& input = inputLayers_[0]; - const MatrixPtr& grad = - input->getOutputMapSize() > 1 ? nullptr : input->getOutput().grad; - in = MKLDNNMatrix::create(grad, pd); - Argument& arg = input->getOutput(this->getName()); - arg.grad = std::dynamic_pointer_cast(in); - } + void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD); /** - * print info about sizes + * reset output grad from internal primitive desc. + * merge grad if necessary. + * reset both internal and external buffer and create reorder if necessary. + * note: about merge grad, when this layer has several outputs, + * it could not be mixed with cpu device, + * since it can not get memory desc from cpu device. */ - virtual void printSizeInfo() { - VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_ - << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_ - << ", oh: " << oh_ << ", ow: " << ow_; - } + void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD); /** - * Print the mkldnn memory format flow of value + * reset the merge grad primitive if necessary. + * note: do not support the grads mixed with cpu device, + * since it can not get memory desc from cpu device. */ - virtual void printValueFormatFlow() { - if (inVal_ && outVal_) { - VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> " - << outVal_->getFormat(); - } - } + void resetMergeGrad(MKLDNNMatrixPtr& out); +protected: /** - * Print the mkldnn memory format flow of grad + * Set deviceId of this layer. */ - virtual void printGradFormatFlow() { - if (inGrad_ && outGrad_) { - VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< " - << outGrad_->getFormat(); + void setDevice(int id) { deviceId_ = id; } + + /** + * check the format is nchw or nc, + * which is supported by Paddle default memory layout + */ + bool isPaddleFormat(mkldnn::memory::format fmt) { + if (fmt == mkldnn::memory::format::nchw || + fmt == mkldnn::memory::format::nc) { + return true; + } else { + return false; } } -protected: /** * If input only has MKLDNN device. * Otherwise, only support the previous layer using CPU device. @@ -374,7 +259,6 @@ protected: if (prevDevice == MKLDNN_DEVICE) { return true; } else { - // do not support GPU yet CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet"; return false; } @@ -389,15 +273,82 @@ protected: CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE) << "Only support other device is CPU yet"; } - return outputOtherDevice_.size() == 0; + outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0; + return outputOnlyMKLDNN_; } /** - * Set deviceId of this layer. + * print info about sizes */ - void setDevice(int id) { deviceId_ = id; } + virtual void printSizeInfo() { + VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_ + << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_ + << ", oh: " << oh_ << ", ow: " << ow_; + } + + /** + * print the mkldnn memory format of value + */ + virtual void printValueFormat() { + if (extInVal_) { + VLOG(MKLDNN_FMTS) << extInVal_->getFormat() << " >>> "; + } + if (inVal_) { + VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>>"; + } + if (outVal_) { + VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "; + } + if (extOutVal_) { + VLOG(MKLDNN_FMTS) << extOutVal_->getFormat(); + } + if (wgtVal_) { + VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat(); + } + if (biasVal_) { + VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat(); + } + } + + /** + * print the mkldnn memory format of grad + */ + virtual void printGradFormat() { + if (extOutGrad_) { + VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat(); + } + if (outGrad_) { + VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "; + } + if (inGrad_) { + VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<<"; + } + if (extInGrad_) { + VLOG(MKLDNN_FMTS) << extInGrad_->getFormat() << " <<< "; + } + if (wgtGrad_) { + VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat(); + } + if (biasGrad_) { + VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat(); + } + } private: + /** + * clear all grad + */ + void clearGrads() { + if (output_.grad) { + output_.grad->zeroMem(); + } + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + if (outputOtherDevice_[i].grad) { + outputOtherDevice_[i].grad->zeroMem(); + } + } + } + /** * Set deviceId of the params used in this layer. */ @@ -432,6 +383,19 @@ private: } } + /** + * if have cpu device, share value and grad data with output_ + */ + void shareCPUDevice() { + if (outputIsOnlyMKLDNN()) { + return; + } + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].value = output_.value; + outputOtherDevice_[i].grad = output_.grad; + } + } + /** * Check the cpu device number of outputOtherDevice_. * should have only one at most. diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp index 5606aae80ce8e9a1e571d3c057c471b26a59d032..6e89260f49979d4edb4da138507a73dc2bf120de 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.cpp +++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp @@ -85,8 +85,6 @@ void MKLDNNPoolLayer::resetFwd(std::vector& pipeline, resetFwdPD(fwdPD_, in, out); resetFwdPipeline(pipeline, fwdPD_, in, out); - - printValueFormatFlow(); } void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, @@ -101,64 +99,22 @@ void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, resetBwdPD(pd, in, out); resetBwdPipeline(pipeline, pd, in, out); - - printGradFormatFlow(); -} - -void MKLDNNPoolLayer::updateInputData() { - inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { resetInValue(in); - resetOutValue(out); -} - -void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) { - if (inputIsOnlyMKLDNN()) { - const MatrixPtr& dnnIn = getInputValue(0); - in = std::dynamic_pointer_cast(dnnIn); - CHECK(in) << "Input should be MKLDNNMatrix"; - } else { - CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); - in = MKLDNNMatrix::create( - cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); - } -} - -void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) { - CHECK(inVal_) << "Should reset input value first"; memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; - out = MKLDNNMatrix::create( - output_.value, outDims, inVal_->getFormat(), engine_); - - // create reorder if output value has cpu device and pd do not match - cpuOutVal_ = nullptr; - cvtOutVal_ = nullptr; - if (!outputIsOnlyMKLDNN()) { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; - cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); - if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(nullptr, out->getPrimitiveDesc()); - cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); - CHECK(cvtOutVal_) << "should not be emptry"; - } else { - cpuOutVal_ = out; - } - output_.value = std::dynamic_pointer_cast(cpuOutVal_); - return; - } - output_.value = std::dynamic_pointer_cast(outVal_); + CHECK(in); + auto outPD = + MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_); + resetOutValue(out, outPD); } void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr out) { - memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; - memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; memory::dims kernels = memory::dims{fh_, fw_}; memory::dims strides = memory::dims{sh_, sw_}; memory::dims padL = memory::dims{ph_, pw_}; @@ -193,57 +149,26 @@ void MKLDNNPoolLayer::resetFwdPipeline( ? std::make_shared(pool_fwd(*pd, *in, *out, *workspace_)) : std::make_shared(pool_fwd(*pd, *in, *out)); pipeline.push_back(*fwd_); - - if (cvtOutVal_) { - pipeline.push_back(*cvtOutVal_); - } } void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { - resetOutGrad(out); - - resetInGrad(in); -} -void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) { - cpuOutGrad_ = nullptr; - cvtOutGrad_ = nullptr; - CHECK(outVal_); - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - cpuOutGrad_ = MKLDNNMatrix::create( - cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_); - if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc()); - cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); - CHECK(cvtOutGrad_) << "should not be emptry"; - } else { - // share the same data of CPU output - output_.grad->setData(cpuOut->getData()); - out = cpuOutGrad_; - } - } -} - -void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) { - in = nullptr; - if (inputLayers_[0]->getOutput().grad == nullptr) { - return; - } - CHECK(inVal_); - MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc()); + CHECK(inVal_ && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVal_->getPrimitiveDesc()); } void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { + pd = nullptr; + if (in == nullptr) { + return; + } memory::dims kernels = memory::dims{fh_, fw_}; memory::dims strides = memory::dims{sh_, sw_}; memory::dims padL = memory::dims{ph_, pw_}; memory::dims padR = getPaddingR(); - CHECK(in); CHECK(out); auto bwdDesc = pool_bwd::desc(poolAlgo_, in->getMemoryDesc(), @@ -261,8 +186,8 @@ void MKLDNNPoolLayer::resetBwdPipeline( std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { - if (cvtOutGrad_) { - pipeline.push_back(*cvtOutGrad_); + if (pd == nullptr) { + return; } bwdData_ = diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.h b/paddle/gserver/layers/MKLDNNPoolLayer.h index 891e15a7efcdd2e54f61352efc1ba7345b91c76b..c5ec87828bfb28b4502b4ec6b47287089c514204 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.h +++ b/paddle/gserver/layers/MKLDNNPoolLayer.h @@ -38,13 +38,6 @@ protected: // pooling_avg or pooling_max mkldnn::algorithm poolAlgo_; - // MKLDNNMatrixPtr which should be created from CPU Device - MKLDNNMatrixPtr cpuOutVal_; - MKLDNNMatrixPtr cpuOutGrad_; - // convert handle between CPU device and MKLDNN device - std::shared_ptr cvtOutVal_; - std::shared_ptr cvtOutGrad_; - // save forward primitive_desc, which can be used backward std::shared_ptr fwdPD_; // according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ @@ -74,8 +67,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void printSizeInfo() override { MKLDNNLayer::printSizeInfo(); VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ @@ -90,8 +81,6 @@ protected: * reset pipeline. */ void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); - void resetInValue(MKLDNNMatrixPtr& in); - void resetOutValue(MKLDNNMatrixPtr& out); void resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr out); @@ -106,8 +95,6 @@ protected: * reset pipeline. */ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); - void resetOutGrad(MKLDNNMatrixPtr& out); - void resetInGrad(MKLDNNMatrixPtr& in); void resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index fcee19415c13e9731bd47eb53bbff9b52cf6450b..329536afaf6d69676e8c39fdf8b6b8cb87ade5fa 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -26,7 +26,10 @@ if(WITH_MKLDNN) test_MKLDNN.cpp MKLDNNTester.cpp LayerGradUtil.cpp) - add_test(NAME test_MKLDNN COMMAND test_MKLDNN) + add_test(NAME test_MKLDNN + COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python + ${CMAKE_CURRENT_BINARY_DIR}/test_MKLDNN + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) endif() ################ test_CRFLayerGrad #################### diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index eaebdd671cfa1b37e5efe149588ca23fdc402a8e..73b7e8857f35d194e71b2b5b341f89b77fd1f8b0 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -15,6 +15,7 @@ limitations under the License. */ #include "MKLDNNTester.h" #include "paddle/gserver/layers/MKLDNNBase.h" #include "paddle/gserver/layers/MKLDNNLayer.h" +#include "paddle/trainer/Trainer.h" namespace paddle { @@ -90,13 +91,19 @@ void MKLDNNTester::setInputImgSize() { // init randome parameters of ref, and copy to mkldnn void MKLDNNTester::randomWgtDatas() { EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); + const bool isBN = refLayer_->getType() == "batch_norm"; for (size_t i = 0; i < parameters_[REF].size(); ++i) { const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE); parameters_[REF][i]->randomize(); + if (isBN && i == 2) { + // this param is moving average in batch norm, which must larger than 0 + real offset = fabs(refValue->getMin()) + 1.0; + refValue->add(offset); + } dnnValue->copyFrom(*refValue); - VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName(); + VLOG(MKLDNN_TESTS) << "Random weight " << parameters_[DNN][i]->getName(); printVector(dnnValue); } } @@ -108,7 +115,7 @@ void MKLDNNTester::randomBotDatas() { dataLayers_[REF][i]->getOutputValue()->randomizeUniform(); dataLayers_[DNN][i]->getOutputValue()->copyFrom( *(dataLayers_[REF][i]->getOutputValue())); - VLOG(lvl_) << "Input " << i << " data:"; + VLOG(MKLDNN_TESTS) << "Random Foward, InputValue " << i; printMatrix(dataLayers_[REF][i]->getOutputValue()); } } @@ -117,12 +124,12 @@ void MKLDNNTester::randomTopDiffs() { refLayer_->getOutputGrad()->randomizeUniform(); dnnLayer_->getOutput(CPU_DEVICE) .grad->copyFrom(*(refLayer_->getOutputGrad())); - VLOG(lvl_) << "Random Backward Input, TopDiff: "; + VLOG(MKLDNN_TESTS) << "Random Backward, OutputGrad"; printMatrix(refLayer_->getOutputGrad()); } void MKLDNNTester::checkForward() { - VLOG(MKLDNN_ALL) << "Check Forward"; + VLOG(MKLDNN_TESTS) << "Check Forward"; printTopDatas(); double delta = compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue()); @@ -130,29 +137,28 @@ void MKLDNNTester::checkForward() { } void MKLDNNTester::checkBackwardData() { - VLOG(MKLDNN_ALL) << "Check Backward Data"; - // TODO(TJ): uncomment me when batch norm ready - // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm"; + VLOG(MKLDNN_TESTS) << "Check Backward Data"; + const bool isBN = refLayer_->getType() == "batch_norm"; for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad(); const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad(); - VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i; + VLOG(MKLDNN_ALL) << "MKLDNN Backward Result: InputGrad " << i; printMatrix(dnnDiff); - VLOG(lvl_) << "Reference Backward Output BotDiff " << i; + VLOG(MKLDNN_ALL) << "Reference Backward Result: InputGrad " << i; printMatrix(refDiff); double delta = compareMatrix(dnnDiff, refDiff); EXPECT_LE(fabs(delta), eps_); - // TODO(TJ): uncomment me when batch norm ready - // if (isBN) { - // // the other two inputs in batch norm are for moving mean and var - // break; - // } + if (isBN) { + // the other two inputs in batch norm are for moving mean and var + // do not have grad to compare + break; + } } } void MKLDNNTester::checkBackwardWgts() { - VLOG(MKLDNN_ALL) << "Check Backward Weight"; + VLOG(MKLDNN_TESTS) << "Check Backward Weight"; CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); vector dnnWgts; // used to temply save mkldnn weights saveWgt(parameters_[DNN], dnnWgts); @@ -164,9 +170,11 @@ void MKLDNNTester::checkBackwardWgts() { for (size_t i = 0; i < parameters_[DNN].size(); ++i) { const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); - VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName(); + VLOG(MKLDNN_ALL) << "MKLDNN Result: weight value" + << parameters_[DNN][i]->getName(); printVector(dnn); - VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName(); + VLOG(MKLDNN_ALL) << "Reference Result: weight value " + << parameters_[REF][i]->getName(); printVector(ref); double delta = compareVector(dnn, ref); @@ -239,7 +247,8 @@ void MKLDNNTester::printTopDatas() { } for (int n = 0; n < NUM; ++n) { - VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: "; + VLOG(MKLDNN_ALL) << testLayers_[n]->getType() + << " Forward Result: OutputValue"; printMatrix(testLayers_[n]->getOutputValue()); } } @@ -251,7 +260,7 @@ void MKLDNNTester::printMatrix(const MatrixPtr& m) { std::ostringstream ostr; m->print(ostr); - VLOG(lvl_) << std::endl << ostr.str(); + VLOG(MKLDNN_ALL) << std::endl << ostr.str(); } void MKLDNNTester::printVector(const VectorPtr& v) { @@ -261,7 +270,7 @@ void MKLDNNTester::printVector(const VectorPtr& v) { std::ostringstream ostr; v->print(ostr, v->getSize()); - VLOG(lvl_) << std::endl << ostr.str(); + VLOG(MKLDNN_ALL) << std::endl << ostr.str(); } double MKLDNNTester::getDelta(const real* d1, @@ -304,17 +313,22 @@ double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) { void MKLDNNTester::runOnce() { // test forward randomBotDatas(); - dnnLayer_->forward(PASS_TRAIN); - refLayer_->forward(PASS_TRAIN); + dnnLayer_->forward(passType_); + refLayer_->forward(passType_); checkForward(); + if (passType_ == PASS_TEST) { + return; + } + // test backward // simple updater UpdateCallback updateCallback = [](Parameter* para) { auto& grad = para->getBuf(PARAMETER_GRADIENT); auto& value = para->getBuf(PARAMETER_VALUE); - real lr = 1e-3; + real lr = 1e-2; value->add(*grad, lr); + grad->zeroMem(); }; randomTopDiffs(); dnnLayer_->backward(updateCallback); @@ -338,10 +352,10 @@ void MKLDNNTester::run(const TestConfig& dnn, size_t batchSize, size_t inputImgH, size_t inputImgW, + PassType passType, + bool printDetails, size_t iter, - float epsilon, - bool log, - int level) { + float epsilon) { CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 || dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) << "should be MKLDNN layer or MKLDNN activation"; @@ -357,10 +371,10 @@ void MKLDNNTester::run(const TestConfig& dnn, ih_ = inputImgH; iw_ = inputImgW; + passType_ = passType; + log_ = printDetails; iter_ = iter; eps_ = epsilon; - log_ = log; - lvl_ = level; // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight reset(dnn, ref, batchSize); @@ -411,4 +425,146 @@ void MKLDNNTester::run(const TestConfig& dnn, } } +void MKLDNNTester::initArgument(DataIn& data, + const std::string& configPath, + const size_t iter) { + TrainerConfigHelper config(configPath); + size_t batchSize = config.getOptConfig().batch_size(); + data.inArgs.resize(iter); + data.outGrads.resize(iter); + data.paraValues.clear(); + for (const auto& layer_name : config.getModelConfig().input_layer_names()) { + auto layer_config = std::find_if(config.getModelConfig().layers().begin(), + config.getModelConfig().layers().end(), + [=](const LayerConfig& layer_config) { + return layer_config.name() == layer_name; + }); + CHECK(layer_config != config.getModelConfig().layers().end()); + + size_t layerSize = layer_config->size(); + for (size_t i = 0; i < iter; ++i) { + Argument arg; + arg.value = Matrix::create(batchSize, layerSize, false, false); + arg.grad = Matrix::create(batchSize, layerSize, false, false); + arg.value->randomizeUniform(); + arg.value->add(-0.5); + arg.value->sigmoid(*arg.value); + arg.grad->zeroMem(); + arg.ids = VectorT::create(batchSize, false); + arg.ids->rand(layerSize); + generateSequenceStartPositions(batchSize, arg.sequenceStartPositions); + data.inArgs[i].push_back(arg); + } + } + + for (const auto& layer_name : config.getModelConfig().output_layer_names()) { + auto layer_config = std::find_if(config.getModelConfig().layers().begin(), + config.getModelConfig().layers().end(), + [=](const LayerConfig& layer_config) { + return layer_config.name() == layer_name; + }); + CHECK(layer_config != config.getModelConfig().layers().end()); + + size_t layerSize = layer_config->size(); + for (size_t i = 0; i < iter; ++i) { + MatrixPtr grad = Matrix::create(batchSize, layerSize, false, false); + grad->randomizeUniform(); + data.outGrads[i].push_back(grad); + } + } + + for (const auto& para_config : config.getModelConfig().parameters()) { + VectorPtr value = Vector::create(para_config.size(), false); + value->randnorm(0, 2); + data.paraValues.push_back(value); + } +} + +void MKLDNNTester::getOutResult(const std::string& configPath, + DataIn& in, + DataOut& out, + bool use_mkldnn, + size_t iter) { + FLAGS_use_gpu = false; + FLAGS_use_mkldnn = use_mkldnn; + *ThreadLocalRand::getSeed() = 1; + srand(1); + + Trainer trainer; + auto config = std::make_shared(configPath); + trainer.init(config, false); + auto gradientMachine = trainer.getGradientMachine(); + std::vector parameters = gradientMachine->getParameters(); + for (size_t i = 0; i < in.paraValues.size(); i++) { + parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]); + } + UpdateCallback simpleUpdate = [](Parameter* para) { + auto& grad = para->getBuf(PARAMETER_GRADIENT); + auto& value = para->getBuf(PARAMETER_VALUE); + real lr = 1e-2; + value->add(*grad, lr); + grad->zeroMem(); + }; + + vector outArgs; + gradientMachine->start(); + out.outValues.clear(); + out.paraValues.clear(); + for (size_t i = 0; i < iter; ++i) { + VLOG(MKLDNN_TESTS) << "runing iteration " << i; + gradientMachine->forward(in.inArgs[i], &outArgs, PASS_TRAIN); + // save forward result + for (size_t k = 0; k < outArgs.size(); k++) { + MatrixPtr value = Matrix::create(outArgs[k].value->getHeight(), + outArgs[k].value->getWidth(), + false, + false); + value->copyFrom(*outArgs[k].value); + out.outValues.push_back(value); + } + + // random backward input + for (size_t k = 0; k < outArgs.size(); k++) { + outArgs[k].grad->copyFrom(*in.outGrads[i][k]); + } + gradientMachine->backward(simpleUpdate); + } + gradientMachine->finish(); + + // save param value + for (size_t i = 0; i < in.paraValues.size(); i++) { + VectorPtr val = Vector::create( + parameters[i]->getBuf(PARAMETER_VALUE)->getSize(), false); + val->copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE)); + out.paraValues.push_back(val); + } +} + +void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) { + CHECK_EQ(ref.outValues.size(), dnn.outValues.size()); + CHECK_EQ(ref.paraValues.size(), dnn.paraValues.size()); + VLOG(MKLDNN_TESTS) << "compare value size: " << ref.outValues.size(); + for (size_t i = 0; i < ref.outValues.size(); i++) { + EXPECT_LE(fabs(compareMatrix(ref.outValues[i], dnn.outValues[i])), eps); + } + VLOG(MKLDNN_TESTS) << "compare param size: " << ref.outValues.size(); + for (size_t i = 0; i < ref.paraValues.size(); i++) { + EXPECT_LE(fabs(compareVector(ref.paraValues[i], dnn.paraValues[i])), eps); + } +} + +void MKLDNNTester::runBranchesTest(const std::string& configPath, + size_t iter, + float eps) { + DataIn in; + initArgument(in, configPath, iter); + DataOut outCpu, outDnn; + VLOG(MKLDNN_TESTS) << "runing cpu network"; + getOutResult(configPath, in, outCpu, false, iter); + VLOG(MKLDNN_TESTS) << "runing mkldnn network"; + getOutResult(configPath, in, outDnn, true, iter); + + compareResult(outCpu, outDnn, eps); +} + } // namespace paddle diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index 171d176ee757f1164c38d86273bdf9e5aefeda06..19d8848f74f2ee4a809e42164a0eb180abd2a4e1 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -33,6 +33,17 @@ class MKLDNNTester { NUM = 2, // Number of total }; + struct DataIn { + std::vector> inArgs; + std::vector> outGrads; + std::vector paraValues; + }; + + struct DataOut { + std::vector outValues; + std::vector paraValues; + }; + protected: std::vector configs_; vector layerNames_; @@ -47,19 +58,19 @@ protected: size_t iter_; /// whether to print out the details bool log_; - /// vlog level to print the matrix details datas - int lvl_; /// epsilon float eps_; /// input image size, default 1 size_t ih_, iw_; + /// passType, PASS_TRAIN, PASS_TEST or PASS_GC (Gradient Check pass) + PassType passType_; public: explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) { iter_ = iter; eps_ = epsilon; log_ = false; - lvl_ = MKLDNN_ALL; + passType_ = PASS_TRAIN; } ~MKLDNNTester() {} @@ -70,11 +81,21 @@ public: size_t batchSize, size_t inputImgH = 1, size_t inputImgW = 1, + PassType passType = PASS_TRAIN, + bool printDetails = false, size_t iter = 3, - float epsilon = 1e-4, - bool log = false, - int level = MKLDNN_ALL); - void setLogLevel(int lvl) { lvl_ = lvl; } + float epsilon = 1e-4); + static void runBranchesTest(const std::string& configPath, + size_t iter = 3, + float eps = 1e-4); + static void initArgument(DataIn& data, + const std::string& configPath, + size_t iter = 3); + static void getOutResult(const std::string& configPath, + DataIn& in, + DataOut& out, + bool use_mkldnn, + size_t iter = 3); private: void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize); @@ -101,8 +122,9 @@ private: void saveWgt(const vector& from, vector& to); void restoreWgt(const vector& from, vector& to); - double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2); - double compareVector(const VectorPtr& v1, const VectorPtr& v2); + static double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2); + static double compareVector(const VectorPtr& v1, const VectorPtr& v2); + static void compareResult(DataOut& ref, DataOut& dnn, float eps = 1e-4); /** * Get delta percent @@ -111,11 +133,11 @@ private: * else return sum(abs(a-b)) / sum(abs(b)) * The return value should be smaller than eps when passing. */ - double getDelta(const real* d1, - const real* d2, - size_t len, - const float failRate = 1e-3, - const float thres = 0.1); + static double getDelta(const real* d1, + const real* d2, + size_t len, + const float failRate = 1e-3, + const float thres = 0.1); }; } // namespace paddle diff --git a/paddle/gserver/tests/mkldnn_branches_conv.conf b/paddle/gserver/tests/mkldnn_branches_conv.conf new file mode 100644 index 0000000000000000000000000000000000000000..2628509db43e6a5f69a4f5ea956bffdc2837e32a --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_conv.conf @@ -0,0 +1,56 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_conv(input, group_name): + out1 = img_conv_layer(input=input, + name=group_name+'_conv1', + filter_size=1, + num_filters=channels, + padding=0, + shared_biases=True, + act=ReluActivation()) + + out2 = img_conv_layer(input=input, + name=group_name+'_conv2', + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=ReluActivation()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=ReluActivation()) + +a1, a2 = two_conv(input=conv, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_conv(input=conv, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/mkldnn_branches_fc.conf b/paddle/gserver/tests/mkldnn_branches_fc.conf new file mode 100644 index 0000000000000000000000000000000000000000..fb85425c2b63c7604d636e2b0c5d20d91fb5de1b --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_fc.conf @@ -0,0 +1,58 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_fc(input, group_name): + out1 = fc_layer(input=input, + name=group_name+'_fc1', + size=channels, + bias_attr=False, + act=LinearActivation()) + + out2 = fc_layer(input=input, + name=group_name+'_fc2', + size=channels, + bias_attr=False, + act=LinearActivation()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=LinearActivation()) + +pool = img_pool_layer(input=conv, + pool_size=3, + stride=2, + padding=1, + pool_type=AvgPooling()) + +a1, a2 = two_fc(input=pool, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_fc(input=pool, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/mkldnn_branches_pool.conf b/paddle/gserver/tests/mkldnn_branches_pool.conf new file mode 100644 index 0000000000000000000000000000000000000000..ca17c74752ab0777a69f818d9f43275a6140cb4c --- /dev/null +++ b/paddle/gserver/tests/mkldnn_branches_pool.conf @@ -0,0 +1,60 @@ +# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddle.trainer_config_helpers import * + +settings(batch_size=16) +channels = get_config_arg("channels", int, 2) + +def two_pool(input, group_name): + out1 = img_pool_layer(input=input, + name=group_name+'_pool1', + pool_size=3, + stride=2, + padding=0, + pool_type=MaxPooling()) + + out2 = img_pool_layer(input=input, + name=group_name+'_pool2', + pool_size=5, + stride=2, + padding=1, + pool_type=MaxPooling()) + return out1, out2 + +data = data_layer(name ="input", size=channels*16*16) + +conv = img_conv_layer(input=data, + num_channels=channels, + filter_size=3, + num_filters=channels, + padding=1, + shared_biases=True, + act=LinearActivation()) + +pool = img_pool_layer(input=conv, + pool_size=3, + stride=1, + padding=1, + pool_type=AvgPooling()) + +a1, a2 = two_pool(input=pool, group_name='a') + +concat = concat_layer(input=[a1, a2]) + +b1, b2 = two_pool(input=pool, group_name='b') + +addto = addto_layer(input=[b1, b2]) + +outputs([concat, addto]) diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index a70b2f17f4f1130322f3c50d244f70fdcf34468b..85d4f437c2664135a7975c6ed3270d8f1ddbeaf4 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include +#include #include #include #include "MKLDNNTester.h" @@ -40,12 +41,13 @@ DECLARE_bool(use_mkldnn); struct testFcDesc { int bs; int ic; - int oc; int ih, iw; // oh == ow == 1 + int oc; }; static void getMKLDNNFcConfig(TestConfig& cfg, const testFcDesc& pm) { cfg.layerConfig.set_type("mkldnn_fc"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_size(pm.oc); cfg.inputDefs.push_back( {INPUT_DATA, @@ -86,6 +88,7 @@ struct testConvDesc { static void getMKLDNNConvConfig(TestConfig& cfg, const testConvDesc& pm) { cfg.layerConfig.set_type("mkldnn_conv"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_num_filters(pm.oc); cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow); cfg.layerConfig.set_shared_biases(true); @@ -158,6 +161,7 @@ struct testPoolDesc { static void getMKLDNNPoolConfig(TestConfig& cfg, const testPoolDesc& pm) { cfg.layerConfig.set_type("mkldnn_pool"); + cfg.layerConfig.set_active_type("relu"); cfg.layerConfig.set_size(pm.ic * pm.oh * pm.ow); cfg.inputDefs.push_back( {INPUT_DATA, @@ -208,6 +212,66 @@ TEST(MKLDNNLayer, PoolLayer) { testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2}); } +struct testBatchNormDesc { + int bs; + int ic; + int ih, iw; +}; + +static void getMKLDNNBatchNormConfig(TestConfig& cfg, + const testBatchNormDesc& pm) { + cfg.layerConfig.set_size(pm.ic * pm.ih * pm.iw); + cfg.layerConfig.set_type("mkldnn_batch_norm"); + cfg.biasSize = pm.ic; + cfg.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), + /* size of weight= */ size_t(pm.ic)}); + cfg.inputDefs.push_back( + {INPUT_DATA, "layer_1_moving_mean", 1, size_t(pm.ic)}); + cfg.inputDefs.back().isStatic = true; + cfg.inputDefs.push_back({INPUT_DATA, "layer_2_moving_var", 1, size_t(pm.ic)}); + cfg.inputDefs.back().isStatic = true; + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + // TODO(TJ): uncomment me when refine and support comparing all zeroes vector + // cfg.layerConfig.set_active_type("relu"); + cfg.layerConfig.add_inputs(); + cfg.layerConfig.add_inputs(); + ImageConfig* img_conf = input->mutable_image_conf(); + img_conf->set_channels(pm.ic); + img_conf->set_img_size_y(pm.ih); + img_conf->set_img_size(pm.iw); +} + +void testBatchNormLayer(const testBatchNormDesc& pm) { + TestConfig dnnConfig; + getMKLDNNBatchNormConfig(dnnConfig, pm); + TestConfig refConfig = dnnConfig; + refConfig.layerConfig.set_type("batch_norm"); + // for PASS_TRAIN, use_global_stats always should be false, and batchsize != 1 + VLOG(MKLDNN_TESTS) << "check train phase"; + dnnConfig.layerConfig.set_use_global_stats(false); + refConfig.layerConfig.set_use_global_stats(false); + MKLDNNTester tester; + tester.run(dnnConfig, refConfig, pm.bs, pm.ih, pm.iw, PASS_TRAIN); + // for PASS_TEST, check use_global_stats true and false, and batchsize 1 + VLOG(MKLDNN_TESTS) << "check test phase"; + for (auto useGS : {false, true}) { + dnnConfig.layerConfig.set_use_global_stats(useGS); + refConfig.layerConfig.set_use_global_stats(useGS); + MKLDNNTester tester; + for (auto bs : {pm.bs, 1}) { + tester.run(dnnConfig, refConfig, bs, pm.ih, pm.iw, PASS_TEST); + } + } +} + +TEST(MKLDNNLayer, BatchNormLayer) { + testBatchNormLayer({4, 10, 6, 6}); + testBatchNormLayer({16, 32, 16, 16}); +} + struct testActDesc { int bs, ic, ih, iw; }; @@ -244,13 +308,26 @@ TEST(MKLDNNActivation, Activations) { } } -// TODO(TJ): add branch test +DECLARE_string(config_args); +TEST(MKLDNNLayer, branches) { + std::vector cases = {"conv", "pool", "fc"}; + for (auto name : cases) { + std::string config = "./gserver/tests/mkldnn_branches_" + name + ".conf"; + for (auto channels : {2, 32}) { + std::ostringstream oss; + oss << "channels=" << channels; + FLAGS_config_args = oss.str(); + MKLDNNTester::runBranchesTest(config); + } + } +} int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); FLAGS_use_gpu = false; FLAGS_use_mkldnn = true; initMain(argc, argv); + initPython(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); diff --git a/paddle/gserver/tests/test_PyDataProvider2.py b/paddle/gserver/tests/test_PyDataProvider2.py index 2e6225519f4681238f4b40fb33764ead4a16b24a..0d0fe476ff5eac8bf8ad1c9fe09b32c1a8f73ebc 100644 --- a/paddle/gserver/tests/test_PyDataProvider2.py +++ b/paddle/gserver/tests/test_PyDataProvider2.py @@ -51,7 +51,10 @@ def test_sparse_non_value_no_seq(setting, filename): yield [(i + 1) * (j + 1) for j in xrange(10)] -@provider(input_types=[sparse_vector(30000, seq_type=SequenceType.NO_SEQUENCE)]) +@provider(input_types=[ + sparse_float_vector( + 30000, seq_type=SequenceType.NO_SEQUENCE) +]) def test_sparse_value_no_seq(setting, filename): for i in xrange(200): yield [((i + 1) * (j + 1), float(j) / float(i + 1)) for j in xrange(10)] diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp index 0778bb63b7b3bca9b3d2647ca43dad72d783950a..21a8f73c3e650d4b3c3b86247594cd965f4ead35 100644 --- a/paddle/math/MKLDNNMatrix.cpp +++ b/paddle/math/MKLDNNMatrix.cpp @@ -18,7 +18,7 @@ using namespace mkldnn; // NOLINT namespace paddle { -MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) { +MKLDNNMatrixPtr MKLDNNMatrix::create(memory::primitive_desc pd, MatrixPtr m) { memory::desc md = pd.desc(); size_t ndims = md.data.ndims; int* dims = md.data.dims; @@ -41,12 +41,12 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) { return std::make_shared(cpuMatrix, pd); } -MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, - memory::dims dims, +MKLDNNMatrixPtr MKLDNNMatrix::create(memory::dims dims, memory::format fmt, engine& eg, + MatrixPtr m, mkldnn::memory::data_type dtype) { - return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg)); + return create(createPrimitiveDesc(dims, fmt, eg, dtype), m); } std::shared_ptr MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src, diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h index c843115eb9a5be50d6ff873f1510844228c9d89f..2b62d4e11ac7276924947ab47360ffca84240aea 100644 --- a/paddle/math/MKLDNNMatrix.h +++ b/paddle/math/MKLDNNMatrix.h @@ -40,24 +40,37 @@ public: /** * Create MKLDNNMatrix from a MatrixPtr and memory primitive_desc */ - static MKLDNNMatrixPtr create(MatrixPtr m, mkldnn::memory::primitive_desc pd); + static MKLDNNMatrixPtr create(mkldnn::memory::primitive_desc pd, + MatrixPtr m = nullptr); /** * Create MKLDNNMatrix from a MatrixPtr and memory details info */ static MKLDNNMatrixPtr create( - MatrixPtr m, mkldnn::memory::dims dims, mkldnn::memory::format fmt, mkldnn::engine& eg, + MatrixPtr m = nullptr, mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32); + /** + * Create primitive descriptor. + * default with f32 dtype + */ + static mkldnn::memory::primitive_desc createPrimitiveDesc( + const mkldnn::memory::dims dims, + const mkldnn::memory::format& fmt, + const mkldnn::engine& eg, + const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) { + return mkldnn::memory::primitive_desc(memory::desc(dims, dtype, fmt), eg); + } + /** * Create Memory descriptor. * default with any format and f32 dtype */ static mkldnn::memory::desc createMemoryDesc( - const mkldnn::memory::dims& dims, + const mkldnn::memory::dims dims, const mkldnn::memory::format& fmt = mkldnn::memory::format::any, const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) { return mkldnn::memory::desc(dims, dtype, fmt); @@ -78,6 +91,11 @@ public: const MKLDNNMatrixPtr& dst, bool checkData = true); + void copyFrom(const Matrix& src) { + // TODO(TJ): reorder data if this format is not nchw or x + m_->copyFrom(src); + } + public: /** * Reorder this MKLDNNMatrix from other format. diff --git a/paddle/math/RowBuffer.h b/paddle/math/RowBuffer.h index 9ef5b89680b00981188d78cb312dc75e2c0a79ee..e457d71f1b357aecae48107688499edd7271a5db 100644 --- a/paddle/math/RowBuffer.h +++ b/paddle/math/RowBuffer.h @@ -60,7 +60,7 @@ public: */ inline real* get(int row) const { if (preallocatedBuf_) { - CHECK_LE((row + 1) * width_ * sizeof(real), preallocatedBuf_->getSize()); + CHECK_LE((row)*width_ * sizeof(real), preallocatedBuf_->getSize()); return reinterpret_cast(preallocatedBuf_->getBuf()) + row * width_; } else { CHECK_LE((row + 1) * width_, rowStore_.size()); diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 75fcc1cda165197fc4413efc6bbbc440088cb4cd..d2d70d8be71208cfa9673f6a6936b1bca16d7426 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -69,6 +69,13 @@ function(op_library TARGET) file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") endif() + # save_restore_op contains several operators + if ("${TARGET}" STREQUAL "save_restore_op") + set(pybind_flag 1) + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(save);\n") + endif() + # activation_op contains several operators if ("${TARGET}" STREQUAL "activation_op") set(pybind_flag 1) @@ -115,7 +122,8 @@ set(DEPS_OPS softmax_with_cross_entropy_op sum_op pool_op - pool_with_index_op) + pool_with_index_op + lstm_op) op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc @@ -126,6 +134,7 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) op_library(sum_op DEPS net_op) op_library(pool_op DEPS pooling) op_library(pool_with_index_op DEPS pooling) +op_library(lstm_op DEPS sequence2batch lstm_compute) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 037bb49abc6c272eed2d27ea5d8425866ef9a1d5..e0a00ecaf04335800eab9e2e5a03628a2ce2ca8d 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -69,5 +69,8 @@ information, or not. But the output only shares the LoD with input `Inference`. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker); -REGISTER_OP_CPU_KERNEL(accuracy, - ops::AccuracyKernel); +REGISTER_OP_CPU_KERNEL( + accuracy, ops::AccuracyKernel, + ops::AccuracyKernel, + ops::AccuracyKernel, + ops::AccuracyKernel); diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu index 0ca9ef941d4cb15619caea2b6baed197e4b15e5a..54e6ab99dc8c8ff1afbc636e6595cd67fb64eccf 100644 --- a/paddle/operators/accuracy_op.cu +++ b/paddle/operators/accuracy_op.cu @@ -21,9 +21,9 @@ namespace paddle { namespace operators { using platform::PADDLE_CUDA_NUM_THREADS; -template -__global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata, - const int* labeldata, float* accuracy) { +template +__global__ void AccuracyCudaKernel(const int N, const int D, const T* Xdata, + const T* labeldata, float* accuracy) { int count = 0; __shared__ int total[BlockSize]; @@ -57,8 +57,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { auto* accuracy = ctx.Output("Accuracy"); // FIXME(typhoonzero): only support indices currently // if add support for output values, how to detect the data type? - const int* inference_data = inference->data(); - const int* label_data = label->data(); + const T* inference_data = inference->data(); + const T* label_data = label->data(); float* accuracy_data = accuracy->mutable_data(ctx.GetPlace()); size_t num_samples = inference->dims()[0]; @@ -69,7 +69,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { return; } - AccuracyCudaKernel<<< + AccuracyCudaKernel<<< 1, PADDLE_CUDA_NUM_THREADS, 0, reinterpret_cast( ctx.device_context()) @@ -81,5 +81,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(accuracy, - paddle::operators::AccuracyOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel); diff --git a/paddle/operators/adam_op.cc b/paddle/operators/adam_op.cc index e3db70ea129880434add21e71d15e5129c4551bd..3572de06bd60f7979e3bfbf39856b04942ce81c0 100644 --- a/paddle/operators/adam_op.cc +++ b/paddle/operators/adam_op.cc @@ -43,10 +43,6 @@ class AdamOp : public framework::OperatorWithKernel { "Output(Moment1Out) of AdamOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"), "Output(Moment2Out) of AdamOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"), - "Output(Beta1PowOut) of AdamOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta2PowOut"), - "Output(Beta2PowOut) of AdamOp should not be null."); auto lr_dims = ctx->GetInputDim("LearningRate"); PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, @@ -72,8 +68,6 @@ class AdamOp : public framework::OperatorWithKernel { ctx->SetOutputDim("ParamOut", param_dims); ctx->SetOutputDim("Moment1Out", param_dims); ctx->SetOutputDim("Moment2Out", param_dims); - ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims); - ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims); } }; @@ -92,8 +86,6 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("ParamOut", "(Tensor) Output parameter"); AddOutput("Moment1Out", "(Tensor) Output first moment"); AddOutput("Moment2Out", "(Tensor) Output second moment"); - AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator"); - AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator"); AddAttr("beta1", "(float, default 0.9) " @@ -121,10 +113,8 @@ Adam updates: moment1_out = beta1 * moment1 + (1 − beta1) * grad moment2_out = beta2 * moment2 + (1 − beta2) * grad * grad -beta1_pow_out = beta1_pow * beta1 -beta2_pow_out = beta2_pow * beta2 learning_rate_t = learning_rate_t * - sqrt(1 - beta2_pow_out) / (1 - beta1_pow_out) + sqrt(1 - beta2_pow) / (1 - beta1_pow) param_out = param - learning_rate_t * moment1/ (sqrt(moment2) + epsilon) References: diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index 789c2f14b32478bf9ddc967fc5725bcf65ed2146..45938006db1231a7a134964d729df6ca114d4dbe 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -26,14 +26,10 @@ class AdamOpKernel : public framework::OpKernel { auto param_out_tensor = ctx.Output("ParamOut"); auto moment1_out_tensor = ctx.Output("Moment1Out"); auto moment2_out_tensor = ctx.Output("Moment2Out"); - auto beta1_pow_out_tensor = ctx.Output("Beta1PowOut"); - auto beta2_pow_out_tensor = ctx.Output("Beta2PowOut"); param_out_tensor->mutable_data(ctx.GetPlace()); moment1_out_tensor->mutable_data(ctx.GetPlace()); moment2_out_tensor->mutable_data(ctx.GetPlace()); - beta1_pow_out_tensor->mutable_data(ctx.GetPlace()); - beta2_pow_out_tensor->mutable_data(ctx.GetPlace()); float beta1 = ctx.Attr("beta1"); float beta2 = ctx.Attr("beta2"); @@ -56,18 +52,13 @@ class AdamOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment1_out = framework::EigenVector::Flatten(*moment1_out_tensor); auto moment2_out = framework::EigenVector::Flatten(*moment2_out_tensor); - auto beta1_pow_out = - framework::EigenVector::Flatten(*beta1_pow_out_tensor); - auto beta2_pow_out = - framework::EigenVector::Flatten(*beta2_pow_out_tensor); auto place = ctx.GetEigenDevice(); moment1_out.device(place) = beta1 * moment1 + (1 - beta1) * grad; moment2_out.device(place) = beta2 * moment2 + (1 - beta2) * grad.square(); - beta1_pow_out.device(place) = beta1_pow * beta1; - beta2_pow_out.device(place) = beta2_pow * beta2; + // All of these are tensors of 1 element - auto lr_t = lr * (1 - beta2_pow_out).sqrt() / (1 - beta1_pow_out); + auto lr_t = lr * (1 - beta2_pow).sqrt() / (1 - beta1_pow); // Eigen does not support automatic broadcast // Get dimensions of moment vector to broadcast lr_t Eigen::DSizes m_dsize(moment1_out_tensor->numel()); diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc index e848333ef8a819648cc3056ae2f4a0e33fc58405..ff2565774115571166712b03c8990e5bf8de12a5 100644 --- a/paddle/operators/adamax_op.cc +++ b/paddle/operators/adamax_op.cc @@ -41,8 +41,6 @@ class AdamaxOp : public framework::OperatorWithKernel { "Output(MomentOut) of AdamaxOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("InfNormOut"), "Output(InfNormOut) of AdamaxOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Beta1PowOut"), - "Output(Beta1PowOut) of AdamaxOp should not be null."); auto lr_dims = ctx->GetInputDim("LearningRate"); PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, @@ -64,7 +62,6 @@ class AdamaxOp : public framework::OperatorWithKernel { ctx->SetOutputDim("ParamOut", param_dims); ctx->SetOutputDim("MomentOut", param_dims); ctx->SetOutputDim("InfNormOut", param_dims); - ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims); } }; @@ -86,7 +83,6 @@ class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker { AddOutput("InfNormOut", "(Tensor) " "Output exponentially weighted infinity norm"); - AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator"); AddAttr("beta1", "(float, default 0.9) " @@ -113,8 +109,7 @@ Adamax updates: moment_out = beta1 * moment + (1 - beta1) * grad inf_norm_out = max(beta2 * inf_norm + epsilon, abs(grad)) -beta1_pow_out = beta1_pow * beta1 -learning_rate_t = learning_rate/(1 - beta1_pow_out) +learning_rate_t = learning_rate/(1 - beta1_pow) param_out = param - learning_rate_t * moment_out/inf_norm_out The original paper does not have an epsilon attribute. diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h index 9677b1bb786002aadfaeb571b2ba2e6aa2481ca5..2c99832ec08e9c1d9b5458c467d5238f9b1b3c37 100644 --- a/paddle/operators/adamax_op.h +++ b/paddle/operators/adamax_op.h @@ -26,12 +26,10 @@ class AdamaxOpKernel : public framework::OpKernel { auto param_out_tensor = ctx.Output("ParamOut"); auto moment_out_tensor = ctx.Output("MomentOut"); auto inf_norm_out_tensor = ctx.Output("InfNormOut"); - auto beta1_pow_out_tensor = ctx.Output("Beta1PowOut"); param_out_tensor->mutable_data(ctx.GetPlace()); moment_out_tensor->mutable_data(ctx.GetPlace()); inf_norm_out_tensor->mutable_data(ctx.GetPlace()); - beta1_pow_out_tensor->mutable_data(ctx.GetPlace()); float beta1 = ctx.Attr("beta1"); float beta2 = ctx.Attr("beta2"); @@ -53,15 +51,12 @@ class AdamaxOpKernel : public framework::OpKernel { auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); auto inf_norm_out = framework::EigenVector::Flatten(*inf_norm_out_tensor); - auto beta1_pow_out = - framework::EigenVector::Flatten(*beta1_pow_out_tensor); auto place = ctx.GetEigenDevice(); moment_out.device(place) = beta1 * moment + (1 - beta1) * grad; inf_norm_out.device(place) = grad.abs().cwiseMax((beta2 * inf_norm) + epsilon); - beta1_pow_out.device(place) = beta1_pow * beta1; - auto lr_t = lr / (1 - beta1_pow_out); + auto lr_t = lr / (1 - beta1_pow); Eigen::DSizes m_dsize(moment_out_tensor->numel()); param_out.device(place) = param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out); diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..f7dc990f0db8ae4891ff068fb97899e6d01478da --- /dev/null +++ b/paddle/operators/batch_norm_op.cc @@ -0,0 +1,412 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/batch_norm_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +using EigenArrayMap = + Eigen::Map>; +template +using ConstEigenArrayMap = + Eigen::Map>; +template +using EigenVectorArrayMap = Eigen::Map>; +template +using ConstEigenVectorArrayMap = + Eigen::Map>; + +class BatchNormOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), ""); + PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); + PADDLE_ENFORCE(ctx->HasInput("Bias"), ""); + PADDLE_ENFORCE(ctx->HasInput("Mean"), ""); + PADDLE_ENFORCE(ctx->HasInput("Variance"), ""); + PADDLE_ENFORCE(ctx->HasOutput("Y"), ""); + PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), ""); + PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), ""); + PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), ""); + PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), ""); + + // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python + PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0], + "Mean and MeanOut should share the same memory"); + PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], + ctx->Outputs("VarianceOut")[0], + "Variance and VarianceOut should share the same memory"); + + const auto x_dims = ctx->GetInputDim("X"); + const TensorFormat tensor_format = + StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C); + + ctx->SetOutputDim("Y", x_dims); + ctx->SetOutputDim("MeanOut", {C}); + ctx->SetOutputDim("VarianceOut", {C}); + ctx->SetOutputDim("SavedMean", {C}); + ctx->SetOutputDim("SavedVariance", {C}); + } +}; + +class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { + public: + BatchNormOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddAttr("is_test", "").SetDefault(false); + AddAttr("momentum", "").SetDefault(0.9); + AddAttr("epsilon", "").SetDefault(1e-5); + AddAttr("tensor_format", "").SetDefault("NCHW"); + AddInput("X", "The input tensor"); + AddInput("Scale", + "Scale is a 1-dimensional tensor of size C " + "to be applied to the output"); + AddInput("Bias", + "Bias is a 1-dimensional tensor of size C " + "to be applied to the output"); + AddInput("Mean", + "The global mean (for training) or the " + "estimated mean (for testing)"); + AddInput("Variance", + "The global variance (for training) " + "or the estimated Variance (for testing)"); + AddOutput("Y", "result after normalization"); + AddOutput("MeanOut", + "Share memory with Mean. " + "Store the global mean when training"); + AddOutput("VarianceOut", + "Share memory with Variance. " + "Store the global Variance when training"); + AddOutput("SavedMean", + "Mean of the current mini batch, " + "will apply to output when training"); + AddOutput("SavedVariance", + "Variance of the current mini batch, " + "will apply to output when training"); + AddComment(R"DOC( +https://arxiv.org/pdf/1502.03167.pdf + +NHWC `[batch, in_height, in_width, in_channels]` +NCHW `[batch, in_channels, in_height, in_width]` + +)DOC"); + } +}; + +template +class BatchNormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + const float epsilon = ctx.Attr("epsilon"); + const float momentum = ctx.Attr("momentum"); + const bool is_test = ctx.Attr("is_test"); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + + const auto *x = ctx.Input("X"); + const auto &x_dims = x->dims(); + + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + const int N = x_dims[0]; + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + const int sample_size = x->numel() / N / C; + + auto *y = ctx.Output("Y"); + auto *mean_out = ctx.Output("MeanOut"); + auto *variance_out = ctx.Output("VarianceOut"); + auto *saved_mean = ctx.Output("SavedMean"); + auto *saved_variance = ctx.Output("SavedVariance"); + + // alloc memory + y->mutable_data(ctx.GetPlace()); + mean_out->mutable_data(ctx.GetPlace()); + variance_out->mutable_data(ctx.GetPlace()); + saved_mean->mutable_data(ctx.GetPlace()); + saved_variance->mutable_data(ctx.GetPlace()); + + if (!is_test) { + // saved_xx is use just in this batch of data + EigenVectorArrayMap saved_mean_e( + saved_mean->mutable_data(ctx.GetPlace()), C); + EigenVectorArrayMap saved_variance_e( + saved_variance->mutable_data(ctx.GetPlace()), C); + saved_mean_e.setZero(); + saved_variance_e.setZero(); + + switch (tensor_format) { + case TensorFormat::NCHW: { + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + for (int nc = 0; nc < N * C; ++nc) { + saved_mean_e(nc % C) += x_arr.col(nc).sum(); + } + saved_mean_e /= N * sample_size; + for (int nc = 0; nc < N * C; ++nc) { + saved_variance_e(nc % C) += + (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm(); + } + saved_variance_e /= N * sample_size; + break; + } + case TensorFormat::NHWC: { + ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); + for (int i = 0; i < N * sample_size; ++i) { + saved_mean_e += x_arr.col(i); + } + saved_mean_e /= N * sample_size; + for (int i = 0; i < N * sample_size; ++i) { + saved_variance_e += + (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e); + } + saved_variance_e /= N * sample_size; + break; + } + default: + PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + } + + EigenVectorArrayMap running_mean_arr( + mean_out->mutable_data(ctx.GetPlace()), C); + EigenVectorArrayMap running_var_arr( + variance_out->mutable_data(ctx.GetPlace()), C); + running_mean_arr = + running_mean_arr * momentum + saved_mean_e * (1. - momentum); + running_var_arr = + running_var_arr * momentum + saved_variance_e * (1. - momentum); + } + + // use SavedMean and SavedVariance to do normalize + Eigen::Array inv_std(C); + if (is_test) { + ConstEigenVectorArrayMap var_arr( + ctx.Input("Variance")->data(), C); + inv_std = (var_arr + epsilon).sqrt().inverse(); + } else { + EigenVectorArrayMap saved_inv_std( + ctx.Output("SavedVariance")->data(), C); + // inverse SavedVariance first, gradient will use it too. + saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt(); + inv_std = saved_inv_std; + } + ConstEigenVectorArrayMap mean_arr( + is_test ? ctx.Input("Mean")->data() + : ctx.Output("SavedMean")->data(), + C); + + // ((x - est_mean) * (inv_var) * scale + bias + // formula transform ====> + // (x * inv_var * scale) + (bias - est_mean * inv_var * scale) + const auto *scale = ctx.Input("Scale"); + const auto *bias = ctx.Input("Bias"); + ConstEigenVectorArrayMap scale_arr(scale->data(), C); + ConstEigenVectorArrayMap bias_arr(bias->data(), C); + Eigen::Array new_scale = inv_std * scale_arr; + Eigen::Array new_bias = + bias_arr - mean_arr * inv_std * scale_arr; + + switch (tensor_format) { + case TensorFormat::NCHW: { + EigenArrayMap y_arr(y->mutable_data(ctx.GetPlace()), sample_size, + N * C); + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + for (int nc = 0; nc < N * C; ++nc) { + y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C); + } + break; + } + case TensorFormat::NHWC: { + EigenArrayMap(y->mutable_data(ctx.GetPlace()), C, + N * sample_size) = + (ConstEigenArrayMap(x->data(), C, N * sample_size).colwise() * + new_scale) + .colwise() + + new_bias; + break; + } + default: + PADDLE_THROW("Unknown storage order: %d", tensor_format); + } + } +}; + +class BatchNormGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + // check input + PADDLE_ENFORCE(ctx->HasInput("X")); + PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), ""); + PADDLE_ENFORCE(ctx->HasInput("SavedMean"), ""); + PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), ""); + + // check output + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), ""); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), ""); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), ""); + + const auto x_dims = ctx->GetInputDim("X"); + const TensorFormat tensor_format = + StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); + ctx->SetOutputDim(framework::GradVarName("Bias"), {C}); + } +}; + +template +class BatchNormGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + const auto *x = ctx.Input("X"); + const auto *d_y = ctx.Input(framework::GradVarName("Y")); + const auto *scale = ctx.Input("Scale"); + const auto *saved_mean = ctx.Input("SavedMean"); + // SavedVariance have been reverted in forward operator + const auto *saved_inv_variance = ctx.Input("SavedVariance"); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + + // Get the size for each dimension. + // NCHW [batch_size, in_channels, in_height, in_width] + const auto &x_dims = x->dims(); + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + const int N = x_dims[0]; + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + const int sample_size = x->numel() / N / C; + + ConstEigenVectorArrayMap scale_arr(scale->data(), C); + ConstEigenVectorArrayMap mean_arr(saved_mean->data(), C); + ConstEigenVectorArrayMap inv_var_arr(saved_inv_variance->data(), C); + + // init output + auto *d_x = ctx.Output(framework::GradVarName("X")); + auto *d_scale = ctx.Output(framework::GradVarName("Scale")); + auto *d_bias = ctx.Output(framework::GradVarName("Bias")); + + d_x->mutable_data(ctx.GetPlace()); + d_scale->mutable_data(ctx.GetPlace()); + d_bias->mutable_data(ctx.GetPlace()); + + // d_bias = np.sum(d_y, axis=0) + // d_scale = np.sum((X - mean) / inv_std * dy, axis=0) + // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0) + // - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0)) + + EigenVectorArrayMap d_bias_arr(d_bias->mutable_data(ctx.GetPlace()), + C); + EigenVectorArrayMap d_scale_arr(d_scale->mutable_data(ctx.GetPlace()), + C); + + d_bias_arr.setZero(); + d_scale_arr.setZero(); + + const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); + + switch (tensor_format) { + case TensorFormat::NCHW: { + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); + EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), + sample_size, N * C); + d_x_arr.setZero(); + + for (int nc = 0; nc < N * C; ++nc) { + int c = nc % C; + d_bias_arr(c) += d_y_arr.col(nc).sum(); + d_scale_arr(c) += + ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc)) + .sum(); + } + for (int nc = 0; nc < N * C; ++nc) { + int c = nc % C; + d_x_arr.col(nc) += + scale_inv_var_nhw(c) * + (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) - + (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c)); + } + break; + } + case TensorFormat::NHWC: { + ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); + ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); + EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), C, + N * sample_size); + d_x_arr.setZero(); + + const auto d_y_row_sum = d_y_arr.rowwise().sum(); + const auto x_minus_mean = x_arr.colwise() - mean_arr; + const auto d_y_mul_x_minus_mean_row_sum = + (d_y_arr * x_minus_mean).rowwise().sum(); + const auto inv_var_sqr = inv_var_arr * inv_var_arr; + for (int nhw = 0; nhw < N * sample_size; ++nhw) { + d_bias_arr += d_y_arr.col(nhw); + d_scale_arr += + (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw); + d_x_arr.col(nhw) += + scale_inv_var_nhw * + (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum - + x_minus_mean.col(nhw) * inv_var_sqr * + d_y_mul_x_minus_mean_row_sum); + } + break; + } + default: + PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, + batch_norm_grad, ops::BatchNormGradOp); +REGISTER_OP_CPU_KERNEL(batch_norm, + ops::BatchNormKernel); +REGISTER_OP_CPU_KERNEL( + batch_norm_grad, + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.cu b/paddle/operators/batch_norm_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..6ba6ee12ec7b0a5dc2ffcdfd7519377c8f32fef8 --- /dev/null +++ b/paddle/operators/batch_norm_op.cu @@ -0,0 +1,262 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/batch_norm_op.h" + +#include +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/cudnn_helper.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using CudnnDataType = platform::CudnnDataType; + +void ExtractNCWHD(const framework::DDim &dims, + const TensorFormat &tensor_format, int *N, int *C, int *H, + int *W, int *D) { + *N = dims[0]; + *C = tensor_format == TensorFormat::NCHW ? dims[1] : dims[dims.size() - 1]; + *H = tensor_format == TensorFormat::NCHW ? dims[2] : dims[1]; + *W = dims.size() > 3 + ? (tensor_format == TensorFormat::NCHW ? dims[3] : dims[2]) + : 1; + *D = dims.size() > 4 + ? (tensor_format == TensorFormat::NCHW ? dims[4] : dims[3]) + : 1; +} + +template +class BatchNormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + double epsilon = static_cast(ctx.Attr("epsilon")); + const float momentum = ctx.Attr("momentum"); + const bool is_test = ctx.Attr("is_test"); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + + // Get the size for each dimension. + // NCHW [batch_size, in_channels, in_height, in_width] + const auto *x = ctx.Input("X"); + const auto &x_dims = x->dims(); + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + int N, C, H, W, D; + ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + + // ------------------- cudnn descriptors --------------------- + cudnnTensorDescriptor_t data_desc_; + cudnnTensorDescriptor_t bn_param_desc_; + cudnnBatchNormMode_t mode_; + + CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_)); + CUDNN_ENFORCE( + platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_)); + + if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) { + LOG(ERROR) << "Provided epsilon is smaller than " + << "CUDNN_BN_MIN_EPSILON. Setting it to " + << "CUDNN_BN_MIN_EPSILON instead."; + } + epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON); +#if CUDNN_VERSION_MIN(7, 0, 0) + mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT; +#else + mode_ = CUDNN_BATCHNORM_SPATIAL; +#endif + + VLOG(1) << "Setting descriptors."; + std::vector dims; + std::vector strides; + if (tensor_format == TensorFormat::NCHW) { + dims = {N, C, H, W, D}; + strides = {C * H * W * D, H * W * D, W * D, D, 1}; + } else { + dims = {N, C, H, W, D}; + strides = {H * W * D * C, 1, W * D * C, D * C, C}; + } + CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor( + data_desc_, CudnnDataType::type, + x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data())); + CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor( + bn_param_desc_, data_desc_, mode_)); + + const auto *scale = ctx.Input("Scale"); + const auto *bias = ctx.Input("Bias"); + + auto *y = ctx.Output("Y"); + auto *mean_out = ctx.Output("MeanOut"); + auto *variance_out = ctx.Output("VarianceOut"); + auto *saved_mean = ctx.Output("SavedMean"); + auto *saved_variance = ctx.Output("SavedVariance"); + + // alloc memory + y->mutable_data(ctx.GetPlace()); + mean_out->mutable_data(ctx.GetPlace()); + variance_out->mutable_data(ctx.GetPlace()); + saved_mean->mutable_data(ctx.GetPlace()); + saved_variance->mutable_data(ctx.GetPlace()); + + math::SetConstant functor; + functor(ctx.device_context(), saved_mean, 0); + functor(ctx.device_context(), saved_variance, 0); + // FIXME(qiao) should not set zero self + functor(ctx.device_context(), mean_out, 0); + functor(ctx.device_context(), variance_out, 0); + + auto handle = ctx.cuda_device_context().cudnn_handle(); + + // Now, depending on whether we are running test or not, we have two paths. + if (is_test) { + // only when test we use input to do computation. + const auto *est_mean = ctx.Input("Mean"); + const auto *est_var = ctx.Input("Variance"); + // Run inference mode. + PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL); + PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL); + PADDLE_ENFORCE_EQ(est_mean->dims()[0], C); + PADDLE_ENFORCE_EQ(est_var->dims()[0], C); + + CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference( + handle, + // Note: PERSISTENT not implemented for inference + CUDNN_BATCHNORM_SPATIAL, CudnnDataType::kOne(), + CudnnDataType::kZero(), data_desc_, x->template data(), + data_desc_, y->template mutable_data(ctx.GetPlace()), + bn_param_desc_, scale->template data(), bias->template data(), + est_mean->template data(), est_var->template data(), epsilon)); + } else { + // Run training mode. + // obtain running mean and running inv var, and see if we need to + // initialize them. + double this_factor = 1. - momentum; + + CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining( + handle, mode_, CudnnDataType::kOne(), CudnnDataType::kZero(), + data_desc_, x->template data(), data_desc_, + y->template mutable_data(ctx.GetPlace()), bn_param_desc_, + scale->template data(), bias->template data(), this_factor, + mean_out->template mutable_data(ctx.GetPlace()), + variance_out->template mutable_data(ctx.GetPlace()), epsilon, + saved_mean->template mutable_data(ctx.GetPlace()), + saved_variance->template mutable_data(ctx.GetPlace()))); + } + + // clean when exit. + CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_)); + CUDNN_ENFORCE( + platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_)); + } +}; + +template +class BatchNormGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + double epsilon = static_cast(ctx.Attr("epsilon")); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const auto *x = ctx.Input("X"); + const auto *d_y = ctx.Input(framework::GradVarName("Y")); + const auto *scale = ctx.Input("Scale"); + + const auto &x_dims = x->dims(); + + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + int N, C, H, W, D; + ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + + PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL); + PADDLE_ENFORCE_EQ(scale->dims()[0], C); + + // ------------------- cudnn descriptors --------------------- + cudnnTensorDescriptor_t data_desc_; + cudnnTensorDescriptor_t bn_param_desc_; + cudnnBatchNormMode_t mode_; + + CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_)); + CUDNN_ENFORCE( + platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_)); + if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) { + LOG(ERROR) << "Provided epsilon is smaller than " + << "CUDNN_BN_MIN_EPSILON. Setting it to " + << "CUDNN_BN_MIN_EPSILON instead."; + } + epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON); +#if CUDNN_VERSION_MIN(7, 0, 0) + mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT; +#else + mode_ = CUDNN_BATCHNORM_SPATIAL; +#endif + + std::vector dims = {N, C, H, W, D}; + std::vector strides = {H * W * C * D, 1, W * D * C, D * C, C}; + CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor( + data_desc_, CudnnDataType::type, + x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data())); + CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor( + bn_param_desc_, data_desc_, mode_)); + + // init output + auto *d_x = ctx.Output(framework::GradVarName("X")); + auto *d_scale = ctx.Output(framework::GradVarName("Scale")); + auto *d_bias = ctx.Output(framework::GradVarName("Bias")); + + d_x->mutable_data(ctx.GetPlace()); + d_scale->mutable_data(ctx.GetPlace()); + d_bias->mutable_data(ctx.GetPlace()); + + const auto *saved_mean = ctx.Input("SavedMean"); + const auto *saved_var = ctx.Input("SavedVariance"); + const void *saved_mean_data = saved_mean->template data(); + const void *saved_var_data = saved_var->template data(); + + CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward( + ctx.cuda_device_context().cudnn_handle(), mode_, + CudnnDataType::kOne(), CudnnDataType::kZero(), + CudnnDataType::kOne(), CudnnDataType::kZero(), data_desc_, + x->template data(), data_desc_, d_y->template data(), data_desc_, + d_x->template mutable_data(ctx.GetPlace()), bn_param_desc_, + scale->template data(), + d_scale->template mutable_data(ctx.GetPlace()), + d_bias->template mutable_data(ctx.GetPlace()), epsilon, + saved_mean_data, saved_var_data)); + + // clean when exit. + CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_)); + CUDNN_ENFORCE( + platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_)); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(batch_norm, + ops::BatchNormKernel); +REGISTER_OP_GPU_KERNEL( + batch_norm_grad, + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.h b/paddle/operators/batch_norm_op.h new file mode 100644 index 0000000000000000000000000000000000000000..4e80134a1acf3b4d66154453dd0ed709133d1c7c --- /dev/null +++ b/paddle/operators/batch_norm_op.h @@ -0,0 +1,50 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +enum TensorFormat { + NHWC = 0, + NCHW = 1, +}; + +inline TensorFormat StringToTensorFormat(const std::string& str) { + if (str == "NHWC" || str == "nhwc") { + return TensorFormat::NHWC; + } else if (str == "NCHW" || str == "nchw") { + return TensorFormat::NCHW; + } else { + PADDLE_THROW("Unknown storage order string: %s", str); + } +} + +template +class BatchNormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override; +}; + +template +class BatchNormGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override; +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/batch_norm_op.md b/paddle/operators/batch_norm_op.md new file mode 100644 index 0000000000000000000000000000000000000000..80948adf2b9047a9685dbdd90b2296b5a955f9c1 --- /dev/null +++ b/paddle/operators/batch_norm_op.md @@ -0,0 +1,134 @@ +# Batch Normalization + +## What is batch normalization + +Batch normalization is a frequently-used method in deep network training. It adjusts the mean and variance of a layer's output, and make the data distribution easier for next layer's training. + +The principle of batch normalization can be summarized into a simple function: + +``` +y = (x - E[x]) / STD[x]) * scale + bias +``` + +`x` is a batch of output data of a certain layer. `E[x]` and `STD[x]` is the mean and standard deviation of `x`, respectively。 `scale` and `bias` are two trainable parameters. The training of batch normalization layer equals to the learning of best values of `scale` and `bias`. + +In our design, we use a single operator(`batch_norm_op`) to implement the whole batch normalization in C++, and wrap it as a layer in Python. + +## Differences with normal operators + +`batch_norm_op` is a single operator. However, there are a few differences between `BatchNormOp` and normal operators, which we shall take into consideration in our design. + +1. `batch_norm_op` shall behave differently in training and inferencing. For example, during inferencing, there is no batch data and it's impossible to compute `E[x]` and `STD[x]`, so we have to use an `estimated_mean` and an `estimated_variance` instead of them. These require our framework to be able to inform operators current running type (training/inferencing), then operators can switch their behaviors. + +2. `batch_norm_op` shall have the ability to maintain `estimated_mean` and `estimated_variance` across mini-batch. In each mini-batch, `estimated_mean` is iterated by the following equations: + +``` +if batch_id == 0 + estimated_mean = E[x] +else + estimated_mean = estimated_mean * momentum + (1.0 - momentum_) * E[x] +``` + +The iterating of `estimated_variance` is similar. `momentum` is an attribute, which controls estimated_mean updating speed. + +## Implementation + +Batch normalization is designed as a single operator is C++, and then wrapped as a layer in Python. + +### C++ + +As most C++ operators do, `batch_norm_op` is defined by inputs, outputs, attributes and compute kernels. + +#### Inputs + +- `x`: The inputs data, which is generated by the previous layer. +- `estimated_mean`: The estimated mean of all previous data batches. It is updated in each forward propagation and will be used in inferencing to take the role of `E[x]`. +- `estimated_var`: The estimated standard deviation of all previous data batches. It is updated in each forward propagation and will be used in inferencing to take the role of `STD[x]`. +- `scale`: trainable parameter 'scale' +- `bias`: trainable parameter 'bias' + +#### Outputs + +- `y`: The output data. +- `batch_mean`: The mean value of batch data. +- `batch_var`: The standard deviation value of batch data. +- `saved_mean`: Updated `estimated_mean` with current batch data. It's supposed to share the memory with input `estimated_mean`. +- `saved_var`: Updated `estimated_var` with current batch data. It's supposed to share the memory with input `estimated_var`. + +#### Attributes + +- `is_infer`: *bool*. If true, run `batch_norm_op` in inferencing mode. +- `use_global_est`: *bool*. If true, use `saved_mean` and `saved_var` instead of `E[x]` and `STD[x]` in trainning. +- `epsilon`: *float*. The epsilon value to avoid division by zero. +- `momentum`: *float*. Factor used in `estimated_mean` and `estimated_var` updating. The usage is shown above. + +#### Kernels + +The following graph showes the training computational process of `batch_norm_op`: + + + +cudnn provides APIs to finish the whole series of computation, we can use them in our GPU kernel. + +### Python + +`batch_norm_op` is warpped as a layer in Python: + +```python +def batch_norm_layer(net, + input, + output, + scale, + bias, + use_global_est = False, + epsilon = 1e-6, + momentum = 0.99): + mean_cache = scope.new_var(name = 'estimated_mean', trainable = False) + var_cache = scop.new_var(name = 'estimated_var', trainable = False) + batch_mean = scope.new_var(name = 'batch_mean') + batch_var = scope.new_var(name = 'batch_var') + batch_norm_op = Operator('batch_norm_op', + x = input, + estimated_mean = mean_cache, + estimated_mean = var_cache, + scale = scale, + bias = bias, + y = output, + batch_mean = batch_mean, + batch_var = batch_var, + saved_mean = mean_cache, + saved_var = var_cache, + is_infer = False, + use_global_est = use_global_est, + epsilon = epsilon, + momentum = momentum) + net.append_op(batch_norm_op) + return output +``` + +Because Python API has not been finally decided, the code above can be regarded as pseudo code. There are a few key points we shall note: + +1. `estimated_mean` and `estimated_var` are assigned the same variables with `saved_mean` and `saved_var` respectively. So they share same the memories. The output mean and variance values(`saved_mean` and `saved_var`) of a certain batch will be the inputs(`estimated_mean` and `estimated_var`) of the next batch. + +2. `is_infer` decided whether `batch_norm_op` will run in training mode or inferencing mode. However, a network may contains both training and inferencing parts. And user may switch `batch_norm_op`'s running mode in Python `for` loop like this: + +```python +for pass_id in range(PASS_NUM): + # ... + net.train() # run training model + if pass_id % 100 == 0: + net.infer(test_image) # run inferencing model + # ... +``` + +`is_infer` is an attribute. Once an operator is created, its attributes can not be changed. It suggests us that we shall maintain two `batch_norm_op` in the model, one's `is_infer` is `True`(we call it `infer_batch_norm_op`) and the other one's is `False`(we call it `train_batch_norm_op`). They share all parameters and variables, but be placed in two different branches. That is to say, if a network contains a `batch_norm_op`, it will fork into two branches, one go through `train_batch_norm_op` and the other one go through `infer_batch_norm_op`: + +
+ +
+ +Just like what is shown in the above graph, the net forks before `batch_norm_op` and will never merge again. All the operators after `batch_norm_op` will duplicate. + +When the net runs in training mode, the end of the left branch will be set as the running target, so the dependency tracking process will ignore right branch automatically. When the net runs in inferencing mode, the process is reversed. + +How to set a target is related to Python API design, so I will leave it here waiting for more discussions. diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc index 2d029394dd97a9c33c9c57fd3565345139cdff92..f80204c6833d6436f2cf21610beea45b36787eea 100644 --- a/paddle/operators/clip_op.cc +++ b/paddle/operators/clip_op.cc @@ -27,8 +27,8 @@ class ClipOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of ClipOp should not be null."); auto x_dims = ctx->GetInputDim("X"); - auto max = Attr("max"); - auto min = Attr("min"); + auto max = ctx->Attrs().Get("max"); + auto min = ctx->Attrs().Get("min"); PADDLE_ENFORCE_LT(min, max, "max should be greater than min."); ctx->SetOutputDim("Out", x_dims); ctx->ShareLoD("X", /*->*/ "Out"); diff --git a/paddle/operators/conv2d_op.h b/paddle/operators/conv2d_op.h index bd1734879ef2569bfc7c3bef21677d3b0dc49a78..0621389a79eee6b5e75b1eab309b49f8aa4a97ca 100644 --- a/paddle/operators/conv2d_op.h +++ b/paddle/operators/conv2d_op.h @@ -108,17 +108,17 @@ class GemmConv2DKernel : public framework::OpKernel { int in_step = input_channels / groups; int out_step = output_channels / groups; for (int i = 0; i < batch_size; i++) { - Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); - Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { // im2col - Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); im2col(context.device_context(), in_slice, col, strides[0], strides[1], - paddings[0], paddings[1]); + paddings[0], paddings[0], paddings[1], paddings[1]); // gemm - Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); + Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, false, col_matrix, false, T(1.0), &out_slice, T(0.0)); } @@ -198,24 +198,23 @@ class GemmConvGrad2DKernel : public framework::OpKernel { for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = - output_grad->Slice(i, i + 1).Resize(output_matrix_shape); - Tensor in_grad_batch = - input_grad->Slice(i, i + 1).Resize(input_shape); + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // gemm Tensor out_grad_slice = - out_grad_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor filter_slice = - filter.Slice(g * out_step, (g + 1) * out_step); + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), filter_slice, true, out_grad_slice, false, T(1.0), &col_matrix, T(0.0)); // col2im Tensor in_grad_slice = - in_grad_batch.Slice(g * in_step, (g + 1) * in_step); + in_grad_batch.Slice(g * in_step, (g + 1) * in_step); col2im(context.device_context(), in_grad_slice, col, strides[0], - strides[1], paddings[0], paddings[1]); + strides[1], paddings[0], paddings[0], paddings[1], + paddings[1]); } } } @@ -229,19 +228,20 @@ class GemmConvGrad2DKernel : public framework::OpKernel { for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = - output_grad->Slice(i, i + 1).Resize(output_matrix_shape); - Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); for (int g = 0; g < groups; g++) { // im2col Tensor out_grad_slice = - out_grad_batch.Slice(g * out_step, (g + 1) * out_step); - Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); im2col(context.device_context(), in_slice, col, strides[0], - strides[1], paddings[0], paddings[1]); + strides[1], paddings[0], paddings[0], paddings[1], + paddings[1]); // gemm Tensor filter_grad_slice = - filter_grad_.Slice(g * out_step, (g + 1) * out_step); + filter_grad_.Slice(g * out_step, (g + 1) * out_step); math::matmul(context.device_context(), out_grad_slice, false, col_matrix, true, T(1.0), &filter_grad_slice, T(1.0)); diff --git a/paddle/operators/conv2dtranspose_op.cc b/paddle/operators/conv2dtranspose_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c1b231906e2f172b6f9cee55f850d1a5ec6c3221 --- /dev/null +++ b/paddle/operators/conv2dtranspose_op.cc @@ -0,0 +1,107 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/conv2dtranspose_op.h" + +namespace paddle { +namespace operators { + +void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const { + PADDLE_ENFORCE(ctx->HasInput("Input"), + "Input(Input) of Conv2DTransposeOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) of Conv2DTransposeOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Output"), + "Output(Output) of Conv2DTransposeOp should not be null."); + + auto in_dims = ctx->GetInputDim("Input"); + auto filter_dims = ctx->GetInputDim("Filter"); + std::vector strides = ctx->Attrs().Get>("strides"); + std::vector paddings = ctx->Attrs().Get>("paddings"); + + for (size_t i = 0; i < paddings.size(); ++i) { + PADDLE_ENFORCE_EQ(paddings[i], 0, + "No Padding allowed in conv transpose op."); + } + + PADDLE_ENFORCE_EQ(in_dims.size(), 4, + "Conv2DTransposeOp input should be 4-D tensor."); + PADDLE_ENFORCE_EQ(filter_dims.size(), 4, + "Conv2DTransposeOp filter should be 4-D tensor."); + PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0], + "input and kernel input dimension should be equal."); + + auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2]; + auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3]; + ctx->SetOutputDim("Output", + {in_dims[0], filter_dims[1], output_height, output_width}); +} + +Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( + framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "Input", + "(Tensor) The input tensor of convolution transpose operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of input channels, H and W is the height and width of image."); + AddInput("Filter", + "(Tensor) The filter tensor of convolution transpose operator." + "The format of the filter tensor is CMHW, where C is the number of " + "output image channels, M is the number of input image channels, " + "H and W is height and width of filter. " + "We enforce groups number == 1 and padding == 0 in " + "convolution transpose Scenario."); + AddOutput("Output", + "(Tensor) The output tensor of convolution transpose operator." + "The format of output tensor is also NCHW."); + AddAttr>("strides", + "strides of convolution transpose operator.") + .SetDefault({1, 1}); + AddAttr>("paddings", + "paddings of convolution transpose operator.") + .SetDefault({0, 0}); + AddComment(R"DOC( +The convolution transpose operation calculates the output based on the input, filter +and strides, paddings, groups parameters. The size of each dimension of the +parameters is checked in the infer-shape. +)DOC"); +} + +void Conv2DTransposeOpGrad::InferShape( + framework::InferShapeContext* ctx) const { + auto in_dims = ctx->GetInputDim("Input"); + auto filter_dims = ctx->GetInputDim("Filter"); + if (ctx->HasOutput(framework::GradVarName("Input"))) { + ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); + } + if (ctx->HasOutput(framework::GradVarName("Filter"))) { + ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); + } +} + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(conv2dtranspose, ops::Conv2DTransposeOp, + ops::Conv2DTransposeOpMaker, conv2dtranspose_grad, + ops::Conv2DTransposeOpGrad); + +REGISTER_OP_CPU_KERNEL( + conv2dtranspose, + ops::GemmConv2DTransposeKernel); +REGISTER_OP_CPU_KERNEL( + conv2dtranspose_grad, + ops::GemmConv2DTransposeGradKernel); diff --git a/paddle/operators/conv2dtranspose_op.cu b/paddle/operators/conv2dtranspose_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..761bc1959e69be94f43571728e6b92a322558b99 --- /dev/null +++ b/paddle/operators/conv2dtranspose_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/conv2dtranspose_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + conv2dtranspose, + ops::GemmConv2DTransposeKernel); +REGISTER_OP_GPU_KERNEL( + conv2dtranspose_grad, + ops::GemmConv2DTransposeGradKernel); diff --git a/paddle/operators/conv2dtranspose_op.h b/paddle/operators/conv2dtranspose_op.h new file mode 100644 index 0000000000000000000000000000000000000000..8c70b3dcec1e26ab3d8a42d88040764c643b5ae6 --- /dev/null +++ b/paddle/operators/conv2dtranspose_op.h @@ -0,0 +1,254 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/im2col.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using DDim = framework::DDim; + +// Define Op classes in .h file so that other conv transpose +// operator implementations can reuse the code. +class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { + public: + Conv2DTransposeOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker); +}; + +class Conv2DTransposeOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override; +}; + +class Conv2DTransposeOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override; +}; + +template +class GemmConv2DTransposeKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + // The filter will be reshaped, so it should not be constant pointer + Tensor filter = *context.Input("Filter"); + + Tensor* output = context.Output("Output"); + + std::vector strides = context.Attr>("strides"); + + // TODO(Zhuoyuan): Paddings can be added in future. + // groups will alway be disabled in conv2dtranspose. + + const int batch_size = input->dims()[0]; + const int m = input->dims()[1]; + const int h = input->dims()[2]; + const int w = input->dims()[3]; + + const int k_h = filter.dims()[2]; + const int k_w = filter.dims()[3]; + + const int c = output->dims()[1]; // output channels + const int o_h = output->dims()[2]; + const int o_w = output->dims()[3]; + + paddle::operators::math::Col2ImFunctor< + paddle::operators::math::ColFormat::kCFO, Place, T> + col2im; + + // use col_shape in the im2col and col2im calculation + DDim col_shape = {c, k_h, k_w, h, w}; + + // use col_matrix_shape in the gemm calculation + DDim col_matrix_shape = {c * k_h * k_w, h * w}; + + Tensor col; + col.mutable_data(col_shape, context.GetPlace()); + // col_matrix shares the same piece of data with col, + // but will be reshaped into a two-dimensional matrix shape + // to call the matrix multiplication interface. + Tensor col_matrix; + col_matrix.ShareDataWith(col); + col_matrix.Resize(col_matrix_shape); + + DDim output_shape = {c, o_h, o_w}; + DDim input_matrix_shape = {m, h * w}; + + DDim filter_matrix_shape = {m, c * k_h * k_w}; + filter.Resize(filter_matrix_shape); + + // convolution transpose: gemm + col2im (similar to conv-backward on input) + + output->mutable_data(context.GetPlace()); + auto t = framework::EigenVector::Flatten(*output); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); + + for (int i = 0; i < batch_size; i++) { + // batch with size (M, h * w) + Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); + // filter size: (M, c * k_h * k_w) + + // output size: (c, o_h, o_w) + Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape); + + // col_matrix = filter * input_batch + // of shape (c * k_h * k_w, h * w) + math::matmul(context.device_context(), filter, true, + input_batch, false, T(1.0), &col_matrix, T(0.0)); + col2im(context.device_context(), output_batch, col, strides[0], + strides[1], 0, 0, 0, 0); + } + } +}; + +template +class GemmConv2DTransposeGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + const Tensor* output_grad = + context.Input(framework::GradVarName("Output")); + + // For filter, we do not use const pointer b/c we will do reshape, + // but we should avoid modifying its value. + Tensor filter = *context.Input("Filter"); + + Tensor* input_grad = + context.Output(framework::GradVarName("Input")); + Tensor* filter_grad = + context.Output(framework::GradVarName("Filter")); + + std::vector strides = context.Attr>("strides"); + // Actually, no paddings and groups allowed in conv transpose. + std::vector paddings = context.Attr>("paddings"); + + const int batch_size = input->dims()[0]; + const int m = input->dims()[1]; + const int h = input->dims()[2]; + const int w = input->dims()[3]; + + const int k_h = filter.dims()[2]; + const int k_w = filter.dims()[3]; + + const int c = output_grad->dims()[1]; // output channels + const int o_h = output_grad->dims()[2]; + const int o_w = output_grad->dims()[3]; + + // Only im2col functor required for bp to get to the right shape + paddle::operators::math::Im2ColFunctor< + paddle::operators::math::ColFormat::kCFO, Place, T> + im2col; + + // use col_shape in the im2col and col2im calculation + DDim col_shape = {c, k_h, k_w, h, w}; + + // use col_matrix_shape in the gemm calculation + DDim col_matrix_shape_f = {c * h * w, k_h * k_w}; + + Tensor col; + col.mutable_data(col_shape, context.GetPlace()); + // col_matrix shares the same piece of data with col, + // but will be reshaped into a two-dimensional matrix shape + // to call the matrix multiplication interface. + + DDim output_shape = {c, o_h, o_w}; + DDim input_matrix_shape = {m, h * w}; + + DDim filter_matrix_shape = {m, c * k_h * k_w}; + filter.Resize(filter_matrix_shape); + + // convolution transpose grad on input: + // im2col + gemm (similar to conv-forward) + // input need to compute gradient + if (input_grad) { + Tensor col_matrix; + col_matrix.ShareDataWith(col); + DDim col_matrix_shape = {c * k_h * k_w, h * w}; + col_matrix.Resize(col_matrix_shape); + + input_grad->mutable_data(context.GetPlace()); + auto t = framework::EigenVector::Flatten(*input_grad); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); + + for (int i = 0; i < batch_size; i++) { + // batch with size (c, o_h * o_w) + Tensor output_grad_batch = + output_grad->Slice(i, i + 1).Resize(output_shape); + // filter of size (m, c * k_h * k_w) + + // batch with size (m, h, w) + Tensor input_grad_batch = + input_grad->Slice(i, i + 1).Resize(input_matrix_shape); + + // im2col: dy from (c, o_h, o_w) -> (c * k_h * k_w, h * w) + im2col(context.device_context(), output_grad_batch, col, strides[0], + strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); + + // gemm: dx = filter * dy + // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h) + math::matmul(context.device_context(), filter, false, + col_matrix, false, T(1.0), &input_grad_batch, + T(0.0)); + } + } + + // filter gradient required + if (filter_grad) { + Tensor col_matrix_f; + col_matrix_f.ShareDataWith(col); + DDim col_matrix_shape_f = {c * h * w, k_h * k_w}; + col_matrix_f.Resize(col_matrix_shape_f); + + filter_grad->mutable_data(context.GetPlace()); + Tensor filter_grad_ = *filter_grad; + filter_grad_.Resize(filter_matrix_shape); + auto t = framework::EigenVector::Flatten(filter_grad_); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); + + for (int i = 0; i < batch_size; ++i) { + // batch with size (c, o_h, o_w) + Tensor output_grad_batch = + output_grad->Slice(i, i + 1).Resize(output_shape); + // input batch + Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); + + // im2col: (c * h * w, k_h * k_w) + im2col(context.device_context(), output_grad_batch, col, strides[0], + strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); + + // gemm: d_filter = x * y_grad^T + // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h) + math::matmul(context.device_context(), in_batch, false, + col_matrix_f, true, T(1.0), &filter_grad_, + T(1.0)); + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc index a994d916761da3b44cb60bd4c1c767cd1987522f..ed78e9e3a3a49b7ff0990b8d13cfe2dae594b722 100644 --- a/paddle/operators/crop_op.cc +++ b/paddle/operators/crop_op.cc @@ -59,7 +59,8 @@ class CropOpMaker : public framework::OpProtoAndCheckerMaker { "The input should be a k-D tensor(k > 0 and k < 7)"); AddInput("Y", "The input used as reference for cropping" - " with the same dimension as X. "); + " with the same dimension as X. ") + .AsDispensable(); AddOutput("Out", "The output of crop op " "with the same dimension as X."); diff --git a/paddle/operators/dynamic_recurrent_op.cc b/paddle/operators/dynamic_recurrent_op.cc index 03f33e28d49fdaeccb9b6266359e0b41a1cb847f..a0b06ac1dc305bc899f9abaafcc980a6150ecda9 100644 --- a/paddle/operators/dynamic_recurrent_op.cc +++ b/paddle/operators/dynamic_recurrent_op.cc @@ -23,6 +23,7 @@ using framework::Scope; using framework::TensorArray; using framework::LoDTensor; using framework::Variable; +using framework::OperatorBase; using framework::DySeqMetaBatch; namespace detail { @@ -43,72 +44,72 @@ inline void CreateVariables(Scope& scope, * be reordered, but the RNN op should not change the `boot_state` as an input * variable's content. */ -template -inline void ReorderBootState(const DySeqMetaBatch& metas, - const LoDTensor& boot_state, LoDTensor* tensor, - const platform::Place& dst_place) { +inline void ReorderInitialState(const DySeqMetaBatch& metas, + const LoDTensor& boot_state, LoDTensor* tensor, + const platform::Place& dst_place) { for (size_t seq_id = 0; seq_id < metas.size(); seq_id++) { - auto slice = tensor->Slice(seq_id, seq_id + 1); + auto slice = tensor->Slice(seq_id, seq_id + 1); auto boot_slice = - boot_state.Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); + boot_state.Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); // TODO(superjom) pass in device context as an argument - slice.template CopyFrom(boot_slice, dst_place, - platform::CPUDeviceContext()); + slice.CopyFrom(boot_slice, dst_place, platform::CPUDeviceContext()); } } -} // namespace detail - -class DynamicRecurrentOpProtoAndCheckerMaker - : public framework::OpProtoAndCheckerMaker { - public: - DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - const auto& name = DynamicRecurrentOp::kArgName; - // inputs and outputs stored in proto - AddInput(name.inlinks, - "the inputs that need to be segmented for each step.") - .AsDuplicable(); - AddInput(name.boot_memories, "variables to initialize memories.") - .AsDuplicable(); - - AddOutput(name.outlinks, "the outputs that need to concated for all steps.") - .AsDuplicable(); - AddOutput(name.step_scopes, "step scopes"); - - // Attributes stored in AttributeMap - AddAttr>(name.pre_memories, - "names of pre-memories"); - AddAttr>(name.memories, "names of memories"); - - AddComment("This is a RNN operator for varience-length sequences."); +inline void RestoreInitialState(const DySeqMetaBatch& metas, + const LoDTensor& tensor, LoDTensor* boot_state, + const platform::Place& dst_place) { + for (size_t seq_id = 0; seq_id < metas.size(); seq_id++) { + auto slice = tensor.Slice(seq_id, seq_id + 1); + auto boot_slice = + boot_state->Slice(metas[seq_id].ori_idx, metas[seq_id].ori_idx + 1); + boot_slice.CopyFrom(slice, dst_place, platform::CPUDeviceContext()); } -}; +} -void DynamicRecurrentOp::Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const { - cache_.Init(kArgName, *this, scope, &arg_); +} // namespace detail + +// Implementation for forward propagation. +template <> +void RNNAlgorithm::Run( + const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx) { + SetComputeMode(ComputeMode::kForward); + cache_.Init(kArgNames[mode_], op, scope, &dev_ctx, &arg_); SplitInputs(); CreateScopes(); WriteStepInputs(); InitStates(); WriteStepOutputs(); + RunSteps(); + ConcatOutputs(); +} - // call stepnet in all the time steps - for (size_t step = 0; step < cache_.num_steps; step++) { - auto& step_scope = cache_.GetScope(step); - stepnet_->Run(step_scope, dev_ctx); +// Implementation for backward propagation. +template <> +void RNNAlgorithm::Run( + const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx) { + SetComputeMode(ComputeMode::kBackward); + cache_.Init(kArgNames[mode_], op, scope, &dev_ctx, &arg_); + SplitInputs(); + WriteStepInputs(); + InitStates(); + WriteStepOutputs(); + RunSteps(); + // copy boot-states' gradients back. + for (const auto& state : arg_.states) { + ExportInitialStateGradient(state); } ConcatOutputs(); } -void DynamicRecurrentOp::SplitInputs() const { +void RNNAlgorithm::SplitInputs() { // TODO(superjom) make level a config // TODO(superjom) check all the inputs has the same LoD int level = 0; - for (const auto& item : cache_.inlinks) { + for (const auto& item : cache_.inputs) { const auto& var = item.second; const auto& tensor = var->Get(); TensorArray& ta = step_inputs_[item.first]; @@ -125,8 +126,8 @@ void DynamicRecurrentOp::SplitInputs() const { } } -void DynamicRecurrentOp::WriteStepInputs() const { - for (const auto& item : cache_.inlinks) { +void RNNAlgorithm::WriteStepInputs() { + for (const auto& item : cache_.inputs) { auto ta_it = step_inputs_.find(item.first); PADDLE_ENFORCE(ta_it != step_inputs_.end(), "step_inputs_ not compatible with memory set"); @@ -138,20 +139,20 @@ void DynamicRecurrentOp::WriteStepInputs() const { if (var == nullptr) { var = step_scope.Var(item.first); } - var->GetMutable()->ShareDataWith(tensor); + var->GetMutable()->ShareDataWith(tensor); } } } -void DynamicRecurrentOp::WriteStepOutputs() const { +void RNNAlgorithm::WriteStepOutputs() { // initialize step outputs - for (const auto& item : cache_.outlinks) { + for (const auto& item : cache_.outputs) { step_outputs_.emplace(item.first, TensorArray()); } PADDLE_ENFORCE_GT(step_outputs_.size(), 0UL); } -void DynamicRecurrentOp::CreateScopes() const { +void RNNAlgorithm::CreateScopes() { PADDLE_ENFORCE_GT(cache_.num_steps, 0); // resize scopes size_t num_scopes_need_create = cache_.num_steps - cache_.scopes->size(); @@ -160,19 +161,19 @@ void DynamicRecurrentOp::CreateScopes() const { } // init temporary inputs - PADDLE_ENFORCE_NOT_NULL(stepnet_, "stepnet should be set first"); - std::vector memories; - std::vector pre_memories; - std::vector stepnet_outputs; - std::transform(arg_.memories.begin(), arg_.memories.end(), - std::back_inserter(memories), - [](const rnn::MemoryAttr& m) { return m.var; }); - std::transform(arg_.memories.begin(), arg_.memories.end(), - std::back_inserter(pre_memories), - [](const rnn::MemoryAttr& m) { return m.pre_var; }); - for (const auto& item : stepnet_->Outputs()) { + PADDLE_ENFORCE_NOT_NULL(step_unit_, "stepnet should be set first"); + std::vector states; + std::vector ex_states; + std::vector step_unit_outputs; + std::transform(arg_.states.begin(), arg_.states.end(), + std::back_inserter(states), + [](const rnn::StateAttr& m) { return m.var; }); + std::transform(arg_.states.begin(), arg_.states.end(), + std::back_inserter(ex_states), + [](const rnn::StateAttr& m) { return m.pre_var; }); + for (const auto& item : step_unit_->Outputs()) { for (const auto& var : item.second) { - stepnet_outputs.push_back(var); + step_unit_outputs.push_back(var); } } @@ -180,13 +181,13 @@ void DynamicRecurrentOp::CreateScopes() const { auto& scope = cache_.GetScope(step); detail::CreateVariables(scope, arg_.inlinks); detail::CreateVariables(scope, arg_.outlinks); - detail::CreateVariables(scope, memories); - detail::CreateVariables(scope, pre_memories); - detail::CreateVariables(scope, stepnet_outputs); + detail::CreateVariables(scope, states); + detail::CreateVariables(scope, ex_states); + detail::CreateVariables(scope, step_unit_outputs); } } -void DynamicRecurrentOp::ConcatOutputs() const { +void RNNAlgorithm::ConcatOutputs() { // TODO(superjom) transform this to a config int level = 0; for (size_t step = 0; step < cache_.num_steps; step++) { @@ -199,31 +200,45 @@ void DynamicRecurrentOp::ConcatOutputs() const { item.second.WriteShared(step, *tensor); } } - // the inlinks' lods should be the same, so randomly get one lod. + // the inputs' lods should be the same, so randomly get one lod. const auto& some_lod = cache_.scope->FindVar(arg_.inlinks.front())->Get().lod(); const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; for (auto& item : step_outputs_) { auto tensor = item.second.Pack(level, some_meta, some_lod); - auto* output = cache_.outlinks[item.first]->GetMutable(); - const_cast(output)->ShareDataWith(tensor); + auto* output = cache_.outputs[item.first]->GetMutable(); + const_cast(output)->ShareDataWith(tensor); + } +} + +void RNNAlgorithm::RunSteps() { + if (IsBackward()) { + // call stepnet in all the time steps reversely + for (int step = cache_.num_steps - 1; step >= 0; step--) { + auto& step_scope = cache_.GetScope(step); + step_unit_->Run(step_scope, *cache_.dev_ctx); + } + } else { + for (size_t step = 0; step < cache_.num_steps; step++) { + auto& step_scope = cache_.GetScope(step); + step_unit_->Run(step_scope, *cache_.dev_ctx); + } } } -void DynamicRecurrentOp::InitStates() const { +void RNNAlgorithm::InitStates() { for (size_t step = 0; step < cache_.num_steps; step++) { - for (const auto& memory : arg_.memories) { - CreateState(memory, step); - LinkState(memory, step); + for (const auto& state : arg_.states) { + CreateState(state, step); + LinkState(state, step); } } } -void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory, - size_t step) const { +void RNNAlgorithm::CreateState(const rnn::StateAttr& state_attr, size_t step) { auto& scope = cache_.GetScope(step); - auto& state = *cache_.GetTensor(scope, memory.var); - auto& boot_state = *cache_.GetTensor(*cache_.scope, memory.boot_var); + auto& state = *cache_.GetTensor(scope, state_attr.var); + auto& boot_state = *cache_.GetTensor(*cache_.scope, state_attr.boot_var); size_t num_instances = step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; @@ -232,56 +247,79 @@ void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory, state.Resize(dims); state.mutable_data(platform::CPUPlace()); - states_[memory.var].WriteShared(step, state); + states_[state_attr.var].WriteShared(step, state); } -void DynamicRecurrentOp::LinkState(const rnn::MemoryAttr& memory, - size_t step) const { +void RNNAlgorithm::LinkState(const rnn::StateAttr& state, size_t step) { auto& scope = cache_.GetScope(step); - auto& state_pre = *cache_.GetTensor(scope, memory.pre_var); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + + // process the first state's boot-state(the 0-step in forward mode or the + // last step in backward mode) + // Only forward mode need to link the boot-state to the `pre-state` in first + // time step. In backward mode, need to copy the gradient of `pre-state` in + // first time step to the gradient of `boot-state`. + if (step == 0 && IsForward()) { + LinkInitialState(state); + } else { + size_t num_instances = + step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; + auto* pre_state = cache_.GetTensor(cache_.GetScope(step - 1), state.var); + // shink and share from previous state + auto shrinked_pre_state = pre_state->Slice(0, num_instances); + state_pre.ShareDataWith(shrinked_pre_state); + } +} +void RNNAlgorithm::LinkInitialState(const rnn::StateAttr& state) { // all the step_inputs' metas should be the same, just randomly select one // and get the dyseq meta. const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; - size_t num_instances = - step_inputs_[arg_.inlinks.front()].Read(step).dims()[0]; + auto& scope = cache_.GetScope(0); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + auto* pre_state = cache_.GetTensor(*cache_.scope, state.boot_var); + pre_state->mutable_data(platform::CPUPlace()); + // allocate state + state_pre.Resize(pre_state->dims()); + state_pre.mutable_data(platform::CPUPlace()); + detail::ReorderInitialState(some_meta, *pre_state, &state_pre, + pre_state->place()); +} - LoDTensor* pre_state{nullptr}; - if (step == 0) { - pre_state = cache_.GetTensor(*cache_.scope, memory.boot_var); - pre_state->mutable_data(platform::CPUPlace()); - // allocate memory - state_pre.Resize(pre_state->dims()); - state_pre.mutable_data(platform::CPUPlace()); - detail::ReorderBootState(some_meta, *pre_state, &state_pre, - pre_state->place()); - } else { - pre_state = cache_.GetTensor(cache_.GetScope(step - 1), memory.var); - } +void RNNAlgorithm::ExportInitialStateGradient(const rnn::StateAttr& state) { + // all the step_inputs' metas should be the same, just randomly select one + // and get the dyseq meta. + const auto& some_meta = dy_seq_metas_[arg_.inlinks.front()]; + auto& scope = cache_.GetScope(0); - // shink and share from previous state - auto shrinked_pre_state = pre_state->Slice(0, num_instances); - state_pre.ShareDataWith(shrinked_pre_state); + auto& state_pre = *cache_.GetTensor(scope, state.pre_var); + auto& pre_state = *cache_.GetTensor(*cache_.scope, state.boot_var); + pre_state.Resize(state_pre.dims()); + detail::RestoreInitialState(some_meta, state_pre, &pre_state, + pre_state.place()); } -void DynamicRecurrentOp::ArgCache::Init( - const rnn::ArgumentName& name, const paddle::framework::OperatorBase& op, - const paddle::framework::Scope& scope, rnn::Argument* arg) { +void RNNAlgorithm::ArgCache::Init(const rnn::ArgumentName& name, + const paddle::framework::OperatorBase& op, + const paddle::framework::Scope& scope, + platform::DeviceContext const* dev_ctx, + rnn::Argument* arg) { this->scope = &scope; InitArgument(name, op, arg); CacheScopes(scope, *arg); CacheInlinks(scope, arg->inlinks); CacheOutlinks(scope, arg->outlinks); + this->dev_ctx = dev_ctx; } -void DynamicRecurrentOp::ArgCache::InitArgument(const rnn::ArgumentName& name, - const OperatorBase& op, - rnn::Argument* arg) { +void RNNAlgorithm::ArgCache::InitArgument(const rnn::ArgumentName& name, + const OperatorBase& op, + rnn::Argument* arg) { rnn::InitArgument(name, arg, op, false /*is_grad*/); } -void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope, - const rnn::Argument& arg) { +void RNNAlgorithm::ArgCache::CacheScopes(const Scope& scope, + const rnn::Argument& arg) { auto scopes_var = scope.FindVar(arg.step_scopes); PADDLE_ENFORCE(scopes_var != nullptr, "the step_scopes output argument [%s] should be created first " @@ -290,45 +328,85 @@ void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope, this->scopes = scopes_var->GetMutable>(); } -void DynamicRecurrentOp::ArgCache::CacheInlinks( +void RNNAlgorithm::ArgCache::CacheInlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); - inlinks[name] = var; + inputs[name] = var; } } -void DynamicRecurrentOp::ArgCache::CacheOutlinks( +void RNNAlgorithm::ArgCache::CacheOutlinks( const Scope& scope, const std::vector& names) { for (auto name : names) { auto* var = GetVariable(scope, name); - outlinks[name] = var; + outputs[name] = var; } } -Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope, - const std::string& name) { +Variable* RNNAlgorithm::ArgCache::GetVariable(const Scope& scope, + const std::string& name) { auto* var = scope.FindVar(name); PADDLE_ENFORCE_NOT_NULL(var, "variable [%s] not exist in scope", name); return var; } -LoDTensor* DynamicRecurrentOp::ArgCache::GetTensor( - const framework::Scope& scope, const std::string& name) { +LoDTensor* RNNAlgorithm::ArgCache::GetTensor(const framework::Scope& scope, + const std::string& name) { auto* var = GetVariable(scope, name); return var->GetMutable(); } -const rnn::ArgumentName DynamicRecurrentOp::kArgName{ - "step_net", "step_scopes", "inlinks", "outlinks", - "memories", "pre_memories", "boot_memories"}; +const std::array RNNAlgorithm::kArgNames{ + {rnn::ArgumentName{"step_unit", "step_scopes", "inputs", "outputs", + "states", "ex_states", "initial_states"}, + rnn::ArgumentName{"step_unit", "step_scopes@GRAD", "outputs@GRAD", + "inputs@GRAD", "states", "ex_states", + "initial_states@GRAD"}}}; + +void DynamicRecurrentOp::Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const { + rnn.Run( + scope, *dynamic_cast(this), dev_ctx); +} void DynamicRecurrentGradientOp::Run( - const Scope& scope, const platform::DeviceContext& dev_ctx) const {} + const Scope& scope, const platform::DeviceContext& dev_ctx) const { + rnn.Run( + scope, *dynamic_cast(this), dev_ctx); +} + +class DynamicRecurrentOpProtoAndCheckerMaker + : public framework::OpProtoAndCheckerMaker { + public: + DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + const auto& name = + RNNAlgorithm::kArgNames[RNNAlgorithm::ComputeMode::kForward]; + // inputs and outputs stored in proto + AddInput(name.inlinks, + "the inputs that need to be segmented for each step.") + .AsDuplicable(); + AddInput(name.initial_states, "variables to initialize states.") + .AsDuplicable(); + + AddOutput(name.outlinks, "the outputs that need to concated for all steps.") + .AsDuplicable(); + AddOutput(name.step_scopes, "step scopes"); + + // Attributes stored in AttributeMap + AddAttr>(name.ex_states, "names of ex_states"); + AddAttr>(name.states, "names of states"); + + AddComment("This is a RNN operator for varience-length sequences."); + } +}; } // namespace operators } // namespace paddle -REGISTER_OP_WITHOUT_GRADIENT( - dynamic_recurrent, paddle::operators::DynamicRecurrentOp, - paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker); +REGISTER_OP(dynamic_recurrent, paddle::operators::DynamicRecurrentOp, + paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker, + dynamic_recurrent_grad, + paddle::operators::DynamicRecurrentGradientOp); diff --git a/paddle/operators/dynamic_recurrent_op.h b/paddle/operators/dynamic_recurrent_op.h index ec80a1c90eee3a655febe0dd3d6c67c16ec6c64b..5b0548c3a44c9f58838ecc567ee41a587883c26a 100644 --- a/paddle/operators/dynamic_recurrent_op.h +++ b/paddle/operators/dynamic_recurrent_op.h @@ -27,47 +27,39 @@ namespace paddle { namespace operators { -class DynamicRecurrentOp : public framework::OperatorBase { +class RNNAlgorithm { public: - static const rnn::ArgumentName kArgName; + enum ComputeMode { kForward = 0, kBackward = 1 }; + static const std::array kArgNames; using value_type = float; - DynamicRecurrentOp(const std::string& type, - const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) {} - - DynamicRecurrentOp(const DynamicRecurrentOp& o) - : framework::OperatorBase( - static_cast(o)) { - // TODO(yuyang18): Implement copy ctor well. - PADDLE_THROW("Not implemented"); - } - - void Run(const framework::Scope& scope, - const platform::DeviceContext& dev_ctx) const override; - + /* + * Different `Run` method for forward and backward, `_` is just for template + * specifialization. + */ + template + void Run(const framework::Scope& scope, const framework::OperatorBase& op, + const platform::DeviceContext& dev_ctx); /* * Split the inputs(LoDTensors) to segments for each time step. */ - void SplitInputs() const; + void SplitInputs(); /* * Create step-scopes to store temporary outputs in each time steps. */ - void CreateScopes() const; + void CreateScopes(); /* * Link TensorArray steps to the corresponding variables located in * step-scopes. */ - void WriteStepInputs() const; + void WriteStepInputs(); /* * Write output of each step to the corresponding TensorArray. */ - void WriteStepOutputs() const; + void WriteStepOutputs(); /* * Initialize the states, each state will have a corresponding pre-state, @@ -75,54 +67,83 @@ class DynamicRecurrentOp : public framework::OperatorBase { * pre-state in the first time step will be initialized with an zero tensor or * a tensor in parent scope if is provided. */ - void InitStates() const; + void InitStates(); /* * Create state variables for each time step. */ - void CreateState(const rnn::MemoryAttr& memory, size_t step) const; + void CreateState(const rnn::StateAttr& state, size_t step); /* * Link pre-state variable in current scope to the state variable in the - * previous time step (scope). + * previous time step (scope) by reference. + */ + void LinkState(const rnn::StateAttr& state, size_t step); + + /* + * Link the pre-state of the first time step to the `boot-state` in parent's + * scope. + */ + void LinkInitialState(const rnn::StateAttr& state); + + /* + * Copy the gradient from `pre-state` in the first step-scope to the + * `boot-state` in parent's scope. + */ + void ExportInitialStateGradient(const rnn::StateAttr& state); + + /* + * Calculate time steps. */ - void LinkState(const rnn::MemoryAttr& memory, size_t step) const; + void RunSteps(); /* * Concatenate outputs in each time step and generate a LoDTensor. */ - void ConcatOutputs() const; + void ConcatOutputs(); + + void SetComputeMode(ComputeMode mode) { mode_ = mode; } + bool IsForward() const { return mode_ == ComputeMode::kForward; } + bool IsBackward() const { return mode_ == ComputeMode::kBackward; } /* - * set a stepnet that is created according to a RecurrentOp's stepnet. + * set a step unit that is created according to a RecurrentOp's step unit. */ - void SetStepNet(std::unique_ptr net) { - PADDLE_ENFORCE_NOT_NULL(net); - stepnet_ = std::move(net); + void SetStepUnit(std::unique_ptr step_unit) { + PADDLE_ENFORCE_NOT_NULL(step_unit); + step_unit_ = std::move(step_unit); } - const OperatorBase& GetStepNet() const { return *stepnet_; } + const framework::OperatorBase& GetStepUnit() const { return *step_unit_; } const framework::TensorArray& state(const std::string& name) const { - return states_[name]; + auto it = states_.find(name); + PADDLE_ENFORCE(it != states_.end()); + return it->second; } const framework::TensorArray& step_input(const std::string& name) const { - return step_inputs_[name]; + auto it = step_inputs_.find(name); + PADDLE_ENFORCE(it != step_inputs_.end()); + return it->second; } const framework::TensorArray& step_output(const std::string& name) const { - return step_outputs_[name]; + auto it = step_outputs_.find(name); + PADDLE_ENFORCE(it != step_outputs_.end()); + return it->second; } protected: struct ArgCache { framework::Scope const* scope; std::vector* scopes; - std::map inlinks; - std::map outlinks; + std::map inputs; + std::map outputs; + platform::DeviceContext const* dev_ctx; size_t num_steps{0}; - void Init(const rnn::ArgumentName& name, const OperatorBase& op, - const framework::Scope& scope, rnn::Argument* arg); + void Init(const rnn::ArgumentName& name, const framework::OperatorBase& op, + const framework::Scope& scope, + platform::DeviceContext const* dev_ctx, rnn::Argument* arg); framework::Scope& GetScope(size_t index) { PADDLE_ENFORCE_LT(index, num_steps); @@ -133,8 +154,8 @@ class DynamicRecurrentOp : public framework::OperatorBase { const std::string& name); private: - void InitArgument(const rnn::ArgumentName& name, const OperatorBase& op, - rnn::Argument* arg); + void InitArgument(const rnn::ArgumentName& name, + const framework::OperatorBase& op, rnn::Argument* arg); void CacheScopes(const framework::Scope& scope, const rnn::Argument& arg); void CacheInlinks(const framework::Scope& scope, const std::vector& names); @@ -145,27 +166,49 @@ class DynamicRecurrentOp : public framework::OperatorBase { }; private: - std::unique_ptr stepnet_; - mutable std::map states_; - mutable std::map step_inputs_; - mutable std::map step_outputs_; - mutable std::map> - dy_seq_metas_; - mutable rnn::Argument arg_; - mutable ArgCache cache_; + std::unique_ptr step_unit_; + std::map states_; + std::map step_inputs_; + std::map step_outputs_; + std::map> dy_seq_metas_; + rnn::Argument arg_; + ArgCache cache_; + ComputeMode mode_{ComputeMode::kForward}; #ifdef PADDLE_WITH_TESTING - friend class DynamicRecurrentOpTestHelper; - FRIEND_TEST(DynamicRecurrentOpTestHelper, SplitInputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateCache); - FRIEND_TEST(DynamicRecurrentOpTestHelper, CreateScopes); - FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepInputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, WriteStepOutputs); - FRIEND_TEST(DynamicRecurrentOpTestHelper, InitStates); - FRIEND_TEST(DynamicRecurrentOpTestHelper, ConcatOutputs); + // test forward + friend class RNNAlgorithmTestHelper; + FRIEND_TEST(RNNAlgorithmTestHelper, SplitInputs); + FRIEND_TEST(RNNAlgorithmTestHelper, CreateCache); + FRIEND_TEST(RNNAlgorithmTestHelper, CreateScopes); + FRIEND_TEST(RNNAlgorithmTestHelper, WriteStepInputs); + FRIEND_TEST(RNNAlgorithmTestHelper, WriteStepOutputs); + FRIEND_TEST(RNNAlgorithmTestHelper, InitStates); + FRIEND_TEST(RNNAlgorithmTestHelper, ConcatOutputs); +// TODO(superjom) test backward #endif }; +class DynamicRecurrentOp : public framework::OperatorBase { + public: + DynamicRecurrentOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + DynamicRecurrentOp(const DynamicRecurrentOp& o) + : framework::OperatorBase( + static_cast(o)) { + PADDLE_THROW("Not implemented"); + } + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override; + + mutable RNNAlgorithm rnn; +}; + class DynamicRecurrentGradientOp : public framework::OperatorBase { public: DynamicRecurrentGradientOp(const std::string& type, @@ -174,8 +217,16 @@ class DynamicRecurrentGradientOp : public framework::OperatorBase { const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} + DynamicRecurrentGradientOp(const DynamicRecurrentGradientOp& o) + : framework::OperatorBase( + static_cast(o)) { + PADDLE_THROW("Not implemented"); + } + void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const override; + + mutable RNNAlgorithm rnn; }; } // namespace operators diff --git a/paddle/operators/dynamic_recurrent_op_test.cc b/paddle/operators/dynamic_recurrent_op_test.cc index 83a5ba36d9af2ef81ebcbb33e056de2e0b98cbc1..fff63efb24c70b7e864e2d5b011a22883c13dede 100644 --- a/paddle/operators/dynamic_recurrent_op_test.cc +++ b/paddle/operators/dynamic_recurrent_op_test.cc @@ -43,16 +43,16 @@ LoDTensor* CreateVar(Scope& scope, std::string name, framework::DDim dims, return tensor; } -class DynamicRecurrentOpTestHelper : public ::testing::Test { +class RNNAlgorithmTestHelper : public ::testing::Test { protected: - const rnn::ArgumentName argname = DynamicRecurrentOp::kArgName; + const rnn::ArgumentName argname = RNNAlgorithm::kArgNames[0]; virtual void SetUp() override { CreateGlobalVariables(); auto op_desc = CreateOpDesc(); - op = paddle::framework::OpRegistry::CreateOp(op_desc); - dop = dynamic_cast(op.get()); + op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr); + dop = &(dynamic_cast(op.get())->rnn); InitCacheManually(); InitStepNet(); } @@ -63,20 +63,20 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test { op_desc.set_type("dynamic_recurrent"); OpDescNewVar(argname.inlinks, {"in0"}, op_desc.add_inputs()); - OpDescNewVar(argname.boot_memories, {"boot_mem"}, op_desc.add_inputs()); + OpDescNewVar(argname.initial_states, {"boot_mem"}, op_desc.add_inputs()); OpDescNewVar(argname.step_scopes, {"step_scopes"}, op_desc.add_outputs()); OpDescNewVar(argname.outlinks, {"out0"}, op_desc.add_outputs()); - // set pre-memories + // set pre-states auto pre_memories = op_desc.mutable_attrs()->Add(); - pre_memories->set_name(argname.pre_memories); + pre_memories->set_name(argname.ex_states); pre_memories->set_type(paddle::framework::AttrType::STRINGS); auto pre_memories_item = pre_memories->add_strings(); *pre_memories_item = "mem@pre"; - // set memories + // set states auto memories = op_desc.mutable_attrs()->Add(); - memories->set_name(argname.memories); + memories->set_name(argname.states); memories->set_type(paddle::framework::AttrType::STRINGS); auto memories_item = memories->add_strings(); *memories_item = "mem"; @@ -113,32 +113,33 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test { } void InitCacheManually() { - dop->cache_.Init(DynamicRecurrentOp::kArgName, *dop, scope, &dop->arg_); + dop->cache_.Init(RNNAlgorithm::kArgNames[0], *op, scope, &device_context, + &dop->arg_); } void InitStepNet() { std::unique_ptr stepnet{new NetOp}; dynamic_cast(stepnet.get()) ->AppendOp(std::unique_ptr(new TestOp( - "test", {{"inlinks", {"in0"}}, {"boot_memories", {"boot_mem"}}}, - {{"outlinks", {"out0"}}, {"step_scopes", {"step_scopes"}}}, {}))); - dop->SetStepNet(std::move(stepnet)); + "test", {{"inputs", {"in0"}}, {"initial_states", {"boot_mem"}}}, + {{"outputs", {"out0"}}, {"step_scopes", {"step_scopes"}}}, {}))); + dop->SetStepUnit(std::move(stepnet)); } protected: - DynamicRecurrentOp* dop; + RNNAlgorithm* dop; std::unique_ptr op; paddle::platform::CPUDeviceContext device_context; paddle::framework::Scope scope; }; -TEST_F(DynamicRecurrentOpTestHelper, CreateCache) { +TEST_F(RNNAlgorithmTestHelper, CreateCache) { const rnn::Argument& arg = dop->arg_; ASSERT_EQ(arg.inlinks.size(), 1UL); ASSERT_EQ(arg.outlinks.size(), 1UL); } -TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) { +TEST_F(RNNAlgorithmTestHelper, SplitInputs) { dop->SplitInputs(); auto& in0_ta = dop->step_inputs_["in0"]; ASSERT_EQ(in0_ta.size(), 4UL); @@ -153,14 +154,14 @@ TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) { EXPECT_EQ(batch3.dims()[0], 1); } -TEST_F(DynamicRecurrentOpTestHelper, CreateScopes) { +TEST_F(RNNAlgorithmTestHelper, CreateScopes) { dop->SplitInputs(); dop->CreateScopes(); ASSERT_EQ(dop->cache_.num_steps, 4UL); ASSERT_EQ(dop->cache_.scopes->size(), 4UL); } -TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) { +TEST_F(RNNAlgorithmTestHelper, WriteStepInputs) { dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -173,7 +174,7 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) { } } -TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) { +TEST_F(RNNAlgorithmTestHelper, WriteStepOutputs) { dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -187,11 +188,12 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) { } } -TEST_F(DynamicRecurrentOpTestHelper, ConcatOutputs) { +TEST_F(RNNAlgorithmTestHelper, ConcatOutputs) { // Let's leave this test to python unittest. } -TEST_F(DynamicRecurrentOpTestHelper, InitStates) { +TEST_F(RNNAlgorithmTestHelper, InitStates) { + dop->SetComputeMode(RNNAlgorithm::ComputeMode::kForward); dop->SplitInputs(); dop->CreateScopes(); dop->WriteStepInputs(); @@ -208,12 +210,6 @@ TEST_F(DynamicRecurrentOpTestHelper, InitStates) { auto* boot_state = scope.FindVar("boot_mem"); ASSERT_TRUE(boot_state != nullptr); - - if (step == 0) { - // check pre_state is a reference of boot_state - ASSERT_EQ(boot_state->Get().data(), - pre_state->Get().data()); - } } } diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h index 3eb97f60b59848d23bcd15ea1e3d2f21b721f6a4..488a35aafc8600bb8bb252fc3a5161c72a2f6df1 100644 --- a/paddle/operators/elementwise_op_function.h +++ b/paddle/operators/elementwise_op_function.h @@ -108,7 +108,7 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), "Rank of first input must >= rank of second input.") - if (x_dims == y_dims || product(y_dims) == 1) { + if (x_dims == y_dims) { functor f; f.template Run(x, y, z, ctx); return; @@ -174,12 +174,6 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { return; } - if (product(y_dims) == 1) { - functor1 f; - f(place, x, y, out, dx, dy, dout); - return; - } - int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); diff --git a/paddle/operators/fc_op.cc b/paddle/operators/fc_op.cc deleted file mode 100644 index 7c422c81fc479fa2e317bdee1b66017096381d27..0000000000000000000000000000000000000000 --- a/paddle/operators/fc_op.cc +++ /dev/null @@ -1,200 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/framework/op_registry.h" -#include "paddle/operators/net_op.h" - -namespace paddle { -namespace operators { - -class FCOp : public NetOp { - public: - FCOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - PADDLE_ENFORCE(!Inputs("X").empty(), - "Inputs(X) of FCOp should not be null."); - PADDLE_ENFORCE(!Inputs("W").empty(), - "Inputs(W) of FCOp should not be null."); - PADDLE_ENFORCE(!Outputs("MulOut").empty(), - "Outputs(MulOut) of FCOp should not be null."); - PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName, - "Output(Out) of FCOp should not be null."); - - auto x = Inputs("X"); - auto w = Inputs("W"); - auto mul_out = Outputs("MulOut"); - PADDLE_ENFORCE_EQ( - x.size(), w.size(), - "The size of inputs X(%d) should be the same as that of weights W(%d).", - x.size(), w.size()); - PADDLE_ENFORCE_EQ(mul_out.size(), x.size(), - "The size of intermediate mul_out(%d) should be the same " - "as that of inputs X(%d).", - mul_out.size(), x.size()); - - size_t n = x.size(); - PADDLE_ENFORCE_GE(n, static_cast(1), - "The size of inputs X(%d) should be no less than 1.", n); - - auto x_num_col_dims = Attr>("xNumColDims"); - - // Set all values or set no values (use the default value) - if (!x_num_col_dims.empty()) { - PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n, - "The size of attribute xNumColDims(%d) should be the " - "same as that of inputs X(%d).", - x_num_col_dims.size(), n); - } else { - x_num_col_dims.resize(n); - for (size_t i = 0; i < n; i++) { - x_num_col_dims[i] = 1; - } - } - - // mul_out[i] = X[i] * W[i] - for (size_t i = 0; i < n; i++) { - framework::AttributeMap mul_attr; - mul_attr["x_num_col_dims"] = static_cast(x_num_col_dims[i]); - mul_attr["y_num_col_dims"] = static_cast(1); - AppendOp( - framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, - {{"Out", {mul_out[i]}}}, mul_attr)); - } - - // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1] - auto sum_out = mul_out[0]; - if (n > 1) { - PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName, - "Output(SumOut) of FCOp should not be null when the " - "size of Inputs(X) > 1."); - - sum_out = Output("SumOut"); - AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}}, - {{"Out", {sum_out}}}, {})); - } else { - if (Output("SumOut") != framework::kEmptyVarName) { - this->Rename(Output("SumOut"), framework::kEmptyVarName); - } - } - - // add_out = sum_out + b - auto b = Input("B"); - auto add_out = sum_out; - if (b != framework::kEmptyVarName) { - PADDLE_ENFORCE_NE( - Output("AddOut"), framework::kEmptyVarName, - "Output(AddOut) of FCOp should not be null when Input(B) is set."); - - add_out = Output("AddOut"); - AppendOp(framework::OpRegistry::CreateOp( - "elementwise_add", {{"X", {sum_out}}, {"Y", {Input("B")}}}, - {{"Out", {add_out}}}, {})); - } else { - if (Output("AddOut") != framework::kEmptyVarName) { - this->Rename(Output("AddOut"), framework::kEmptyVarName); - } - } - - auto activation = Attr("activation"); - AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}}, - {{"Y", {Output("Out")}}}, {})); - CompleteAddOp(false); - } -}; - -class FCOpMaker : public framework::OpProtoAndCheckerMaker { - public: - FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", - "(A vector of Tensors) each input Tensor can be of arbitrary " - "dimension, and will be reshaped to a 2-D matrix of size " - "(minibatch, number_of_input_features) according to attribute " - "xNumColDims.") - .AsDuplicable(); - AddInput("W", - "(A vector of Tensors) the weights of FC operator, a " - "vector of 2-D matrix of size " - "(number_of_input_features, number_of_neurons).") - .AsDuplicable(); - AddInput("B", - "(Tensor) the bias of FC operator, a 1-D vector of size " - "number_of_neurons."); - - AddOutput("Out", - "(Tensor) the activated output matrix of FC operator, a 2-D " - "matrix of size (minibatch, number_of_neurons)."); - AddOutput("MulOut", - "(A vector of Tensors) the intermediate outputs of FC operator, " - "each Tensor saving the product of X_i * W_i.") - .AsIntermediate() - .AsDuplicable(); - AddOutput( - "SumOut", - "(Tensor) the intermediate output of FC operator, " - "saving the sum of the products of X and W, that is sum{X_i * W_i}.") - .AsIntermediate(); - AddOutput("AddOut", - "(Tensor) the non-actived output of FC operator, " - "saving sum{X_i * W_i} + B.") - .AsIntermediate(); - AddAttr( - "activation", - "(string, default identity) the activation type of FC operator.") - .SetDefault("identity") - .InEnum({"identity", "sigmoid", "softmax"}); - AddAttr>( - "xNumColDims", - "(std::vector) The inputs Tensors of FC operator can be of " - "more than 2 dimensions. In that case, each input Tensor `X_i` will be " - "reshaped to a 2-D matrix. The matrix's first dimension " - "(the length of column) will be the product of `X_i`'s last " - "`xNumColDims_i` dimensions, that is " - "`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. " - "The matrix's second dimension (the length of row) will be the product " - "of `X_i`'s first `rank - xNumColDims_i` dimensions, that is " - "`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)") - .SetDefault(std::vector{}); - - AddComment(R"DOC( -Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer -in Convolutional Neural Networks. Neurons in a fully connected layer have -full connections to all activations in the previous layer. -It computes an inner product of a set of -learned weights with a matrix multiplication followed by a bias offset -(optionally). - -Equation: - Out = Act(sum_n{X_i * W_i} + B) - -where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K), -usually M is the minibatch size and K is the number of input features. -W_i is a 2-D matrix of size (K x N), where N means the number of neurons -in the fully connected layer. B is a 1-D vector of size N. -Thus, the output Out is a 2-D matrix of size (M x N). -Activation type can be set to `identity` (default), `sigmoid` or `softmax`. - -All the inputs can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD with first input (`X[0]`). -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker); diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index d742bbe51b678fcdaf54826947d29060bf3e4e0d..0f1722a5383c80ff2ede0801d34f22a80fbc6e52 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -26,8 +26,9 @@ class FeedOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto feed_var_name = Input("Input"); + auto feed_var_name = Input("X"); auto *feed_var = scope.FindVar(feed_var_name); + PADDLE_ENFORCE(feed_var != nullptr, "Cannot find feed_var in scope, feed_var_name is %s", feed_var_name); @@ -40,18 +41,32 @@ class FeedOp : public framework::OperatorBase { auto col = Attr("col"); + VLOG(3) << "Feed Var " << feed_var_name << "'s " << col << " column to var" + << out_name; + auto &feed_list = feed_var->Get(); auto &feed_item = feed_list.at(static_cast(col)); auto *out_item = out_var->GetMutable(); - out_item->CopyFromTensor(feed_item, dev_ctx.GetPlace(), dev_ctx); + out_item->CopyFrom(feed_item, dev_ctx.GetPlace(), dev_ctx); out_item->set_lod(feed_item.lod()); } }; +class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { + public: + FeedOpInfoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input of feed op"); + AddOutput("Out", "The output of feed op"); + AddComment("feed op, it should not be configured by users directly"); + AddAttr("col", "column of feed"); + } +}; + } // namespace operators } // namespace paddle -// We do not need to register OpInfoMaker, -// since feed operator will not be used by end users directly REGISTER_OPERATOR(feed, paddle::operators::FeedOp, - paddle::framework::EmptyGradOpMaker); + paddle::framework::EmptyGradOpMaker, + paddle::operators::FeedOpInfoMaker); diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index 55d6ac093959a6e1c11457085a8ebdd8a14adaf3..c35d7d49e31f6ca11e2b37a455af430aac50a232 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -27,7 +27,7 @@ class FetchOp : public framework::OperatorBase { void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto fetch_var_name = Input("Input"); + auto fetch_var_name = Input("X"); auto *fetch_var = scope.FindVar(fetch_var_name); PADDLE_ENFORCE(fetch_var != nullptr, "Cannot find fetch variable in scope, fetch_var_name is %s", @@ -51,14 +51,27 @@ class FetchOp : public framework::OperatorBase { // FIXME(yuyang18): Should we assume the fetch operator always generate // CPU outputs? - dst_item.CopyFromTensor(src_item, platform::CPUPlace(), dev_ctx); + dst_item.CopyFrom(src_item, platform::CPUPlace(), dev_ctx); + dst_item.set_lod(src_item.lod()); + + VLOG(3) << "Fetch variable " << fetch_var_name << " to " << out_name; } }; +class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker { + public: + FetchOpInfoMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input of fetch op"); + AddOutput("Out", "The output of fetch op"); + AddComment("fetch op, it should not be configured by users directly"); + AddAttr("col", "column of fetch"); + } +}; } // namespace operators } // namespace paddle -// We do not need to register OpInfoMaker, -// since fetch operator will not be used by end users directly REGISTER_OPERATOR(fetch, paddle::operators::FetchOp, - paddle::framework::EmptyGradOpMaker); + paddle::framework::EmptyGradOpMaker, + paddle::operators::FetchOpInfoMaker); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index f59f497d9f32069b764a9f777c7e9d6da9cdb108..04dfdf7c48381240108cf924979764966599151f 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -59,7 +59,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { protected: framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { - return static_cast(Attr("data_type")); + return static_cast(ctx.Attr("data_type")); } }; diff --git a/paddle/operators/gru_unit_op.cc b/paddle/operators/gru_unit_op.cc index 72dd841c85ce9934a57263d10c366e679693c471..a596f93769780419d27b7c0b40631d3da78e6700 100644 --- a/paddle/operators/gru_unit_op.cc +++ b/paddle/operators/gru_unit_op.cc @@ -54,8 +54,7 @@ class GRUUnitOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ( weight_width, frame_size * 3, "The shape of Weight matrix must be [frame_size, frame_size * 3]."); - auto bias = Input("Bias"); - if (bias != framework::kEmptyVarName) { + if (ctx->HasInput("Bias")) { auto bias_dims = ctx->GetInputDim("Bias"); int bias_height = bias_dims[0]; int bias_width = bias_dims[1]; @@ -89,7 +88,8 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker { "weights of output candidate with shape [frame_size, frame_size]"); AddInput("Bias", "(Tensor) Bias vector with shape [1, frame_size * 3] concating " - "bias of the update gate, reset gate and output candidate."); + "bias of the update gate, reset gate and output candidate.") + .AsDispensable(); AddOutput("Gate", "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the " "output of update gate, reset gate and output candidate") diff --git a/paddle/operators/identity_op.cc b/paddle/operators/identity_op.cc deleted file mode 100644 index 2cc632205e63abbe412b09af4b894420ac512ec5..0000000000000000000000000000000000000000 --- a/paddle/operators/identity_op.cc +++ /dev/null @@ -1,63 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/net_op.h" -#include "paddle/operators/scale_op.h" - -namespace paddle { -namespace operators { - -// The identity operator is an alias of the scale operator. This is also an -// example for creating an alias for an existing operator. -template -class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { - public: - IdentityOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input tensor of identity operator."); - AddOutput("Y", "The output tensor of identity operator."); - AddComment(R"DOC( -The identity operator is an alias of the scale operator -with the attribute scale fixed to 1.0. -)DOC"); - } -}; - -template -class IdentityOp : public NetOp { - public: - IdentityOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName, - "Input(X) of IdentityOp should not be null."); - PADDLE_ENFORCE_NE(Output("Y"), framework::kEmptyVarName, - "Output(Y) of IdentityOp should not be null."); - - AppendOp(framework::OpRegistry::CreateOp( - "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Y")}}}, - {{"scale", static_cast(1)}})); - CompleteAddOp(false); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; - -REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp, - ops::IdentityOpMaker); diff --git a/paddle/operators/images/batch_norm_fork.dot b/paddle/operators/images/batch_norm_fork.dot new file mode 100644 index 0000000000000000000000000000000000000000..4bc47713cba2cb23f1b34fffe6426ef10ac3a9df --- /dev/null +++ b/paddle/operators/images/batch_norm_fork.dot @@ -0,0 +1,25 @@ +digraph ImageBatchNormForkGragh { + subgraph cluster_before { + Prev [label="...", shape=plaintext]; + Rnn [label="rnn_op", shape=box]; + BatchNorm [label="batch_norm_op", shape=box]; + Fc [label="fc_op", shape=box]; + After [label="...", shape=plaintext]; + Prev -> Rnn -> BatchNorm -> Fc -> After; + label="original"; + } + + subgraph cluster_after { + Prev2 [label="...", shape=plaintext]; + Rnn2 [label="rnn_op", shape=box]; + BatchNorm2_1 [label="train_batch_norm_op", shape=box]; + BatchNorm2_2 [label="infer_batch_norm_op", shape=box]; + Fc2_1 [label="fc_op", shape=box]; + Fc2_2 [label="fc_op", shape=box]; + After2_1 [label="...", shape=plaintext]; + After2_2 [label="...", shape=plaintext]; + Prev2 -> Rnn2 -> BatchNorm2_1 -> Fc2_1 -> After2_1; + Rnn2 -> BatchNorm2_2 ->Fc2_2 ->After2_2 + label="forked"; + } +} diff --git a/paddle/operators/images/batch_norm_fork.png b/paddle/operators/images/batch_norm_fork.png new file mode 100644 index 0000000000000000000000000000000000000000..aded62bce5bc268b7a3ef4dc96c89fe21d6ea955 Binary files /dev/null and b/paddle/operators/images/batch_norm_fork.png differ diff --git a/paddle/operators/images/batch_norm_op_kernel.png b/paddle/operators/images/batch_norm_op_kernel.png new file mode 100644 index 0000000000000000000000000000000000000000..a99ce81ff3bf42880ebbd6a1297de3bf038e09b2 Binary files /dev/null and b/paddle/operators/images/batch_norm_op_kernel.png differ diff --git a/paddle/operators/increment_op.cc b/paddle/operators/increment_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..139392c691e00b2a94f46801f1cfc2018ce139f5 --- /dev/null +++ b/paddle/operators/increment_op.cc @@ -0,0 +1,75 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/increment_op.h" + +namespace paddle { +namespace operators { + +class IncrementOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of IncrementOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of IncrementOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +template +class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { + public: + IncrementOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(Tensor) The input tensor of increment operator"); + AddOutput("Out", "(Tensor) The output tensor of increment operator."); + AddComment(R"DOC(Increment operator + +The equation is: Out = X + step +)DOC"); + AddAttr("step", + "The step size by which the " + "input tensor will be incremented.") + .SetDefault(1.0); + } +}; + +class IncrementGradOpMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDescBind(); + grad_op->SetType("scale"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttr("scale", 1.0f); + return std::unique_ptr(grad_op); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementOpMaker, + ops::IncrementGradOpMaker); +REGISTER_OP_CPU_KERNEL(increment, + ops::IncrementKernel); diff --git a/paddle/operators/increment_op.cu b/paddle/operators/increment_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..659c380d147a36650452bea23b30cbcf1ff516ee --- /dev/null +++ b/paddle/operators/increment_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/increment_op.h" + +REGISTER_OP_GPU_KERNEL( + increment, + paddle::operators::IncrementKernel); diff --git a/paddle/operators/increment_op.h b/paddle/operators/increment_op.h new file mode 100644 index 0000000000000000000000000000000000000000..342e254fc453555c70923efbca02fdfd014af015 --- /dev/null +++ b/paddle/operators/increment_op.h @@ -0,0 +1,40 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { +template +class IncrementKernel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& context) const { + auto* tensor = context.Output("Out"); + auto* in = context.Input("X"); + tensor->mutable_data(in->place()); + + auto step = static_cast(context.Attr("step")); + + auto eigen_out = framework::EigenVector::Flatten(*tensor); + auto eigen_in = framework::EigenVector::Flatten(*in); + auto& place = context.GetEigenDevice(); + eigen_out.device(place) = eigen_in + step; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/interp_op.cc b/paddle/operators/interp_op.cc deleted file mode 100644 index d02b01c3f3a1b30ec27253140203b076a98ce0c2..0000000000000000000000000000000000000000 --- a/paddle/operators/interp_op.cc +++ /dev/null @@ -1,113 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/framework/op_registry.h" -#include "paddle/operators/net_op.h" - -namespace paddle { -namespace operators { - -class InterpOp : public NetOp { - public: - InterpOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : NetOp(type, inputs, outputs, attrs) { - PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName, - "Input(X) of InterpOp should not be null."); - PADDLE_ENFORCE_NE(Input("Y"), framework::kEmptyVarName, - "Input(Y) of InterpOp should not be null."); - PADDLE_ENFORCE_NE(Input("W"), framework::kEmptyVarName, - "Input(W) of InterpOp should not be null."); - PADDLE_ENFORCE_NE(Output("SubOut"), framework::kEmptyVarName, - "Output(SubOut) of InterpOp should not be null."); - PADDLE_ENFORCE_NE(Output("MulOut"), framework::kEmptyVarName, - "Output(MulOut) of InterpOp should not be null."); - PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName, - "Output(Out) of InterpOp should not be null."); - - // SubOut = X - Y - auto x = Input("X"); - auto y = Input("Y"); - auto sub_out = Output("SubOut"); - AppendOp(framework::OpRegistry::CreateOp( - "elementwise_sub", {{"X", {x}}, {"Y", {y}}}, {{"Out", {sub_out}}}, {})); - - // MulOut = SubOut * W = (X - Y) * W - auto w = Input("W"); - auto mul_out = Output("MulOut"); - AppendOp(framework::OpRegistry::CreateOp( - "elementwise_mul", {{"X", {sub_out}}, {"Y", {w}}}, {{"Out", {mul_out}}}, - {{"axis", 0}})); - - // Out = MulOut + Y = (X - Y) * W + Y = X * W + Y * (1 - W) - AppendOp(framework::OpRegistry::CreateOp("elementwise_add", - {{"X", {mul_out}}, {"Y", {y}}}, - {{"Out", {Output("Out")}}}, {})); - - CompleteAddOp(false); - } -}; - -class InterpOpMaker : public framework::OpProtoAndCheckerMaker { - public: - InterpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", - "(Tensor), 2-D Matrix of shape [batch_size, data_dim]" - "containing data samples, the first input of interp_op"); - AddInput("Y", - "(Tensor), 2-D Matrix of shape `[batch_size, data_dim]`" - "containing data samples, the second input of interp_op"); - AddInput("W", - "(Tensor), 1-D Vector of shape [batch_size]," - "the interpolated values in the half-open interval [0.0, 1.0)"); - AddOutput("SubOut", - "(Tensor), the intermediate subtraction outputs, saving X - Y.") - .AsIntermediate(); - AddOutput("MulOut", - "(Tensor), the intermediate multiplication outputs," - "saving the elementwise multiplication of (X - Y) and W.") - .AsIntermediate(); - AddOutput("Out", - "(Tensor), the output of interp_op, same shape with X," - "returns the first-dimensional piecewise linear interpolant " - "between X and Y"); - AddComment(R"DOC( - Linear Interpolation with two inputs, used in NEURAL TURING MACHINE. - - Equation: - Out.row[i] = X.row[i] * W[i] + Y.row[i] * (1 - W[i]) - = (X.row[i] - Y.row[i]) * W[i] + Y.row[i] - - Example: - X = [[1,2],[3,4]], - Y = [[2,1],[4,3]], - W = [0.3, 0.4] - - Then, Out = [[1.7,1.3],[3.6,3.4]] - - where 1.7 = 1*0.3+2*(1-0.3), - 1.3 = 2*0.3+1*(1-0.3), - 3.6 = 3*0.4+4*(1-0.4), - 3.4 = 4*0.4+3*(1-0.4) -)DOC"); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(interp, ops::InterpOp, ops::InterpOpMaker); diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index b88cd14d78f616b0e57386ab891dad1a872bfe65..ad86a2e5bc23b2b0ea853971cf79dec745e9706a 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -32,6 +32,9 @@ class LookupTableOp : public framework::OperatorWithKernel { auto table_dims = ctx->GetInputDim("W"); auto ids_dims = ctx->GetInputDim("Ids"); + PADDLE_ENFORCE_EQ(ids_dims.size(), 2); + PADDLE_ENFORCE_EQ(ids_dims[1], 1); + ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]}); ctx->ShareLoD("Ids", /*->*/ "Out"); } @@ -53,7 +56,9 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { " which is a learnable parameter."); AddInput("Ids", "An input with type int32 or int64" - "contains the ids to be looked up in W."); + "contains the ids to be looked up in W." + "Ids must be a column vector with rank = 2." + "The 2nd dimension size must be 1"); AddOutput("Out", "The lookup results, which have the same type with W."); AddComment(R"DOC( This operator is used to perform lookups on the parameter W, diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0a089b7c2dc1e05224525bc4fe5399ec39036d01 --- /dev/null +++ b/paddle/operators/lstm_op.cc @@ -0,0 +1,226 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/lstm_op.h" + +namespace paddle { +namespace operators { + +class LSTMOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Input"), + "Input(Input) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Hidden"), + "Output(Hidden) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Cell"), + "Output(Cell) of LSTM should not be null."); + + auto x_dims = ctx->GetInputDim("Input"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); + + if (ctx->HasInput("H0")) { + PADDLE_ENFORCE(ctx->HasInput("C0"), + "Input(Cell) and Input(Hidden) of LSTM should not " + "be null at the same time."); + auto h_dims = ctx->GetInputDim("H0"); + auto c_dims = ctx->GetInputDim("C0"); + PADDLE_ENFORCE(h_dims == c_dims, + "The dimension of Input(H0) and Input(C0) " + "should be the same."); + } + + int frame_size = x_dims[1] / 4; + auto w_dims = ctx->GetInputDim("Weight"); + PADDLE_ENFORCE_EQ(w_dims.size(), 2, + "The rank of Input(Weight) should be 2."); + PADDLE_ENFORCE_EQ(w_dims[0], frame_size, + "The first dimension of Input(Weight) " + "should be %d.", + frame_size); + PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size, + "The second dimension of Input(Weight) " + "should be 4 * %d.", + frame_size); + auto b_dims = ctx->GetInputDim("Bias"); + PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2."); + PADDLE_ENFORCE_EQ(b_dims[0], 1, + "The first dimension of Input(Bias) should be 1."); + if (ctx->Attrs().Get("usePeepholes")) { + PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size, + "The second dimension of Input(Bias) should be " + "7 * %d if enable peepholes connection", + frame_size); + } else { + PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size, + "The second dimension of Input(Bias) should be " + "4 * %d if disable peepholes connection", + frame_size); + } + ctx->SetOutputDim("Hidden", {x_dims[0], frame_size}); + ctx->SetOutputDim("Cell", {x_dims[0], frame_size}); + ctx->SetOutputDim("BatchGate", x_dims); + ctx->ShareLoD("Input", "Hidden"); + ctx->ShareLoD("Input", "Cell"); + } +}; + +class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Input", + "(LoDTensor) the first input is a LodTensor, which support " + "variable-time length input sequence. The underlying tensor in " + "this LoDTensor is a matrix with shape (T X 4D), where, T is the " + "total time steps in this mini-batch, D is the hidden size."); + AddInput("H0", + "(Tensor, optional) the initial hidden state is an optional " + "input. This is a tensor with shape (N x D), where N is the " + "batch size, D is the hidden size."); + AddInput("C0", + "(Tensor, optional) the initial cell state is an optional " + "input. This is a tensor with shape (N x D), where N is the " + "batch size. `H0` and `C0` can be NULL but only at the same time"); + AddInput("Weight", + "(Tensor) the learnable hidden-hidden weights." + " - The shape is (D x 4D), where D is the hidden size. " + " - Weight = {W_ch, W_ih, W_fh, W_oh}"); + AddInput("Bias", + "(Tensor) the learnable weights, which contains two parts: " + "input-hidden bias weight and peephole connections weight if " + "setting `usePeepholes` True. " + "1. `usePeepholes = False` " + " - The shape is (1 x 4D). " + " - Bias = {b_c, b_i, b_f, b_o}." + "2. `usePeepholes = True` " + " - The shape is (1 x 7D). " + " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."); + AddOutput("BatchGate", + "(LoDTensor) This LoDTensor contains input gate, forget gate " + "and output gate after the nonlinear computation. This " + "LoDTensor has the same shape with the reorganized input, which " + "was also be called batch input. The LoD size is 2. The first " + "LoD is the batch offsets and the second LoD contains the " + "indexes, which denote the position of reorganized sequence " + "in the raw input.") + .AsIntermediate(); + AddOutput("Hidden", + "(LoDTensor) the hidden state lod tensor of LSTM operator. " + "The shape and lod is the same with the `Input`."); + AddOutput("Cell", + "(LoDTensor) the cell state lod tensor of LSTM operator. " + "The shape and lod is the same with the `Input`."); + AddAttr("usePeepholes", + "(bool, defalut: True) " + "whether to enable diagonal/peephole connections.") + .SetDefault(true); + AddAttr("isReverse", + "(bool, defalut: False) " + "whether to compute reversed LSTM.") + .SetDefault(false); + AddAttr( + "gateActivation", + "(string, default: sigmoid)" + "The activation for input gate, forget gate and output " + "gate, `sigmoid` by default.") + .SetDefault("sigmoid"); + AddAttr("cellActivation", + "(string, default: tanh)" + "The activation for cell output, `tanh` by defalut.") + .SetDefault("tanh"); + AddAttr("candidateActivation", + "(string, default: tanh)" + "The activation for candidate hidden state, " + "`tanh` by default.") + .SetDefault("tanh"); + AddComment(R"DOC(Long-Short Term Memory (LSTM) Operator + +The defalut implementation is diagonal/peephole connection [1], the formula is +as follows + + i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) + + f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) + + \tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) + + o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) + + c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t} + + h_t = o_t ⊙ act_h(c_t) + +where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix +of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$ +are diagonal weight matrices for peephole connections. In our implenmention, +We use vectors to reprenset these diagonal weight matrices. The b terms +denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$ +is the non-line actications, such as logistic sigmoid function, and +\f$i, f, o\f$ and \f$c\f$ are respectively the input gate, forget gate, +output gate and cell activation vectors, all of which are the same size as +the cell output activation vector \f$h\f$. + +The ⊙ is the element-wise product of the vectors, \f$act_g\f$ and \f$act_h\f$ +are the cell input and cell output activation functions, `tanh` is usually +used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state, +which is computed based on the current input and the previous hidden state. + +Set `usePeepholes` False to disable peephole connection [2]. The formula +is omitted here. + +@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$ +operations on the input x_{t} were NOT included in this operator. +Users can choose to use fully-connect operator before LSTM operator. + +[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory +recurrent neural network architectures for large scale acoustic modeling. +INTERSPEECH, 2014. + +[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. +Neural Computation, 9(8):1735-1780, 1997. + +)DOC"); + } +}; + +class LSTMGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")), + "Input(Hidden@GRAD) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cell")), + "Input(Cell@GRAD) should not be null"); + ctx->SetOutputDim(framework::GradVarName("Weight"), + ctx->GetInputDim("Weight")); + ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->GetInputDim("Bias")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp); +REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_CPU_KERNEL(lstm_grad, + ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.cu b/paddle/operators/lstm_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..9ad56941553bf19a56c25f41f76fe20dfa3a106f --- /dev/null +++ b/paddle/operators/lstm_op.cu @@ -0,0 +1,23 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/lstm_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_GPU_KERNEL(lstm_grad, + ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.h b/paddle/operators/lstm_op.h new file mode 100644 index 0000000000000000000000000000000000000000..0af5694c48fcb4437e3acd422606de013bb2e145 --- /dev/null +++ b/paddle/operators/lstm_op.h @@ -0,0 +1,139 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/lstm_compute.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/sequence2batch.h" + +namespace paddle { +namespace operators { + +using framework::LoDTensor; +using framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +class LSTMKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* input = ctx.Input("Input"); + auto* weight = ctx.Input("Weight"); + auto* bias = ctx.Input("Bias"); + + auto* batch_gate = ctx.Output("BatchGate"); + batch_gate->mutable_data(ctx.GetPlace()); + auto* hidden_out = ctx.Output("Hidden"); + hidden_out->mutable_data(ctx.GetPlace()); + auto* cell_out = ctx.Output("Cell"); + cell_out->mutable_data(ctx.GetPlace()); + + // Now the function ShareLoD in InferShape is not implemented. + // So copy LoD here. + ctx.ShareLoD("Input", "Hidden"); + ctx.ShareLoD("Input", "Cell"); + + bool is_reverse = ctx.Attr("isReverse"); + math::LoDTensor2BatchFunctor to_batch; + to_batch(ctx.device_context(), *input, *batch_gate, is_reverse); + + auto in_dims = input->dims(); + int frame_size = static_cast(in_dims[1] / 4); + framework::DDim dims({in_dims[0], frame_size}); + + if (bias) { + Eigen::array extents({{1, 4 * frame_size}}); + Eigen::array offsets({{0, 0}}); + auto b = EigenMatrix::From(*bias); + auto gate = EigenMatrix::From(*batch_gate); + gate.device(ctx.GetEigenDevice()) = + gate + + b.slice(offsets, extents) + .reshape(Eigen::array({{1, frame_size * 4}})) + .broadcast( + Eigen::array({{static_cast(in_dims[0]), 1}})); + } + + math::LstmMetaValue lstm_value; + T* bias_data = const_cast(bias->data()); + // the code style in LstmMetaValue will be updated later. + lstm_value.checkIg = bias_data + 4 * frame_size; + lstm_value.checkFg = lstm_value.checkIg + frame_size; + lstm_value.checkOg = lstm_value.checkFg + frame_size; + lstm_value.prevStateValue = nullptr; + + framework::LoDTensor batch_out, batch_cell, batch_cell_pre_act; + batch_out.mutable_data(dims, ctx.GetPlace()); + batch_cell.mutable_data(dims, ctx.GetPlace()); + batch_cell_pre_act.mutable_data(dims, ctx.GetPlace()); + + auto batch_starts = batch_gate->lod()[0]; + size_t num_batch = batch_starts.size() - 1; + auto gate_act = ctx.Attr("gateActivation"); + auto cell_act = ctx.Attr("cellActivation"); + auto cand_act = ctx.Attr("candidateActivation"); + + for (size_t n = 0; n < num_batch; n++) { + int bstart = static_cast(batch_starts[n]); + int bend = static_cast(batch_starts[n + 1]); + + Tensor gate_t = batch_gate->Slice(bstart, bend); + Tensor out_t = batch_out.Slice(bstart, bend); + Tensor cell_t = batch_cell.Slice(bstart, bend); + Tensor cell_pre_act_t = batch_cell_pre_act.Slice(bstart, bend); + + int cur_batch_size = bend - bstart; + + if (n != 0) { + int pre_h_start = static_cast(batch_starts[n - 1]); + int pre_h_end = pre_h_start + cur_batch_size; + auto pre_hidden_t = batch_out.Slice(pre_h_start, pre_h_end); + math::matmul(ctx.device_context(), pre_hidden_t, false, + *weight, false, static_cast(1.0), &gate_t, + static_cast(1.0)); + } + // else if : FIXME support the initial hidden and cell + + lstm_value.gateValue = gate_t.data(); + lstm_value.outputValue = out_t.data(); + lstm_value.stateValue = cell_t.data(); + lstm_value.stateActiveValue = cell_pre_act_t.data(); + math::LstmUnitFunctor::compute(ctx.device_context(), lstm_value, + frame_size, cur_batch_size, + gate_act, cell_act, cand_act); + lstm_value.prevStateValue = lstm_value.stateValue; + } + + math::Batch2LoDTensorFunctor to_seq; + batch_out.set_lod(batch_gate->lod()); + // restore the output hidden in LoDTensor from the batch hidden + to_seq(ctx.device_context(), batch_out, *hidden_out); + + batch_cell.set_lod(batch_gate->lod()); + // restore the output cell state in LoDTensor from the batch cell + to_seq(ctx.device_context(), batch_cell, *cell_out); + } +}; + +template +class LSTMGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override {} +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/lstm_unit_op.h b/paddle/operators/lstm_unit_op.h index a0ff498c1d3ed2aaa10f5473ef91de168c250649..625b1852c2f0eb2ed435f73fea251c40c614a7dd 100644 --- a/paddle/operators/lstm_unit_op.h +++ b/paddle/operators/lstm_unit_op.h @@ -19,7 +19,6 @@ namespace paddle { namespace operators { -using framework::LoDTensor; using framework::Tensor; template diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index 72ce8585045b5166df424a401442db39b47ab098..5598669ef96535b7d47150052b3841771c37c60b 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -1,3 +1,5 @@ +add_subdirectory(detail) + if(WITH_GPU) nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context operator) nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function tensor) @@ -7,6 +9,8 @@ if(WITH_GPU) nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator) nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context) nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context) + nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context) + nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions) else() cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator) cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function) @@ -14,6 +18,8 @@ else() cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator) cc_library(pooling SRCS pooling.cc DEPS device_context) cc_library(vol2col SRCS vol2col.cc DEPS device_context) + cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context) + cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions) endif() cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) diff --git a/paddle/operators/math/cross_entropy.cu b/paddle/operators/math/cross_entropy.cu index 367190e6b0682ec62550e869e2f04c3a2b2cbec3..db878129d650d663e187ecabb106eea0e39db6fa 100644 --- a/paddle/operators/math/cross_entropy.cu +++ b/paddle/operators/math/cross_entropy.cu @@ -22,8 +22,6 @@ namespace { template __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, const int N, const int D) { - // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. - // CUDA_1D_KERNEL_LOOP(i, N) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { PADDLE_ASSERT(label[i] >= 0 && label[i] < D); diff --git a/paddle/operators/math/detail/CMakeLists.txt b/paddle/operators/math/detail/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..49cf228de2204cb4888cf645a0cb68ed04cc3371 --- /dev/null +++ b/paddle/operators/math/detail/CMakeLists.txt @@ -0,0 +1,5 @@ +if(WITH_AVX) + cc_library(activation_functions SRCS hl_cpu_functions.cc hl_avx_functions.cc) +else() + cc_library(activation_functions SRCS hl_cpu_functions.cc) +endif() diff --git a/paddle/operators/math/detail/hl_activation_functions.h b/paddle/operators/math/detail/hl_activation_functions.h new file mode 100644 index 0000000000000000000000000000000000000000..9d7d9914f0090bff17049038dfa2288d84f3dbda --- /dev/null +++ b/paddle/operators/math/detail/hl_activation_functions.h @@ -0,0 +1,188 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_ACTIVATION_FUNCTIONS_H_ +#define HL_ACTIVATION_FUNCTIONS_H_ + +#include "hl_functions.h" +#include "paddle/operators/math/lstm_compute.h" + +/** + * Active functions: sigmoid, relu, tanh and linear. + */ +#define FLOAT_ACTIVE_FUNCTION \ + { \ + hppl::typef::sigmoid, hppl::typef::relu, hppl::typef::tanh, \ + hppl::typef::linear \ + } + +#define DOUBLE_ACTIVE_FUNCTION \ + { \ + hppl::typed::sigmoid, hppl::typed::relu, hppl::typed::tanh, \ + hppl::typed::linear \ + } + +#define AVX_ACTIVE_FUNCTION \ + { hppl::sigmoid, hppl::relu, hppl::tanh, hppl::linear } + +namespace hppl { + +using activation_mode_t = paddle::operators::math::activation_mode_t; + +/** + * Hppl supports sigmoid, relu, tanh, linear active functions + * for neural networks' forward and backward activation. + */ +template +class Active { + public: + typedef T (*forward)(T); + typedef T (*backward)(T, T); +}; + +template +struct ForwardActType; + +template <> +struct ForwardActType { + using type = Active::forward; +}; + +template <> +struct ForwardActType { + using type = Active::forward; +}; + +template +struct BackwardActType; + +template <> +struct BackwardActType { + using type = Active::backward; +}; + +template <> +struct BackwardActType { + using type = Active::backward; +}; + +#ifdef __NVCC__ +namespace gpu { +static __device__ Active::forward forward[] = FLOAT_ACTIVE_FUNCTION; +static __device__ Active::backward backward[] = FLOAT_ACTIVE_FUNCTION; + +static __device__ Active::forward forward_d[] = DOUBLE_ACTIVE_FUNCTION; +static __device__ Active::backward backward_d[] = + DOUBLE_ACTIVE_FUNCTION; + +template +struct ForwardAct { + __device__ typename ForwardActType::type operator()( + activation_mode_t type); +}; + +template <> +struct ForwardAct { + __device__ ForwardActType::type operator()(activation_mode_t type) { + return forward[type]; + } +}; + +template <> +struct ForwardAct { + __device__ ForwardActType::type operator()(activation_mode_t type) { + return forward_d[type]; + } +}; + +template +struct BackwardAct { + __device__ typename BackwardActType::type operator()( + activation_mode_t type); +}; + +template <> +struct BackwardAct { + __device__ BackwardActType::type operator()(activation_mode_t type) { + return backward[type]; + } +}; + +template <> +struct BackwardAct { + __device__ BackwardActType::type operator()(activation_mode_t type) { + return backward_d[type]; + } +}; + +} // namespace gpu +#else +namespace cpu { +static Active::forward forward[] = FLOAT_ACTIVE_FUNCTION; +static Active::backward backward[] = FLOAT_ACTIVE_FUNCTION; + +static Active::forward forward_d[] = DOUBLE_ACTIVE_FUNCTION; +static Active::backward backward_d[] = DOUBLE_ACTIVE_FUNCTION; + +template +struct ForwardAct { + typename ForwardActType::type operator()(activation_mode_t type); +}; + +template <> +struct ForwardAct { + ForwardActType::type operator()(activation_mode_t type) { + return forward[type]; + } +}; + +template <> +struct ForwardAct { + ForwardActType::type operator()(activation_mode_t type) { + return forward_d[type]; + } +}; + +template +struct BackwardAct { + typename BackwardActType::type operator()(activation_mode_t type); +}; + +template <> +struct BackwardAct { + BackwardActType::type operator()(activation_mode_t type) { + return backward[type]; + } +}; + +template <> +struct BackwardAct { + BackwardActType::type operator()(activation_mode_t type) { + return backward_d[type]; + } +}; + +} // namespace cpu + +#ifdef __AVX__ +namespace avx { +static Active<__m256>::forward forward[] = AVX_ACTIVE_FUNCTION; +static Active<__m256>::backward backward[] = AVX_ACTIVE_FUNCTION; +} // namespace avx +#endif +#endif + +} // namespace hppl + +#endif // HL_ACTIVATION_FUNCTIONS_H_ diff --git a/paddle/operators/math/detail/hl_avx_functions.cc b/paddle/operators/math/detail/hl_avx_functions.cc new file mode 100644 index 0000000000000000000000000000000000000000..415bac5d93ee00244d072b0998c6941b14d4f8d8 --- /dev/null +++ b/paddle/operators/math/detail/hl_avx_functions.cc @@ -0,0 +1,70 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "hl_functions.h" +// TODO(qingqing) refine this dependence +#include "paddle/cuda/src/avx_mathfun.h" + +namespace hppl { + +__m256 exp(__m256 a) { return exp256_ps(a); } + +__m256 relu(const __m256 a) { + __m256 tmp = _mm256_set1_ps(0.0f); + return _mm256_max_ps(a, tmp); +} + +__m256 sigmoid(const __m256 a) { + __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); + __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); + __m256 tmp = _mm256_max_ps(a, min); + tmp = _mm256_min_ps(tmp, max); + tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); + tmp = exp(tmp); + tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); + tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp); + return tmp; +} + +__m256 tanh(const __m256 a) { + __m256 max = _mm256_set1_ps(EXP_MAX_INPUT); + __m256 tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), a); + tmp = _mm256_min_ps(tmp, max); + tmp = exp(tmp); + return _mm256_sub_ps(_mm256_div_ps(_mm256_set1_ps(2.0f), + _mm256_add_ps(_mm256_set1_ps(1.0f), tmp)), + _mm256_set1_ps(1.0f)); +} + +__m256 linear(const __m256 a) { return a; } + +__m256 relu(const __m256 a, const __m256 b) { + return _mm256_mul_ps( + a, _mm256_and_ps(_mm256_cmp_ps(b, _mm256_set1_ps(0.0f), _CMP_GT_OS), + _mm256_set1_ps(1.0f))); +} + +__m256 sigmoid(const __m256 a, const __m256 b) { + return _mm256_mul_ps(_mm256_mul_ps(a, b), + _mm256_sub_ps(_mm256_set1_ps(1.0f), b)); +} + +__m256 tanh(const __m256 a, const __m256 b) { + return _mm256_mul_ps( + a, _mm256_sub_ps(_mm256_set1_ps(1.0f), _mm256_mul_ps(b, b))); +} + +__m256 linear(const __m256 a, const __m256 b) { return a; } +} // namespace hppl diff --git a/paddle/operators/math/detail/hl_avx_functions.h b/paddle/operators/math/detail/hl_avx_functions.h new file mode 100644 index 0000000000000000000000000000000000000000..35f4eabb4c07c6cc9d2edded02e5b6290b1232f8 --- /dev/null +++ b/paddle/operators/math/detail/hl_avx_functions.h @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_AVX_FUNCTIONS_H_ +#define HL_AVX_FUNCTIONS_H_ + +#include + +namespace hppl { +__m256 relu(const __m256 a); +__m256 sigmoid(const __m256 a); +__m256 tanh(const __m256 a); +__m256 linear(const __m256 a); + +__m256 relu(const __m256 a, const __m256 b); +__m256 sigmoid(const __m256 a, const __m256 b); +__m256 tanh(const __m256 a, const __m256 b); +__m256 linear(const __m256 a, const __m256 b); +} // namespace hppl + +#endif // HL_AVX_FUNCTIONS_H_ diff --git a/paddle/operators/math/detail/hl_cpu_functions.cc b/paddle/operators/math/detail/hl_cpu_functions.cc new file mode 100644 index 0000000000000000000000000000000000000000..21ec78f9629af0e4673a56517d76ac6734f57db8 --- /dev/null +++ b/paddle/operators/math/detail/hl_cpu_functions.cc @@ -0,0 +1,89 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "hl_functions.h" + +namespace hppl { +namespace typef { + +float relu(const float a) { + return a > static_cast(0.0) ? a : static_cast(0.0); +} + +float sigmoid(const float a) { + const float min = SIGMOID_THRESHOLD_MIN; + const float max = SIGMOID_THRESHOLD_MAX; + float tmp = (a < min) ? min : ((a > max) ? max : a); + return static_cast(1.0) / (static_cast(1.0) + exp(-tmp)); +} + +float tanh(const float a) { + float tmp = -2.0 * a; + tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp; + return (2.0 / (1.0 + exp(tmp))) - 1.0; +} + +float linear(const float a) { return a; } + +float relu(const float a, const float b) { return a * (b > 0.0 ? 1.0 : 0.0); } + +float sigmoid(const float a, const float b) { + return a * b * (static_cast(1) - b); +} + +float tanh(const float a, const float b) { + return a * (static_cast(1) - b * b); +} + +float linear(const float a, const float b) { return a; } + +} // namespace typef + +namespace typed { +double relu(const double a) { + return a > static_cast(0.0) ? a : static_cast(0.0); +} + +double sigmoid(const double a) { + const double min = SIGMOID_THRESHOLD_MIN; + const double max = SIGMOID_THRESHOLD_MAX; + double tmp = (a < min) ? min : ((a > max) ? max : a); + return static_cast(1.0) / (static_cast(1.0) + exp(-tmp)); +} + +double tanh(const double a) { + double tmp = -2.0 * a; + tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp; + return (2.0 / (1.0 + exp(tmp))) - 1.0; +} + +double linear(const double a) { return a; } + +double relu(const double a, const double b) { + return a * (b > 0.0 ? 1.0 : 0.0); +} + +double sigmoid(const double a, const double b) { + return a * b * (static_cast(1) - b); +} + +double tanh(const double a, const double b) { + return a * (static_cast(1) - b * b); +} + +double linear(const double a, const double b) { return a; } + +} // namespace typed +} // namespace hppl diff --git a/paddle/operators/math/detail/hl_functions.h b/paddle/operators/math/detail/hl_functions.h new file mode 100644 index 0000000000000000000000000000000000000000..3e2f0c9ee6d3ae2ed598c4d5f09b85b7d61fdd51 --- /dev/null +++ b/paddle/operators/math/detail/hl_functions.h @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_FUNCTIONS_H_ +#define HL_FUNCTIONS_H_ + +/** + * sigmoid threshold maximum + */ +#define SIGMOID_THRESHOLD_MIN -40.0 + +/** + * sigmoid threshold minimum + */ +#define SIGMOID_THRESHOLD_MAX 13.0 + +/** + * The maximum input value for exp, used to avoid overflow problem. + * currently only used for tanh function. + */ +#define EXP_MAX_INPUT 40.0 + +#ifndef __NVCC__ +namespace hppl { +namespace typef { +float relu(const float a); +float sigmoid(const float a); +float tanh(const float a); +float linear(const float a); + +float relu(const float a, const float b); +float sigmoid(const float a, const float b); +float tanh(const float a, const float b); +float linear(const float a, const float b); + +} // namespace typef + +namespace typed { +double relu(const double a); +double sigmoid(const double a); +double tanh(const double a); +double linear(const double a); + +double relu(const double a, const double b); +double sigmoid(const double a, const double b); +double tanh(const double a, const double b); +double linear(const double a, const double b); +} // namespace typed + +} // namespace hppl + +#ifdef __AVX__ +#include "hl_avx_functions.h" +#endif + +#else +#include "hl_gpu_functions.h" +#endif + +#endif // HL_FUNCTIONS_H_ diff --git a/paddle/operators/math/detail/hl_gpu_functions.h b/paddle/operators/math/detail/hl_gpu_functions.h new file mode 100644 index 0000000000000000000000000000000000000000..72f2204e7b2cfdba1367b51e3731dde11fb292d6 --- /dev/null +++ b/paddle/operators/math/detail/hl_gpu_functions.h @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#ifndef HL_GPU_FUNCTIONS_CUH_ +#define HL_GPU_FUNCTIONS_CUH_ + +#include "hl_base.h" + +namespace hppl { +namespace typef { + +__device__ static float relu(const float a) { return a > 0.0f ? a : 0.0f; } + +__device__ static float sigmoid(const float a) { + const float min = SIGMOID_THRESHOLD_MIN; + const float max = SIGMOID_THRESHOLD_MAX; + float tmp = (a < min) ? min : ((a > max) ? max : a); + return __fdividef(1.0f, 1.0f + __expf(-tmp)); +} + +__device__ static float tanh(const float a) { + float tmp = -2.0 * a; + tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp; + return __fdividef(2.0f, (1.0f + __expf(-2.0f * tmp))) - 1.0f; +} + +__device__ static float linear(const float a) { return a; } + +__device__ static float relu(const float a, const float b) { + return a * (b > 0.0f ? 1.0f : 0.0f); +} + +__device__ static float sigmoid(const float a, const float b) { + return a * b * (1.0f - b); +} + +__device__ static float tanh(const float a, const float b) { + return a * (1.0f - b * b); +} + +__device__ static float linear(const float a, const float b) { return a; } + +} // namespace typef + +namespace typed { + +__device__ static double relu(const double a) { return a > 0.0 ? a : 0.0; } + +__device__ static double sigmoid(const double a) { + const double min = SIGMOID_THRESHOLD_MIN; + const double max = SIGMOID_THRESHOLD_MAX; + double tmp = (a < min) ? min : ((a > max) ? max : a); + return 1.0 / (1.0 + exp(-tmp)); +} + +__device__ static double tanh(const double a) { + double tmp = -2.0 * a; + tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp; + return (2.0 / (1.0 + exp(-2.0 * a))) - 1.0; +} + +__device__ static double linear(const double a) { return a; } + +__device__ static double relu(const double a, const double b) { + return a * (b > 0.0 ? 1.0 : 0.0); +} + +__device__ static double sigmoid(const double a, const double b) { + return a * b * (1 - b); +} + +__device__ static double tanh(const double a, const double b) { + return a * (1.0 - b * b); +} + +__device__ static double linear(const double a, const double b) { return a; } + +} // namespace typef + +} // namespace hppl + +#endif // HL_GPU_FUNCTIONS_CUH_ diff --git a/paddle/operators/math/detail/lstm_cpu_kernel.h b/paddle/operators/math/detail/lstm_cpu_kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..74d51d7bc9b91f4c8088384d77183131f57aafab --- /dev/null +++ b/paddle/operators/math/detail/lstm_cpu_kernel.h @@ -0,0 +1,310 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/operators/math/detail/hl_activation_functions.h" +#include "paddle/operators/math/lstm_compute.h" + +namespace paddle { +namespace operators { +namespace math { +namespace detail { + +#ifndef __NVCC__ + +template +void naive_lstm_forward_one_sequence(Op op, LstmMetaValue value, + int frameSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + T rValueIn; + T rValueIg; + T rValueFg; + T rValueOg; + T rCheckI; + T rCheckF; + T rCheckO; + T rState; + T rPrevState = 0; + T rStateAtv; + T rOut; + + T *valueIn = value.gateValue; + T *valueIg = value.gateValue + frameSize; + T *valueFg = value.gateValue + frameSize * 2; + T *valueOg = value.gateValue + frameSize * 3; + + for (int i = 0; i < frameSize; i++) { + rValueIn = valueIn[i]; + rValueIg = valueIg[i]; + rValueFg = valueFg[i]; + rValueOg = valueOg[i]; + rCheckI = value.checkIg[i]; + rCheckF = value.checkFg[i]; + rCheckO = value.checkOg[i]; + + if (value.prevStateValue) { + rPrevState = value.prevStateValue[i]; + } + + hppl::cpu::ForwardAct act; + op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, + rOut, rCheckI, rCheckF, rCheckO, act(active_node), act(active_gate), + act(active_state)); + + valueIn[i] = rValueIn; + valueIg[i] = rValueIg; + valueFg[i] = rValueFg; + valueOg[i] = rValueOg; + value.stateValue[i] = rState; + value.stateActiveValue[i] = rStateAtv; + value.outputValue[i] = rOut; + } +} + +template +void naive_lstm_backward_one_sequence(Op op, LstmMetaValue value, + LstmMetaGrad grad, int frameSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + T rValueIn; + T rValueIg; + T rValueFg; + T rValueOg; + T rGradIn; + T rGradIg; + T rGradFg; + T rGradOg; + T rPrevState = 0; + T rPrevStateGrad; + T rState; + T rStateGrad; + T rStateAtv; + T rOutputGrad; + T rCheckI; + T rCheckF; + T rCheckO; + T rCheckIGrad; + T rCheckFGrad; + T rCheckOGrad; + + T *valueIn = value.gateValue; + T *valueIg = value.gateValue + frameSize; + T *valueFg = value.gateValue + frameSize * 2; + T *valueOg = value.gateValue + frameSize * 3; + T *gradIn = grad.gateGrad; + T *gradIg = grad.gateGrad + frameSize; + T *gradFg = grad.gateGrad + frameSize * 2; + T *gradOg = grad.gateGrad + frameSize * 3; + + for (int i = 0; i < frameSize; i++) { + rValueIn = valueIn[i]; + rValueIg = valueIg[i]; + rValueFg = valueFg[i]; + rValueOg = valueOg[i]; + rCheckI = value.checkIg[i]; + rCheckF = value.checkFg[i]; + rCheckO = value.checkOg[i]; + rState = value.stateValue[i]; + rStateAtv = value.stateActiveValue[i]; + rOutputGrad = grad.outputGrad[i]; + rStateGrad = grad.stateGrad[i]; + if (value.prevStateValue) { + rPrevState = value.prevStateValue[i]; + } + + hppl::cpu::BackwardAct act; + op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, + rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, + rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, + rCheckOGrad, act(active_node), act(active_gate), act(active_state)); + + gradIn[i] = rGradIn; + gradIg[i] = rGradIg; + gradFg[i] = rGradFg; + gradOg[i] = rGradOg; + grad.stateGrad[i] = rStateGrad; + + if (grad.prevStateGrad) grad.prevStateGrad[i] = rPrevStateGrad; + if (value.prevStateValue) { + if (grad.checkIgGrad) grad.checkIgGrad[i] += rCheckIGrad; + if (grad.checkFgGrad) grad.checkFgGrad[i] += rCheckFGrad; + } + if (grad.checkOgGrad) grad.checkOgGrad[i] += rCheckOGrad; + } +} + +template +void avx_lstm_forward_one_sequence(Op op, LstmMetaValue value, int frameSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { +#ifdef __AVX__ + __m256 rValueIn; + __m256 rValueIg; + __m256 rValueFg; + __m256 rValueOg; + __m256 rCheckI; + __m256 rCheckF; + __m256 rCheckO; + __m256 rState; + __m256 rPrevState = _mm256_set1_ps(0.0f); + __m256 rStateAtv; + __m256 rOut; + + __m256 *valueIn = (__m256 *)value.gateValue; + __m256 *valueIg = (__m256 *)(value.gateValue + frameSize); + __m256 *valueFg = (__m256 *)(value.gateValue + frameSize * 2); + __m256 *valueOg = (__m256 *)(value.gateValue + frameSize * 3); + + for (int i = 0; i < frameSize / 8; i++) { + rValueIn = valueIn[i]; + rValueIg = valueIg[i]; + rValueFg = valueFg[i]; + rValueOg = valueOg[i]; + rCheckI = ((__m256 *)value.checkIg)[i]; + rCheckF = ((__m256 *)value.checkFg)[i]; + rCheckO = ((__m256 *)value.checkOg)[i]; + + if (value.prevStateValue) { + rPrevState = ((__m256 *)value.prevStateValue)[i]; + } + + op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, + rOut, rCheckI, rCheckF, rCheckO, hppl::avx::forward[active_node], + hppl::avx::forward[active_gate], hppl::avx::forward[active_state]); + + valueIn[i] = rValueIn; + valueIg[i] = rValueIg; + valueFg[i] = rValueFg; + valueOg[i] = rValueOg; + ((__m256 *)value.stateValue)[i] = rState; + ((__m256 *)value.stateActiveValue)[i] = rStateAtv; + ((__m256 *)value.outputValue)[i] = rOut; + } +#endif +} + +template +void avx_lstm_backward_one_sequence(Op op, LstmMetaValue value, + LstmMetaGrad grad, int frameSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { +#ifdef __AVX__ + __m256 rValueIn; + __m256 rValueIg; + __m256 rValueFg; + __m256 rValueOg; + __m256 rGradIn; + __m256 rGradIg; + __m256 rGradFg; + __m256 rGradOg; + __m256 rPrevState = _mm256_set1_ps(0.0f); + __m256 rPrevStateGrad; + __m256 rStateGrad; + __m256 rState; + __m256 rStateAtv; + __m256 rOutputGrad; + __m256 rCheckI; + __m256 rCheckF; + __m256 rCheckO; + __m256 rCheckIGrad; + __m256 rCheckFGrad; + __m256 rCheckOGrad; + + __m256 *valueIn = (__m256 *)value.gateValue; + __m256 *valueIg = (__m256 *)(value.gateValue + frameSize); + __m256 *valueFg = (__m256 *)(value.gateValue + frameSize * 2); + __m256 *valueOg = (__m256 *)(value.gateValue + frameSize * 3); + __m256 *gradIn = (__m256 *)grad.gateGrad; + __m256 *gradIg = (__m256 *)(grad.gateGrad + frameSize); + __m256 *gradFg = (__m256 *)(grad.gateGrad + frameSize * 2); + __m256 *gradOg = (__m256 *)(grad.gateGrad + frameSize * 3); + + for (int i = 0; i < frameSize / 8; i++) { + rValueIn = valueIn[i]; + rValueIg = valueIg[i]; + rValueFg = valueFg[i]; + rValueOg = valueOg[i]; + rCheckI = ((__m256 *)value.checkIg)[i]; + rCheckF = ((__m256 *)value.checkFg)[i]; + rCheckO = ((__m256 *)value.checkOg)[i]; + rState = ((__m256 *)value.stateValue)[i]; + rStateAtv = ((__m256 *)value.stateActiveValue)[i]; + rOutputGrad = ((__m256 *)grad.outputGrad)[i]; + rStateGrad = ((__m256 *)grad.stateGrad)[i]; + if (value.prevStateValue) { + rPrevState = ((__m256 *)value.prevStateValue)[i]; + } + + op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, + rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, + rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, + rCheckOGrad, hppl::avx::backward[active_node], + hppl::avx::backward[active_gate], hppl::avx::backward[active_state]); + + gradIn[i] = rGradIn; + gradIg[i] = rGradIg; + gradFg[i] = rGradFg; + gradOg[i] = rGradOg; + ((__m256 *)grad.stateGrad)[i] = rStateGrad; + + if (grad.prevStateGrad) ((__m256 *)grad.prevStateGrad)[i] = rPrevStateGrad; + if (value.prevStateValue) { + if (grad.checkIgGrad) ((__m256 *)grad.checkIgGrad)[i] += rCheckIGrad; + if (grad.checkFgGrad) ((__m256 *)grad.checkFgGrad)[i] += rCheckFGrad; + } + if (grad.checkOgGrad) ((__m256 *)grad.checkOgGrad)[i] += rCheckOGrad; + } +#endif +} + +template +void cpu_lstm_forward(Op op, LstmMetaValue value, int frameSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + if (Op::avx && !(frameSize & (8 - 1)) && (std::is_same::value)) { + avx_lstm_forward_one_sequence(op, value, frameSize, active_node, + active_gate, active_state); + } else { + naive_lstm_forward_one_sequence(op, value, frameSize, active_node, + active_gate, active_state); + } +} + +template +void cpu_lstm_backward(Op op, LstmMetaValue value, LstmMetaGrad grad, + int frameSize, activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + if (Op::avx && !(frameSize & (8 - 1)) && (std::is_same::value)) { + avx_lstm_backward_one_sequence(op, value, grad, frameSize, active_node, + active_gate, active_state); + } else { + naive_lstm_backward_one_sequence(op, value, grad, frameSize, active_node, + active_gate, active_state); + } +} + +#endif + +} // namespace detail +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/detail/lstm_gpu_kernel.h b/paddle/operators/math/detail/lstm_gpu_kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..9573eaefb6a9d678ef70f2e2bffdc6a3011b21ea --- /dev/null +++ b/paddle/operators/math/detail/lstm_gpu_kernel.h @@ -0,0 +1,256 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/operators/math/detail/hl_activation_functions.h" +#include "paddle/operators/math/lstm_compute.h" +#include "paddle/platform/cuda_helper.h" +#include "paddle/platform/device_context.h" + +#include + +namespace paddle { +namespace operators { +namespace math { +namespace detail { + +/* + * threads(framePerBlock, batchPerBlock) + * grid(frameBlocks, batchBlocks) + */ +template +__global__ void KeLstmForward(Op op, LstmMetaValue value, int frameSize, + int batchSize, activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; + if (frameIdx >= frameSize) return; + + int batchIdx = 0; + if (isBatch) { + batchIdx = blockIdx.y * blockDim.y + threadIdx.y; + if (batchIdx >= batchSize) return; + value.gateValue += batchIdx * frameSize * 4; + value.outputValue += batchIdx * frameSize; + value.stateValue += batchIdx * frameSize; + value.stateActiveValue += batchIdx * frameSize; + } + + T rState; + T rPrevState = 0; + T rStateAtv; + T rOut; + T rValueIn; + T rValueIg; + T rValueFg; + T rValueOg; + T rCheckI = value.checkIg[frameIdx]; + T rCheckF = value.checkFg[frameIdx]; + T rCheckO = value.checkOg[frameIdx]; + + rValueIn = value.gateValue[frameIdx]; + rValueIg = value.gateValue[frameIdx + frameSize]; + rValueFg = value.gateValue[frameIdx + frameSize * 2]; + rValueOg = value.gateValue[frameIdx + frameSize * 3]; + + if (value.prevStateValue) { + if (isBatch) value.prevStateValue += batchIdx * frameSize; + rPrevState = value.prevStateValue[frameIdx]; + } + + hppl::gpu::ForwardAct act; + op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, + rOut, rCheckI, rCheckF, rCheckO, act(active_node), act(active_gate), + act(active_state)); + + value.gateValue[frameIdx] = rValueIn; + value.gateValue[frameIdx + frameSize] = rValueIg; + value.gateValue[frameIdx + frameSize * 2] = rValueFg; + value.gateValue[frameIdx + frameSize * 3] = rValueOg; + + value.stateValue[frameIdx] = rState; + value.stateActiveValue[frameIdx] = rStateAtv; + value.outputValue[frameIdx] = rOut; +} + +/* + * threads(framePerBlock, batchPerBlock) + * grid(frameBlocks, batchBlocks) + */ +template +__global__ void KeLstmBackward(Op op, LstmMetaValue value, + LstmMetaGrad grad, int frameSize, + int batchSize, activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; + if (frameIdx >= frameSize) return; + + int batchIdx = 0; + if (isBatch) { + batchIdx = blockIdx.y * blockDim.y + threadIdx.y; + if (batchIdx >= batchSize) return; + value.gateValue += batchIdx * frameSize * 4; + value.stateValue += batchIdx * frameSize; + value.stateActiveValue += batchIdx * frameSize; + grad.gateGrad += batchIdx * frameSize * 4; + grad.stateGrad += batchIdx * frameSize; + grad.outputGrad += batchIdx * frameSize; + } + + T rValueIn; + T rValueIg; + T rValueFg; + T rValueOg; + T rGradIn; + T rGradIg; + T rGradFg; + T rGradOg; + T rPrevState = 0; + T rPrevStateGrad; + T rState; + T rStateGrad; + T rStateAtv; + T rOutputGrad; + T rCheckI = value.checkIg[frameIdx]; + T rCheckF = value.checkFg[frameIdx]; + T rCheckO = value.checkOg[frameIdx]; + T rCheckIGrad; + T rCheckFGrad; + T rCheckOGrad; + + rValueIn = value.gateValue[frameIdx]; + rValueIg = value.gateValue[frameIdx + frameSize]; + rValueFg = value.gateValue[frameIdx + frameSize * 2]; + rValueOg = value.gateValue[frameIdx + frameSize * 3]; + rState = value.stateValue[frameIdx]; + rStateAtv = value.stateActiveValue[frameIdx]; + rOutputGrad = grad.outputGrad[frameIdx]; + rStateGrad = grad.stateGrad[frameIdx]; + + if (value.prevStateValue) { + if (isBatch) value.prevStateValue += batchIdx * frameSize; + rPrevState = value.prevStateValue[frameIdx]; + } + + hppl::gpu::BackwardAct act; + op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, rGradOg, + rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, rOutputGrad, + rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, rCheckOGrad, + act(active_node), act(active_gate), act(active_state)); + + grad.gateGrad[frameIdx] = rGradIn; + grad.gateGrad[frameIdx + frameSize] = rGradIg; + grad.gateGrad[frameIdx + frameSize * 2] = rGradFg; + grad.gateGrad[frameIdx + frameSize * 3] = rGradOg; + grad.stateGrad[frameIdx] = rStateGrad; + if (grad.prevStateGrad) { + if (isBatch) grad.prevStateGrad += batchIdx * frameSize; + grad.prevStateGrad[frameIdx] = rPrevStateGrad; + } + + if (isBatch) { + if (value.prevStateValue) { + if (grad.checkIgGrad) + paddle::platform::CudaAtomicAdd(grad.checkIgGrad + frameIdx, + rCheckIGrad); + if (grad.checkFgGrad) + paddle::platform::CudaAtomicAdd(grad.checkFgGrad + frameIdx, + rCheckFGrad); + } + if (grad.checkOgGrad) + paddle::platform::CudaAtomicAdd(grad.checkOgGrad + frameIdx, rCheckOGrad); + } else { + if (value.prevStateValue) { + if (grad.checkIgGrad) grad.checkIgGrad[frameIdx] += rCheckIGrad; + if (grad.checkFgGrad) grad.checkFgGrad[frameIdx] += rCheckFGrad; + } + if (grad.checkOgGrad) grad.checkOgGrad[frameIdx] += rCheckOGrad; + } +} + +template +void gpu_lstm_forward(const platform::DeviceContext& context, Op op, + LstmMetaValue value, int frameSize, int batchSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + dim3 threads; + dim3 grid; + if (batchSize == 1) { + int framePerBlock = frameSize <= 1024 ? frameSize : 1024; + int frameBlocks = (frameSize + 1024 - 1) / 1024; + threads = dim3(framePerBlock, 1); + grid = dim3(frameBlocks, 1); + } else { + /* framePerBlock = 32 batchPerBlock = 32 */ + threads = dim3(32, 32); + grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); + } + + auto stream = + reinterpret_cast(context).stream(); + if (batchSize == 1) { + KeLstmForward<<>>( + op, value, frameSize, batchSize, active_node, active_gate, + active_state); + } else { + KeLstmForward<<>>( + op, value, frameSize, batchSize, active_node, active_gate, + active_state); + } +} + +template +void gpu_lstm_backward(const platform::DeviceContext& context, Op op, + LstmMetaValue value, LstmMetaGrad grad, + int frameSize, int batchSize, + activation_mode_t active_node, + activation_mode_t active_gate, + activation_mode_t active_state) { + dim3 threads; + dim3 grid; + if (batchSize == 1) { + int framePerBlock = frameSize <= 1024 ? frameSize : 1024; + int frameBlocks = (frameSize + 1024 - 1) / 1024; + threads = dim3(framePerBlock, 1); + grid = dim3(frameBlocks, 1); + } else { + /* framePerBlock = 32 batchPerBlock = 32 */ + threads = dim3(32, 32); + grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); + } + + auto stream = + reinterpret_cast(context).stream(); + if (batchSize == 1) { + KeLstmBackward<<>>( + op, value, grad, frameSize, batchSize, active_node, active_gate, + active_state); + } else { + KeLstmBackward<<>>( + op, value, grad, frameSize, batchSize, active_node, active_gate, + active_state); + } +} + +} // namespace detail +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/detail/lstm_kernel.h b/paddle/operators/math/detail/lstm_kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..6f3ead2397d5131b4468d0ad288513cedb289594 --- /dev/null +++ b/paddle/operators/math/detail/lstm_kernel.h @@ -0,0 +1,138 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/detail/hl_activation_functions.h" +#include "paddle/platform/hostdevice.h" + +#include + +namespace paddle { +namespace operators { +namespace math { +namespace detail { + +namespace forward { + +template +class lstm { + public: + HOSTDEVICE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg, + T &prevState, T &state, T &stateAtv, T &output, + T &checkI, T &checkF, T &checkO, + typename hppl::ForwardActType::type actInput, + typename hppl::ForwardActType::type actGate, + typename hppl::ForwardActType::type actState) { + valueIn = actInput(valueIn); + valueIg = actGate(valueIg + prevState * checkI); + valueFg = actGate(valueFg + prevState * checkF); + state = valueIn * valueIg + prevState * valueFg; + valueOg = actGate(valueOg + state * checkO); + stateAtv = actState(state); + output = valueOg * stateAtv; + } +#ifndef __NVCC__ +#ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default + static const bool avx = false; +#else + // Only float support AVX optimization + static const bool avx = std::is_same::value; + + HOSTDEVICE void operator()(__m256 &valueIn, __m256 &valueIg, __m256 &valueFg, + __m256 &valueOg, __m256 &prevState, __m256 &state, + __m256 &stateAtv, __m256 &output, __m256 &checkI, + __m256 &checkF, __m256 &checkO, + hppl::Active<__m256>::forward actInput, + hppl::Active<__m256>::forward actGate, + hppl::Active<__m256>::forward actState) { + valueIn = actInput(valueIn); + valueIg = actGate(_mm256_add_ps(valueIg, _mm256_mul_ps(prevState, checkI))); + valueFg = actGate(_mm256_add_ps(valueFg, _mm256_mul_ps(prevState, checkF))); + state = _mm256_add_ps(_mm256_mul_ps(valueIn, valueIg), + _mm256_mul_ps(prevState, valueFg)); + valueOg = actGate(_mm256_add_ps(valueOg, _mm256_mul_ps(state, checkO))); + stateAtv = actState(state); + output = _mm256_mul_ps(valueOg, stateAtv); + } +#endif +#endif +}; + +} // namespace forward + +namespace backward { + +template +class lstm { + public: + HOSTDEVICE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg, + T &gradIn, T &gradIg, T &gradFg, T &gradOg, + T &prevState, T &prevStateGrad, T &state, + T &stateGrad, T &stateAtv, T &outputGrad, + T &checkI, T &checkF, T &checkO, T &checkIGrad, + T &checkFGrad, T &checkOGrad, + typename hppl::BackwardActType::type actInput, + typename hppl::BackwardActType::type actGate, + typename hppl::BackwardActType::type actState) { + gradOg = actGate(outputGrad * stateAtv, valueOg); + stateGrad += actState(outputGrad * valueOg, stateAtv) + gradOg * checkO; + gradIn = actInput(stateGrad * valueIg, valueIn); + gradIg = actGate(stateGrad * valueIn, valueIg); + gradFg = actGate(stateGrad * prevState, valueFg); + prevStateGrad = gradIg * checkI + gradFg * checkF + stateGrad * valueFg; + checkIGrad = gradIg * prevState; + checkFGrad = gradFg * prevState; + checkOGrad = gradOg * state; + } +#ifndef __NVCC__ +#ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default + static const bool avx = false; +#else + // Only float support AVX optimization + static const bool avx = std::is_same::value; + HOSTDEVICE void operator()(__m256 &valueIn, __m256 &valueIg, __m256 &valueFg, + __m256 &valueOg, __m256 &gradIn, __m256 &gradIg, + __m256 &gradFg, __m256 &gradOg, __m256 &prevState, + __m256 &prevStateGrad, __m256 &state, + __m256 &stateGrad, __m256 &stateAtv, + __m256 &outputGrad, __m256 &checkI, __m256 &checkF, + __m256 &checkO, __m256 &checkIGrad, + __m256 &checkFGrad, __m256 &checkOGrad, + hppl::Active<__m256>::backward actInput, + hppl::Active<__m256>::backward actGate, + hppl::Active<__m256>::backward actState) { + gradOg = actGate(_mm256_mul_ps(outputGrad, stateAtv), valueOg); + stateGrad = _mm256_add_ps( + actState(_mm256_mul_ps(outputGrad, valueOg), stateAtv), stateGrad); + stateGrad = _mm256_add_ps(_mm256_mul_ps(gradOg, checkO), stateGrad); + gradIn = actInput(_mm256_mul_ps(stateGrad, valueIg), valueIn); + gradIg = actGate(_mm256_mul_ps(stateGrad, valueIn), valueIg); + gradFg = actGate(_mm256_mul_ps(stateGrad, prevState), valueFg); + prevStateGrad = _mm256_add_ps(_mm256_mul_ps(gradIg, checkI), + _mm256_mul_ps(gradFg, checkF)); + prevStateGrad = + _mm256_add_ps(_mm256_mul_ps(stateGrad, valueFg), prevStateGrad); + checkIGrad = _mm256_mul_ps(gradIg, prevState); + checkFGrad = _mm256_mul_ps(gradFg, prevState); + checkOGrad = _mm256_mul_ps(gradOg, state); + } +#endif +#endif +}; + +} // namespace backward + +} // namespace detail +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc index c08a3380f042886cd400df0d840e61856274619c..3b1b0bd71dd3768b932864e185af8dc839b4653e 100644 --- a/paddle/operators/math/im2col.cc +++ b/paddle/operators/math/im2col.cc @@ -29,8 +29,8 @@ class Im2ColFunctor(); @@ -52,16 +68,14 @@ class Im2ColFunctor= input_height || - (im_col_idx - padding_width) < 0 || - (im_col_idx - padding_width) >= input_width) { + int im_row_idx = h * stride_height + h_offset - padding_up; + int im_col_idx = w * stride_width + w_offset - padding_left; + + if (im_row_idx < 0 || im_row_idx >= input_height || im_col_idx < 0 || + im_col_idx >= input_width) { col_data[(c * output_height + h) * output_width + w] = T(0); } else { - im_row_idx += c_im * input_height - padding_height; - im_col_idx -= padding_width; + im_row_idx += c_im * input_height; col_data[(c * output_height + h) * output_width + w] = im_data[im_row_idx * input_width + im_col_idx]; } @@ -82,7 +96,8 @@ class Col2ImFunctor(); @@ -103,14 +134,12 @@ class Col2ImFunctor= 0 && - (im_row_idx - padding_height) < input_height && - (im_col_idx - padding_width) >= 0 && - (im_col_idx - padding_width) < input_width) { - im_row_idx += c_im * input_height - padding_height; - im_col_idx -= padding_width; + int im_row_idx = h * stride_height + h_offset - padding_up; + int im_col_idx = w * stride_width + w_offset - padding_left; + + if ((im_row_idx) >= 0 && (im_row_idx) < input_height && + (im_col_idx) >= 0 && (im_col_idx) < input_width) { + im_row_idx += c_im * input_height; im_data[im_row_idx * input_width + im_col_idx] += col_data[(c * output_height + h) * output_width + w]; } @@ -140,8 +169,8 @@ class Im2ColFunctor(); T* col_data = col.data(); @@ -163,10 +207,10 @@ class Im2ColFunctor(); const T* col_data = col.data(); @@ -223,9 +283,9 @@ class Col2ImFunctor(context) .stream()>>>( im.data(), num_outputs, input_height, input_width, filter_height, - filter_width, stride_height, stride_width, padding_height, - padding_width, output_height, output_width, col.data()); + filter_width, stride_height, stride_width, padding_up, padding_left, + output_height, output_width, col.data()); } }; @@ -152,7 +161,8 @@ class Col2ImFunctor<<(context) .stream()>>>( - num_kernels, col.data(), input_height + 2 * padding_height, - input_width + 2 * padding_width, input_channels, filter_height, - filter_width, stride_height, stride_width, padding_height, - padding_width, output_height, output_width, im.data()); + num_kernels, col.data(), input_height + padding_up + padding_down, + input_width + padding_left + padding_left, input_channels, + filter_height, filter_width, stride_height, stride_width, padding_up, + padding_left, output_height, output_width, im.data()); } }; @@ -238,8 +258,8 @@ class Im2ColFunctor(context) .stream()>>>( im.data(), col.data(), input_channels, input_height, input_width, - filter_height, filter_width, stride_height, stride_width, - padding_height, padding_width, output_height, output_width); + filter_height, filter_width, stride_height, stride_width, padding_up, + padding_left, output_height, output_width); } }; @@ -322,7 +351,8 @@ class Col2ImFunctor(context) .stream()>>>( im.data(), col.data(), input_channels, input_height, input_width, - filter_height, filter_width, stride_height, stride_width, - padding_height, padding_width, output_height, output_width); + filter_height, filter_width, stride_height, stride_width, padding_up, + padding_left, output_height, output_width); } }; diff --git a/paddle/operators/math/im2col.h b/paddle/operators/math/im2col.h index 7b717e1603c94cd77c74cb0d86f1d23e2692f9d8..c736d4fa523c2af3e3dd7a11114d7f84021bc5c1 100644 --- a/paddle/operators/math/im2col.h +++ b/paddle/operators/math/im2col.h @@ -74,8 +74,8 @@ class Im2ColFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& im, framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width); + int stride_height, int stride_width, int padding_up, + int padding_down, int padding_left, int padding_right); }; template @@ -83,7 +83,8 @@ class Col2ImFunctor { public: void operator()(const platform::DeviceContext& context, framework::Tensor& im, const framework::Tensor& col, int stride_height, - int stride_width, int padding_height, int padding_width); + int stride_width, int padding_up, int padding_down, + int padding_left, int padding_right); }; } // namespace math diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 9c506ae89bdda38f40fb37e4c4e5f990cd5978b7..5763782c4edec87f44dabef2ccffe3097eeb2421 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -35,6 +35,12 @@ void testIm2col() { * * output_ocf = [0, 1, 3, 4 * 1, 2, 4, 5] + * + * col2im_cfo = [0, 2, 2 + * 3, 4, 5] + * + * col2im_ocf = [0, 2, 2 + * 3, 4, 5] */ int input_height = 2; int input_width = 3; @@ -59,18 +65,19 @@ void testIm2col() { new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); #else PADDLE_THROW("no GPU support"); -#endif // PADDLE_ONLY_CPU +#endif // PADDLE_WITH_CUDA } if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } output_cfo.mutable_data( {1, filter_size, filter_size, output_height, output_width}, *place); output_ocf.mutable_data( {output_height, output_width, 1, filter_size, filter_size}, *place); + // Im2Col paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kCFO, Place, float> im2col; @@ -78,42 +85,86 @@ void testIm2col() { paddle::operators::math::ColFormat::kOCF, Place, float> im2col_ocf; - im2col(*context, input, output_cfo, stride, stride, padding, padding); - im2col_ocf(*context, input, output_ocf, stride, stride, padding, padding); + im2col(*context, input, output_cfo, stride, stride, padding, padding, padding, + padding); + im2col_ocf(*context, input, output_ocf, stride, stride, padding, padding, + padding, padding); + + float out_cfo_data[] = {0, 1, 1, 2, 3, 4, 4, 5}; + float out_ocf_data[] = {0, 1, 3, 4, 1, 2, 4, 5}; float* out_cfo_ptr; if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output_cfo.data(); } else { - output_tmp.CopyFrom(output_cfo, paddle::platform::CPUPlace(), - *context); + output_tmp.CopyFrom(output_cfo, paddle::platform::CPUPlace(), *context); out_cfo_ptr = output_tmp.data(); } - EXPECT_EQ(out_cfo_ptr[0], 0); - EXPECT_EQ(out_cfo_ptr[1], 1); - EXPECT_EQ(out_cfo_ptr[2], 1); - EXPECT_EQ(out_cfo_ptr[3], 2); - EXPECT_EQ(out_cfo_ptr[4], 3); - EXPECT_EQ(out_cfo_ptr[5], 4); - EXPECT_EQ(out_cfo_ptr[6], 4); - EXPECT_EQ(out_cfo_ptr[7], 5); + for (int i = 0; i < 6; ++i) { + EXPECT_EQ(out_cfo_ptr[i], out_cfo_data[i]); + } float* out_ocf_ptr; if (paddle::platform::is_cpu_place(*place)) { out_ocf_ptr = output_ocf.data(); } else { - output_tmp.CopyFrom(output_ocf, paddle::platform::CPUPlace(), - *context); + output_tmp.CopyFrom(output_ocf, paddle::platform::CPUPlace(), *context); out_ocf_ptr = output_tmp.data(); } - EXPECT_EQ(out_ocf_ptr[0], 0); - EXPECT_EQ(out_ocf_ptr[1], 1); - EXPECT_EQ(out_ocf_ptr[2], 3); - EXPECT_EQ(out_ocf_ptr[3], 4); - EXPECT_EQ(out_ocf_ptr[4], 1); - EXPECT_EQ(out_ocf_ptr[5], 2); - EXPECT_EQ(out_ocf_ptr[6], 4); - EXPECT_EQ(out_ocf_ptr[7], 5); + for (int i = 0; i < 6; ++i) { + EXPECT_EQ(out_ocf_ptr[i], out_ocf_data[i]); + } + + // Col2Im: kCFO + paddle::operators::math::Col2ImFunctor< + paddle::operators::math::ColFormat::kCFO, Place, float> + col2im; + paddle::operators::math::Col2ImFunctor< + paddle::operators::math::ColFormat::kOCF, Place, float> + col2im_ocf; + float col2im_data[] = {0, 2, 2, 3, 8, 5}; + + memset(input_ptr, 0, 6 * sizeof(float)); + if (paddle::platform::is_cpu_place(*place)) { + input = input_tmp; + } else { + input.CopyFrom(input_tmp, *place, *context); + } + + col2im(*context, input, output_cfo, stride, stride, padding, padding, padding, + padding); + + float* in_ptr; + if (paddle::platform::is_cpu_place(*place)) { + in_ptr = input.data(); + } else { + input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); + in_ptr = input_tmp.data(); + } + for (int i = 0; i < 6; ++i) { + EXPECT_EQ(in_ptr[i], col2im_data[i]); + } + + // Col2Im: kOCF + memset(input_ptr, 0, 6 * sizeof(float)); + if (paddle::platform::is_cpu_place(*place)) { + input = input_tmp; + } else { + input.CopyFrom(input_tmp, *place, *context); + } + + col2im_ocf(*context, input, output_ocf, stride, stride, padding, padding, + padding, padding); + + if (paddle::platform::is_cpu_place(*place)) { + in_ptr = input.data(); + } else { + input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); + in_ptr = input_tmp.data(); + } + for (int i = 0; i < 6; ++i) { + EXPECT_EQ(in_ptr[i], col2im_data[i]); + } } TEST(math, im2col) { diff --git a/paddle/operators/math/lstm_compute.cc b/paddle/operators/math/lstm_compute.cc new file mode 100644 index 0000000000000000000000000000000000000000..0febf8e3b70111d12f858cf6259a2801a42d9a90 --- /dev/null +++ b/paddle/operators/math/lstm_compute.cc @@ -0,0 +1,82 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/lstm_compute.h" +#include "paddle/operators/math/detail/lstm_cpu_kernel.h" +#include "paddle/operators/math/detail/lstm_kernel.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct LstmUnitFunctor { + static void compute(const platform::DeviceContext& context, + LstmMetaValue value, int frame_size, int batch_size, + const std::string& gate_act, const std::string& cell_act, + const std::string& cand_act) { + for (int b = 0; b < batch_size; b++) { + detail::cpu_lstm_forward(detail::forward::lstm(), value, frame_size, + ActiveType(cand_act), ActiveType(gate_act), + ActiveType(cell_act)); + value.gateValue += frame_size * 4; + value.stateValue += frame_size; + value.stateActiveValue += frame_size; + value.outputValue += frame_size; + if (value.prevStateValue) { + value.prevStateValue += frame_size; + } + } + } +}; + +template +struct LstmUnitGradFunctor { + static void compute(const platform::DeviceContext& context, + LstmMetaValue value, LstmMetaGrad grad, + int frame_size, int batch_size, + const std::string& gate_act, const std::string& cell_act, + const std::string& cand_act) { + for (int b = 0; b < batch_size; b++) { + detail::cpu_lstm_backward(detail::backward::lstm(), value, grad, + frame_size, ActiveType(cand_act), + ActiveType(gate_act), ActiveType(cell_act)); + + value.gateValue += frame_size * 4; + value.stateValue += frame_size; + value.stateActiveValue += frame_size; + value.outputValue += frame_size; + if (value.prevStateValue) { + value.prevStateValue += frame_size; + } + + grad.gateGrad += frame_size * 4; + grad.stateGrad += frame_size; + grad.stateActiveGrad += frame_size; + grad.outputGrad += frame_size; + if (grad.prevStateGrad) { + grad.prevStateGrad += frame_size; + } + } + } +}; + +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/lstm_compute.cu b/paddle/operators/math/lstm_compute.cu new file mode 100644 index 0000000000000000000000000000000000000000..b2122f2a5c08a6d9d53293833177f0ba2c3ab860 --- /dev/null +++ b/paddle/operators/math/lstm_compute.cu @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/detail/lstm_gpu_kernel.h" +#include "paddle/operators/math/detail/lstm_kernel.h" +#include "paddle/operators/math/lstm_compute.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct LstmUnitFunctor { + static void compute(const platform::DeviceContext& context, + LstmMetaValue value, int frame_size, int batch_size, + const std::string& gate_act, const std::string& cell_act, + const std::string& cand_act) { + detail::gpu_lstm_forward(context, detail::forward::lstm(), value, + frame_size, batch_size, ActiveType(cand_act), + ActiveType(gate_act), ActiveType(cell_act)); + } +}; + +template +struct LstmUnitGradFunctor { + static void compute(const platform::DeviceContext& context, + LstmMetaValue value, LstmMetaGrad grad, + int frame_size, int batch_size, + const std::string& gate_act, const std::string& cell_act, + const std::string& cand_act) { + detail::gpu_lstm_backward(context, detail::backward::lstm(), value, grad, + frame_size, batch_size, ActiveType(cand_act), + ActiveType(gate_act), ActiveType(cell_act)); + } +}; + +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/lstm_compute.h b/paddle/operators/math/lstm_compute.h new file mode 100644 index 0000000000000000000000000000000000000000..28d2c6fd3b0d8143da90c37f241072e37397f98b --- /dev/null +++ b/paddle/operators/math/lstm_compute.h @@ -0,0 +1,91 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/platform/device_context.h" +#include "paddle/platform/enforce.h" + +namespace paddle { +namespace operators { +namespace math { + +typedef enum { + HL_ACTIVATION_SIGMOID = 0, + HL_ACTIVATION_RELU = 1, + HL_ACTIVATION_TANH = 2, + HL_ACTIVATION_LINEAR = 3, + HL_ACTIVATION_END +} activation_mode_t; + +template +struct LstmMetaValue { + T *gateValue; + T *prevStateValue; + T *stateValue; + T *stateActiveValue; + T *outputValue; + T *checkIg; + T *checkFg; + T *checkOg; +}; + +template +struct LstmMetaGrad { + T *gateGrad; + T *prevStateGrad; + T *stateGrad; + T *stateActiveGrad; + T *outputGrad; + T *checkIgGrad; + T *checkFgGrad; + T *checkOgGrad; +}; + +inline activation_mode_t ActiveType(const std::string &type) { + if (type == "sigmoid") { + return HL_ACTIVATION_SIGMOID; + } else if (type == "relu") { + return HL_ACTIVATION_RELU; + } else if (type == "tanh") { + return HL_ACTIVATION_TANH; + } else if (type == "linear" || type == "identity" || type == "") { + return HL_ACTIVATION_LINEAR; + } else { + PADDLE_THROW("Do not support activation type."); + } +} + +template +class LstmUnitFunctor { + public: + static void compute(const platform::DeviceContext &context, + LstmMetaValue value, int frame_size, int batch_size, + const std::string &gate_act, const std::string &cell_act, + const std::string &cand_act); +}; + +template +class LstmUnitGradFunctor { + public: + static void compute(const platform::DeviceContext &context, + LstmMetaValue value, LstmMetaGrad grad, + int frame_size, int batch_size, + const std::string &gate_act, const std::string &cell_act, + const std::string &cand_act); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index 77a1e22b41e8dcd1fe78f3c4730653dee04db80e..aad1357598c629a4edfe0ad9b23f0241093a2522 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -130,6 +130,87 @@ void matmul( matrix_b.data(), beta, matrix_out->data()); } +#ifdef PADDLE_USE_MKLML +// Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize. +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + auto a_array = std::vector(batchCount); + auto b_array = std::vector(batchCount); + auto c_array = std::vector(batchCount); + for (int k = 0; k < batchCount; ++k) { + a_array[k] = &A[k * strideA]; + b_array[k] = &B[k * strideB]; + c_array[k] = &C[k * M * N]; + } + cblas_sgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, + a_array.data(), &lda, b_array.data(), &ldb, &beta, + c_array.data(), &ldc, 1 /* group_count */, &batchCount); +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + auto a_array = std::vector(batchCount); + auto b_array = std::vector(batchCount); + auto c_array = std::vector(batchCount); + for (int k = 0; k < batchCount; ++k) { + a_array[k] = &A[k * strideA]; + b_array[k] = &B[k * strideB]; + c_array[k] = &C[k * M * N]; + } + cblas_dgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, + a_array.data(), &lda, b_array.data(), &ldb, &beta, + c_array.data(), &ldc, 1 /* group_count */, &batchCount); +} +#else +// The below is a naive but correct serial implementation that just loops +// over the batch dimension. This is a fallback for when the batched gemm +// functions of Intel MKL are not available. In the future, this computation +// should be parallelized. +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + for (int k = 0; k < batchCount; ++k) { + const float* Ak = &A[k * strideA]; + const float* Bk = &B[k * strideB]; + float* Ck = &C[k * M * N]; + gemm(context, transA, transB, M, N, K, alpha, Ak, + Bk, beta, Ck); + } +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + for (int k = 0; k < batchCount; ++k) { + const double* Ak = &A[k * strideA]; + const double* Bk = &B[k * strideB]; + double* Ck = &C[k * M * N]; + gemm(context, transA, transB, M, N, K, alpha, + Ak, Bk, beta, Ck); + } +} +#endif + template struct SetConstant; } // namespace math diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu index 7fbc03acf22231a6fa386aa67e43f738eadb18d3..5583683c6e12b88ba81015aef9161913de261ef2 100644 --- a/paddle/operators/math/math_function.cu +++ b/paddle/operators/math/math_function.cu @@ -155,6 +155,54 @@ void matmul( matrix_b.data(), beta, matrix_out->data()); } +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C, const int batchCount, const int strideA, const int strideB) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + const int strideC = M * N; + + PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, + &beta, C, ldc, strideC, batchCount)); +} + +template <> +void batched_gemm( + const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C, const int batchCount, const int strideA, const int strideB) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + int lda = (transA == CblasNoTrans) ? K : M; + int ldb = (transB == CblasNoTrans) ? N : K; + int ldc = N; + cublasOperation_t cuTransA = + (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = + (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; + const int strideC = M * N; + + PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, + &beta, C, ldc, strideC, batchCount)); +} + template struct SetConstant; } // namespace math diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h index 6f92d83aabbc77f7ea7d4159869e07126b270740..9777ebfd156709a370be2cb4ba0077ac7c6735fb 100644 --- a/paddle/operators/math/math_function.h +++ b/paddle/operators/math/math_function.h @@ -63,7 +63,7 @@ namespace math { // Support continuous memory now // If transA = N, and transB = N -// Then matrixA: M * K, matrixB: K * N matrixC : M * N +// Then matrixA: M * K, matrixB: K * N, matrixC : M * N // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html template @@ -85,6 +85,14 @@ void matmul(const platform::DeviceContext& context, const framework::Tensor& matrix_b, bool trans_b, T alpha, framework::Tensor* matrix_out, T beta); +// Batched gemm +template +void batched_gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, + const int M, const int N, const int K, const T alpha, + const T* A, const T* B, const T beta, T* C, + const int batchCount, const int strideA, const int strideB); + template struct SetConstant { void operator()(const platform::DeviceContext& context, diff --git a/paddle/operators/math/math_function_test.cu b/paddle/operators/math/math_function_test.cu index 14359d835bba794703a313d70f34082868474b20..8b22c71552a65044cbd02441fb35c1eafe0173dc 100644 --- a/paddle/operators/math/math_function_test.cu +++ b/paddle/operators/math/math_function_test.cu @@ -16,15 +16,15 @@ TEST(math_function, notrans_mul_trans) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input1, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input1, *gpu_place, context); out_gpu.mutable_data({2, 2}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); - out.CopyFrom(out_gpu, *cpu_place, context); + out.CopyFrom(out_gpu, *cpu_place, context); float* out_ptr = out.data(); context.Wait(); @@ -50,15 +50,15 @@ TEST(math_function, trans_mul_notrans) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input1, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input1, *gpu_place, context); out_gpu.mutable_data({3, 3}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); - out.CopyFrom(out_gpu, *cpu_place, context); + out.CopyFrom(out_gpu, *cpu_place, context); float* out_ptr = out.data(); context.Wait(); @@ -99,9 +99,9 @@ TEST(math_function, gemm_notrans_cublas) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input2, *gpu_place, context); - input3_gpu.CopyFrom(input3, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input2, *gpu_place, context); + input3_gpu.CopyFrom(input3, *gpu_place, context); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -109,7 +109,7 @@ TEST(math_function, gemm_notrans_cublas) { paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); - input3.CopyFrom(input3_gpu, *cpu_place, context); + input3.CopyFrom(input3_gpu, *cpu_place, context); // numpy code: // a = np.arange(6).reshape(2, 3) @@ -154,9 +154,9 @@ TEST(math_function, gemm_trans_cublas) { auto* gpu_place = new paddle::platform::GPUPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); - input1_gpu.CopyFrom(input1, *gpu_place, context); - input2_gpu.CopyFrom(input2, *gpu_place, context); - input3_gpu.CopyFrom(input3, *gpu_place, context); + input1_gpu.CopyFrom(input1, *gpu_place, context); + input2_gpu.CopyFrom(input2, *gpu_place, context); + input3_gpu.CopyFrom(input3, *gpu_place, context); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); @@ -164,7 +164,7 @@ TEST(math_function, gemm_trans_cublas) { paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); - input3.CopyFrom(input3_gpu, *cpu_place, context); + input3.CopyFrom(input3_gpu, *cpu_place, context); context.Wait(); EXPECT_EQ(input3_ptr[0], 0); diff --git a/paddle/operators/math/matmul.h b/paddle/operators/math/matmul.h new file mode 100644 index 0000000000000000000000000000000000000000..6ba9a0ba9a70bd938f9362179990ab68fa3186ba --- /dev/null +++ b/paddle/operators/math/matmul.h @@ -0,0 +1,124 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { +namespace math { + +// Implements the logic of numpy matmul: +// https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html +// +// but allowing also for a, b to be transposed +// +// Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported +// yet. +template +class MatMulFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& a, bool trans_a, + const framework::Tensor& b, bool trans_b, T alpha, + framework::Tensor* out, T beta) { + auto dim_a = a.dims(); + auto dim_b = b.dims(); + + PADDLE_ENFORCE(a.place() == b.place() && b.place() == out->place(), + "Tensors must all be in the same place."); + PADDLE_ENFORCE_GE(dim_a.size(), 1, + "Input tensor a must be at least 1-dimensional."); + PADDLE_ENFORCE_GE(dim_b.size(), 1, + "Input tensor b must be at least 1-dimensional."); + PADDLE_ENFORCE_LE(dim_a.size(), 3, + "Input tensor a must be at most 3-dimensional."); + PADDLE_ENFORCE_LE(dim_b.size(), 3, + "Input tensor b must be at most 3-dimensional."); + + int M = 0, N = 0, kA = 0, kB = 0, batchCountA = 0, batchCountB = 0, + strideA = 0, strideB = 0; + + switch (dim_a.size()) { + case 1: + // similar to np.matmul: + // prepend dimension 1 (no transpose) or append dimension 1 (transpose) + M = trans_a ? dim_a[0] : 1; + kA = trans_a ? 1 : dim_a[0]; + break; + case 2: + M = trans_a ? dim_a[1] : dim_a[0]; + kA = trans_a ? dim_a[0] : dim_a[1]; + break; + case 3: + batchCountA = dim_a[0]; + M = trans_a ? dim_a[2] : dim_a[1]; + kA = trans_a ? dim_a[1] : dim_a[2]; + strideA = M * kA; + break; + default: + assert(false); + } + + switch (dim_b.size()) { + case 1: + // similar to np.matmul: + // append dimension 1 (no transpose) or prepend dimension 1 (transpose) + kB = trans_b ? 1 : dim_b[0]; + N = trans_b ? dim_b[0] : 1; + break; + case 2: + kB = trans_b ? dim_b[1] : dim_b[0]; + N = trans_b ? dim_b[0] : dim_b[1]; + break; + case 3: + batchCountB = dim_b[0]; + kB = trans_b ? dim_b[2] : dim_b[1]; + N = trans_b ? dim_b[1] : dim_b[2]; + strideB = kB * N; + break; + default: + assert(false); + } + + PADDLE_ENFORCE_EQ( + kA, kB, + "First matrix's width must be equal with second matrix's height."); + if (batchCountA && batchCountB) { + PADDLE_ENFORCE_EQ( + batchCountA, batchCountB, + "When input tensors a and b are both batched, they must have the " + "same batch dimension."); + } + int batchCount = std::max(batchCountA, batchCountB); + + CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; + CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; + + if (!batchCount) { + // regular matrix multiplication + gemm(context, transA, transB, M, N, kA, alpha, a.data(), + b.data(), beta, out->data()); + } else { + // batched matrix multiplication + batched_gemm(context, transA, transB, M, N, kA, alpha, + a.data(), b.data(), beta, out->data(), + batchCount, strideA, strideB); + } + } +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor_test.cu b/paddle/operators/math/selected_rows_functor_test.cu index 8a9f25b98263c3bef50c38f358a20ea98ebe6324..69607c5afc46921c08ce278bf164e5bed7b446f8 100644 --- a/paddle/operators/math/selected_rows_functor_test.cu +++ b/paddle/operators/math/selected_rows_functor_test.cu @@ -67,7 +67,7 @@ TEST(selected_rows_functor, gpu_add) { EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; - out_cpu.CopyFrom(*out_value, cpu_place, ctx); + out_cpu.CopyFrom(*out_value, cpu_place, ctx); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); @@ -94,7 +94,7 @@ TEST(selected_rows_functor, gpu_add) { add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; - tensor2_cpu.CopyFrom(*tensor2, cpu_place, ctx); + tensor2_cpu.CopyFrom(*tensor2, cpu_place, ctx); ctx.Wait(); auto* tensor2_cpu_data = tensor2_cpu.data(); diff --git a/paddle/operators/math/sequence2batch.cc b/paddle/operators/math/sequence2batch.cc new file mode 100644 index 0000000000000000000000000000000000000000..10c6e105b950b9d510e7a14828d72531e8eb0028 --- /dev/null +++ b/paddle/operators/math/sequence2batch.cc @@ -0,0 +1,61 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence2batch.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class CopyMatrixRowsFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::LoDTensor& src, const size_t* index, + framework::LoDTensor& dst, bool is_src_index) { + auto src_dims = src.dims(); + auto dst_dims = dst.dims(); + PADDLE_ENFORCE_EQ(src_dims.size(), 2UL, + "The src must be matrix with rank 2."); + PADDLE_ENFORCE_EQ(dst_dims.size(), 2UL, + "The dst must be matrix with rank 2."); + PADDLE_ENFORCE_EQ(src_dims[1], dst_dims[1], + "The width of src and dst must be same."); + auto height = dst_dims[0]; + auto width = dst_dims[1]; + auto* src_data = src.data(); + auto* dst_data = dst.data(); + for (int i = 0; i < height; ++i) { + if (is_src_index) { + memcpy(dst_data + i * width, src_data + index[i] * width, + width * sizeof(T)); + } else { + memcpy(dst_data + index[i] * width, src_data + i * width, + width * sizeof(T)); + } + } + } +}; + +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; + +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence2batch.cu b/paddle/operators/math/sequence2batch.cu new file mode 100644 index 0000000000000000000000000000000000000000..4f349946785171e6c59b22163ba76791c7244f88 --- /dev/null +++ b/paddle/operators/math/sequence2batch.cu @@ -0,0 +1,78 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/sequence2batch.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void CopyMatrixRowsKernel(const T* src, T* dst, const size_t* index, + int64_t height, int64_t width, + bool is_src_index) { + int idx = threadIdx.x; + int idy = threadIdx.y; + int id = blockIdx.x + idy * GridDimX; + while (id < height) { + int src_idx = is_src_index ? index[id] : id; + int dst_idx = is_src_index ? id : index[id]; + const T* src_data = src + src_idx * width; + T* dst_data = dst + dst_idx * width; + for (int i = idx; i < width; i += BlockDimX) { + dst_data[i] = src_data[i]; + } + id += BlockDimY * GridDimX; + } +} + +template +class CopyMatrixRowsFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::LoDTensor& src, const size_t* index, + framework::LoDTensor& dst, bool is_src_index) { + auto src_dims = src.dims(); + auto dst_dims = dst.dims(); + PADDLE_ENFORCE_EQ(src_dims.size(), 2, + "The src must be matrix with rank 2."); + PADDLE_ENFORCE_EQ(dst_dims.size(), 2, + "The dst must be matrix with rank 2."); + PADDLE_ENFORCE_EQ(src_dims[1], dst_dims[1], + "The width of src and dst must be same."); + auto height = dst_dims[0]; + auto width = dst_dims[1]; + auto* src_data = src.data(); + auto* dst_data = dst.data(); + + dim3 threads(128, 8); + dim3 grid(8, 1); + auto stream = + reinterpret_cast(context).stream(); + CopyMatrixRowsKernel<<>>( + src_data, dst_data, index, height, width, is_src_index); + } +}; + +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; + +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/sequence2batch.h b/paddle/operators/math/sequence2batch.h new file mode 100644 index 0000000000000000000000000000000000000000..03cd018e46e90c9bbe689c9686377e0e998ee513 --- /dev/null +++ b/paddle/operators/math/sequence2batch.h @@ -0,0 +1,148 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class CopyMatrixRowsFunctor { + public: + // If is_src_index is true, + // copy the indexed rows of input src to the output dst. + // If is_src_index is false, + // copy the input src to the indexed rows of output dst. + // The indexed rows are based on the input index. + void operator()(const platform::DeviceContext& context, + const framework::LoDTensor& src, const size_t* index, + framework::LoDTensor& dst, bool is_src_index); +}; + +template +class LoDTensor2BatchFunctor { + // Calculate the length of each sequence and + // sort sequence index by the length. + // example: sequences = {s0, s1, s2} + // s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2 + // seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)} + // + struct SeqInfo { + SeqInfo(int start, int length, int seq_idx) + : start(start), length(length), seq_idx(seq_idx) {} + int start; + int length; + int seq_idx; + }; + + public: + void operator()(const platform::DeviceContext& context, + const framework::LoDTensor& lod_tensor, + framework::LoDTensor& batch, bool is_reverse) const { + auto lods = lod_tensor.lod(); + PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now."); + auto lod = lods[0]; + + std::vector seq_info; + for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) { + int length = lod[seq_id + 1] - lod[seq_id]; + seq_info.emplace_back(lod[seq_id], length, seq_id); + } + + std::sort(seq_info.begin(), seq_info.end(), + [](SeqInfo a, SeqInfo b) { return a.length > b.length; }); + + // calculate the start position of each batch + // (numBatch equal the maxLength of sequences) + // example: sequences = {s0, s1, s2} + // s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2 + // num_batch = 5, + // batchIndex = {b0, b1, b2, b3, b4} + // b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1 + // batch_start_positions[6] = {0, 3, 6, 9, 11, 12} + // batch_start_positions[0] = len(b0) + // batch_start_positions[1] = len(b0) + len(b1) + // batch_start_positions[2] = len(b0) + len(b1) + len(b2) + // ... + // seq2batch_idx[12] = {4, 0, 9, + // 5, 1, 10, + // 6, 2, 11, + // 7, 3, + // 8} + // The batch number represents batch size after rearranging the + // input LodTensor. It is also the maximum length of input sequence. + + paddle::framework::LoD batch_lods; + batch_lods.emplace_back(std::vector{0}); + batch_lods.emplace_back(std::vector{0}); + + // batch_lods[0] is the start positions for batch LoDTensor + int num_batch = seq_info[0].length; + batch_lods[0].resize(static_cast(num_batch + 1)); + // batch_lods[1] is the raw index in the input LoDTensor + auto dims = lod_tensor.dims(); + batch_lods[1].resize(static_cast(dims[0])); + + size_t* batch_starts = batch_lods[0].data(); + size_t* seq2batch_idx = batch_lods[1].data(); + batch_starts[0] = 0; + for (size_t n = 0; n < num_batch; n++) { + auto batch_id = static_cast(batch_starts[n]); + for (size_t i = 0; i < seq_info.size(); ++i) { + size_t seq_len = seq_info[i].length; + int start = seq_info[i].start; + if (n < seq_len) { + seq2batch_idx[batch_id] = + is_reverse ? start + seq_len - 1 - n : start + n; + batch_id++; + } else { + break; + } + } + batch_starts[n + 1] = static_cast(batch_id); + } + batch.set_lod(batch_lods); + + CopyMatrixRowsFunctor to_batch; + to_batch(context, lod_tensor, seq2batch_idx, batch, true); + } +}; + +template +class Batch2LoDTensorFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::LoDTensor& batch, + framework::LoDTensor& lod_tensor) const { + auto in_lod = batch.lod(); + PADDLE_ENFORCE_EQ(in_lod.size(), 2UL, + "The LoD size of input `batch` should be 2."); + auto out_lod = lod_tensor.lod()[0]; + auto num = out_lod[out_lod.size() - 1]; + PADDLE_ENFORCE_EQ(num, lod_tensor.dims()[0]); + PADDLE_ENFORCE_EQ(num, in_lod[1].size()); + PADDLE_ENFORCE_EQ(num, batch.dims()[0]); + CopyMatrixRowsFunctor to_seq; + size_t* index = in_lod[1].data(); + to_seq(context, batch, index, lod_tensor, false); + } +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/vol2col_test.cc b/paddle/operators/math/vol2col_test.cc index 2d69218843a69497b5b501d4297f2ec5ab26a844..74590d17cd0f974f830e760d85daef8ab5318a43 100644 --- a/paddle/operators/math/vol2col_test.cc +++ b/paddle/operators/math/vol2col_test.cc @@ -78,7 +78,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } output.mutable_data({1, filter_size, filter_size, filter_size, output_depth, output_height, output_width}, @@ -93,7 +93,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { out_cfo_ptr = output.data(); } else { - output_tmp.CopyFrom(output, paddle::platform::CPUPlace(), *context); + output_tmp.CopyFrom(output, paddle::platform::CPUPlace(), *context); out_cfo_ptr = output_tmp.data(); } @@ -107,7 +107,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { - input.CopyFrom(input_tmp, *place, *context); + input.CopyFrom(input_tmp, *place, *context); } paddle::operators::math::Col2VolFunctor col2vol; @@ -118,7 +118,7 @@ void testVol2col() { if (paddle::platform::is_cpu_place(*place)) { in_ptr = input.data(); } else { - input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); + input_tmp.CopyFrom(input, paddle::platform::CPUPlace(), *context); in_ptr = input_tmp.data(); } diff --git a/paddle/operators/matmul_op.cc b/paddle/operators/matmul_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..5ecbee3b413617e3a5523d9a32e72bc08bd316c5 --- /dev/null +++ b/paddle/operators/matmul_op.cc @@ -0,0 +1,208 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/matmul_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class MatMulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("X"), + "Input(X) of MatMulOp should not be null."); + PADDLE_ENFORCE(context->HasInput("Y"), + "Input(Y) of MatMulOp should not be null."); + PADDLE_ENFORCE(context->HasOutput("Out"), + "Output(Out) of MatMulOp should not be null."); + + auto dim_x = context->GetInputDim("X"); + auto dim_y = context->GetInputDim("Y"); + bool transpose_x = context->Attrs().Get("transpose_X"); + bool transpose_y = context->Attrs().Get("transpose_Y"); + + PADDLE_ENFORCE_GE(dim_x.size(), 1, + "Input tensor X must be at least 1-dimensional."); + PADDLE_ENFORCE_GE(dim_y.size(), 1, + "Input tensor Y must be at least 1-dimensional."); + PADDLE_ENFORCE_LE(dim_x.size(), 3, + "Input tensor X must be at most 3-dimensional."); + PADDLE_ENFORCE_LE(dim_y.size(), 3, + "Input tensor Y must be at most 3-dimensional."); + + int M = 0, N = 0, KX = 0, KY = 0, batchCountX = 0, batchCountY = 0; + bool remove_initial_dim = false, remove_final_dim = false; + + switch (dim_x.size()) { + case 1: + if (transpose_x) { + M = dim_x[0]; + KX = 1; + } else { + M = 1; + KX = dim_x[0]; + remove_initial_dim = true; + } + break; + case 2: + M = transpose_x ? dim_x[1] : dim_x[0]; + KX = transpose_x ? dim_x[0] : dim_x[1]; + break; + case 3: + batchCountX = dim_x[0]; + M = transpose_x ? dim_x[2] : dim_x[1]; + KX = transpose_x ? dim_x[1] : dim_x[2]; + break; + default: + assert(false); + } + + switch (dim_y.size()) { + case 1: + if (transpose_y) { + N = dim_y[0]; + KY = 1; + } else { + N = 1; + KY = dim_y[0]; + remove_final_dim = true; + } + break; + case 2: + KY = transpose_y ? dim_y[1] : dim_y[0]; + N = transpose_y ? dim_y[0] : dim_y[1]; + break; + case 3: + batchCountY = dim_y[0]; + KY = transpose_y ? dim_y[2] : dim_y[1]; + N = transpose_y ? dim_y[1] : dim_y[2]; + break; + default: + assert(false); + } + + PADDLE_ENFORCE_EQ( + KX, KY, + "First matrix's width must be equal with second matrix's height."); + if (batchCountX && batchCountY) { + PADDLE_ENFORCE_EQ( + batchCountX, batchCountY, + "When Input(X) and Input(Y) are both three dimensional, they " + "must have the same batch dimension."); + } + int batchCount = std::max(batchCountX, batchCountY); + + std::vector dim_out; + if (batchCount) { + dim_out.push_back(batchCount); + } + if (!remove_initial_dim) { + dim_out.push_back(M); + } + if (!remove_final_dim) { + dim_out.push_back(N); + } + if (dim_out.size() == 0) { + // We don't support 0-dimensional Tensors (scalars), so instead + // treat the output as a Tensor of shape (1, ) in this case. + dim_out.push_back(1); + } + context->SetOutputDim("Out", framework::make_ddim(dim_out)); + context->ShareLoD("X", /*->*/ "Out"); + } +}; + +class MatMulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MatMulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The first input of MatMul op"); + AddInput("Y", "The second input of MatMul op"); + AddOutput("Out", "The output of MatMul op"); + AddAttr("transpose_X", + R"DOC(If true, use the transpose of `X`. + )DOC") + .SetDefault(false); + AddAttr("transpose_Y", + R"DOC(If true, use the transpose of `Y`. + )DOC") + .SetDefault(false); + AddComment(R"DOC( +The MatMul operator is used to perform (batched) matrix multiplication +over the last two dimensions of the input tensors `X` and `Y`. + +If a transpose flag is specified, the last two dimensions of the +tensor are transposed. If the tensor is rank-1 of shape [D], then +for `X` it is treated as [1, D] in nontransposed form and as [D, 1] +in transposed form, whereas for `Y` it is the opposite: It is treated +as [D, 1] in nontransposed form and as [1, D] in transposed form. + +Examples without transpose: +- X: [K], Y: [K] => Out: [1] +- X: [K], Y: [K, N] => Out: [N] +- X: [B, M, K], Y: [K] => Out: [B, M] +- X: [M, K], Y: [B, K, N] => Out: [B, M, N] +- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N] + +The behavior is designed to be similar to the `numpy.matmul` function. +The differences are: +- Currently only rank 1 to rank 3 input tensors are supported. +- We add `transpose_X` and `transpose_Y` flags. + +Both the input `X` and `Y` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. +)DOC"); + } +}; + +class MatMulOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* context) const override { + PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = context->GetInputDim("X"); + auto y_dims = context->GetInputDim("Y"); + + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + + if (context->HasOutput(x_grad_name)) { + context->SetOutputDim(x_grad_name, x_dims); + } + if (context->HasOutput(y_grad_name)) { + context->SetOutputDim(y_grad_name, y_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(matmul, ops::MatMulOp, ops::MatMulOpMaker, matmul_grad, + ops::MatMulOpGrad); +REGISTER_OP_CPU_KERNEL(matmul, + ops::MatMulKernel); +REGISTER_OP_CPU_KERNEL( + matmul_grad, ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.cu b/paddle/operators/matmul_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..b7e66382f00445b087e14103e7a148d450b37405 --- /dev/null +++ b/paddle/operators/matmul_op.cu @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/matmul_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(matmul, + ops::MatMulKernel); +REGISTER_OP_GPU_KERNEL( + matmul_grad, ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.h b/paddle/operators/matmul_op.h new file mode 100644 index 0000000000000000000000000000000000000000..5ce30740c90b5cd0bd4f8ab183cf985ed5d827c1 --- /dev/null +++ b/paddle/operators/matmul_op.h @@ -0,0 +1,228 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + You may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/matmul.h" +#include "paddle/operators/transpose_op.h" + +namespace paddle { +namespace operators { +namespace matmul_detail { + +using Tensor = framework::Tensor; +using DDim = framework::DDim; +using framework::make_ddim; +using framework::vectorize; + +template +class MatMulKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor& x = *context.Input("X"); + const Tensor& y = *context.Input("Y"); + Tensor* out = context.Output("Out"); + out->mutable_data(context.GetPlace()); + bool transpose_x = context.Attr("transpose_X"); + bool transpose_y = context.Attr("transpose_Y"); + + math::MatMulFunctor()(context.device_context(), x, transpose_x, y, + transpose_y, T(1), out, T(0)); + } +}; + +template +inline Tensor Reshape(const Tensor& input, const DDim& dims) { + Tensor output; + output.ShareDataWith(input); + output.Resize(dims); + return output; +} + +// Reshape a rank-3 tensor from P x M x N to (P * M) x N. +// Identity op if the tensor is not of rank 3. +template +Tensor CombineBatchAndM(const Tensor& input) { + Tensor output; + output.ShareDataWith(input); + auto in_dims = input.dims(); + if (in_dims.size() == 3) { + std::vector out_dims = {in_dims[0] * in_dims[1], in_dims[2]}; + output.Resize(make_ddim(out_dims)); + } + return output; +} + +// Reshape a rank-3 tensor from P x M x N to M x (P * N). +// (Warning: This requires transposing data and writes into new memory.) +// Identity op if the tensor is not of rank 3. +template +Tensor CombineBatchAndN(const framework::ExecutionContext& context, + const Tensor& input) { + Tensor output; + auto in_dims = input.dims(); + if (in_dims.size() == 3) { + output.Resize(in_dims); + output.mutable_data(context.GetPlace()); + EigenTranspose(context, input, output, {1, 0, 2}); + std::vector out_dims = {in_dims[1], in_dims[0] * in_dims[2]}; + output.Resize(make_ddim(out_dims)); + } else { + output.ShareDataWith(input); + } + return output; +} + +// Using dimensional constraints on matrix multiplication, it is +// straight-forward to check the following table for when X and Y +// are both matrices. +// +// transpose_X | False | True | False | True +// transpose_Y | False | False | True | True +// -----------+----------+----------+----------+----------- +// dX = | dOut Y^T | Y dOut^T | dOut Y | Y^T dOut^T +// dY = | X^T dOut | X dOut | dOut^T X | dOut^T X^T +// +// When X is a vector of size K, we treat it instead as a matrix of shape +// (1, K). Similarly, when Y is a vector of size K, we treat it instead as +// a matrix of shape (K, 1). +// +// When X and Y are both 3-dimensional tensors, then the first dimension +// the batch dimension can be ignored and the exact same formulas apply +// as for two matrices. +// +// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end +// up with formulas like +// +// dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj} +// +// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N +// to X: (P * M) x K, dOut: (P * M) x N. +template +class MatMulGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor& x = *context.Input("X"); + const Tensor& y = *context.Input("Y"); + const Tensor& dout = *context.Input(framework::GradVarName("Out")); + Tensor* dx = context.Output(framework::GradVarName("X")); + Tensor* dy = context.Output(framework::GradVarName("Y")); + bool transpose_x = context.Attr("transpose_X"); + bool transpose_y = context.Attr("transpose_Y"); + + std::vector x_dims = vectorize(x.dims()); + std::vector y_dims = vectorize(y.dims()); + + // If X is a vector, reshape it to a matrix. + if (x_dims.size() == 1) { + x_dims.insert(x_dims.begin(), 1); + } + + // If Y is a vector, reshape it to a matrix. + if (y_dims.size() == 1) { + y_dims.push_back(1); + } + + // Fix the dOut dimensions. + int M = 0, N = 0, batchCountX = 0, batchCountY = 0; + + switch (x_dims.size()) { + case 2: + M = transpose_x ? x_dims[1] : x_dims[0]; + break; + case 3: + batchCountX = x_dims[0]; + M = transpose_x ? x_dims[2] : x_dims[1]; + break; + default: + assert(false); + } + + switch (y_dims.size()) { + case 2: + N = transpose_y ? y_dims[0] : y_dims[1]; + break; + case 3: + batchCountY = y_dims[0]; + N = transpose_y ? y_dims[1] : y_dims[2]; + break; + default: + assert(false); + } + if (batchCountX && batchCountY) { + PADDLE_ENFORCE_EQ( + batchCountX, batchCountY, + "When Input(X) and Input(Y) are both three dimensional, they " + "must have the same batch dimension."); + } + int batchCount = std::max(batchCountX, batchCountY); + std::vector dout_dims = {M, N}; + if (batchCount) { + dout_dims.insert(dout_dims.begin(), batchCount); + } + Tensor X = Reshape(x, make_ddim(x_dims)); + Tensor Y = Reshape(y, make_ddim(y_dims)); + Tensor dOut = Reshape(dout, make_ddim(dout_dims)); + + if (dx) { + dx->mutable_data(context.GetPlace()); + const Tensor& dOut_for_dX = + (x_dims.size() == 2 && y_dims.size() == 3) + ? CombineBatchAndN(context, dOut) + : dOut; + if (x_dims.size() == 2 && y_dims.size() == 3) { + Y = transpose_y ? CombineBatchAndM(Y) + : CombineBatchAndN(context, Y); + } + if (transpose_x) { + math::MatMulFunctor()(context.device_context(), Y, + transpose_y, dOut_for_dX, transpose_x, + T(1), dx, T(0)); + } else { + math::MatMulFunctor()(context.device_context(), dOut_for_dX, + transpose_x, Y, !transpose_y, T(1), dx, + T(0)); + } + } + + if (dy) { + dy->mutable_data(context.GetPlace()); + const Tensor& dOut_for_dY = (y_dims.size() == 2 && x_dims.size() == 3) + ? CombineBatchAndM(dOut) + : dOut; + if (y_dims.size() == 2 && x_dims.size() == 3) { + X = transpose_x ? CombineBatchAndN(context, X) + : CombineBatchAndM(X); + dOut = CombineBatchAndM(dOut); + } + if (transpose_y) { + math::MatMulFunctor()(context.device_context(), dOut_for_dY, + transpose_y, X, transpose_x, T(1), dy, + T(0)); + } else { + math::MatMulFunctor()(context.device_context(), X, + !transpose_x, dOut_for_dY, transpose_y, + T(1), dy, T(0)); + } + } + } +}; +} // namespace matmul_detail + +using matmul_detail::MatMulKernel; +using matmul_detail::MatMulGradKernel; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/momentum_op.cc b/paddle/operators/momentum_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..2d4d6f13720f0e6888edbddcb3243116506227ba --- /dev/null +++ b/paddle/operators/momentum_op.cc @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/momentum_op.h" + +namespace paddle { +namespace operators { + +class MomentumOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(param) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(grad) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Velocity"), + "Input(velocity) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of Momentum should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of Momentum should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"), + "Output(VelocityOut) of Momentum should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Grad"), + "Param and Grad input of MomentumOp should have the same dimension."); + PADDLE_ENFORCE_EQ( + param_dim, ctx->GetInputDim("Velocity"), + "Param and Velocity of MomentumOp should have the same dimension."); + PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1, + "Learning_rate should be a scalar"); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("VelocityOut", param_dim); + } +}; + +class MomentumOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MomentumOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter that has to be updated"); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter"); + AddInput("Velocity", + "(Tensor, default Tensor) " + "Input velocity (corresponding to the parameter) " + "that has to be updated"); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "Input learning rate"); + + AddOutput("ParamOut", "(Tensor) Output updated parameter"); + AddOutput("VelocityOut", "(Tensor) Output updated velocity"); + + AddAttr("mu", "(float) Momentum coefficient"); + AddAttr("useNesterov", "(bool) Use Nesterov Momentum") + .SetDefault(false); + AddComment(R"DOC( + +Momentum Algorithm with a flag for Nestrov Moemntum (momentum). + +velocity = mu * velocity + gradient +if (use_nesterov): + param = param - gradient * learning_rate + mu * velocity * learning_rate +else: + param = param - learning_rate * velocity + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker); +REGISTER_OP_CPU_KERNEL( + momentum, ops::MomentumOpKernel); diff --git a/paddle/operators/momentum_op.cu b/paddle/operators/momentum_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..efc24e795e05951024009f0b3258769c352df344 --- /dev/null +++ b/paddle/operators/momentum_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/momentum_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + momentum, ops::MomentumOpKernel); diff --git a/paddle/operators/momentum_op.h b/paddle/operators/momentum_op.h new file mode 100644 index 0000000000000000000000000000000000000000..e6d6d1da3df9f7e43a93fcc2e12658a01a491f81 --- /dev/null +++ b/paddle/operators/momentum_op.h @@ -0,0 +1,62 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class MomentumOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out = ctx.Output("ParamOut"); + auto velocity_out = ctx.Output("VelocityOut"); + auto param = ctx.Input("Param"); + auto velocity = ctx.Input("Velocity"); + auto grad = ctx.Input("Grad"); + auto learning_rate = ctx.Input("LearningRate"); + + param_out->mutable_data(ctx.GetPlace()); + velocity_out->mutable_data(ctx.GetPlace()); + + float mu = ctx.Attr("mu"); + bool use_nesterov = ctx.Attr("useNesterov"); + + auto p_out = framework::EigenVector::Flatten(*param_out); + auto v_out = framework::EigenVector::Flatten(*velocity_out); + + auto p = framework::EigenVector::Flatten(*param); + auto v = framework::EigenVector::Flatten(*velocity); + auto g = framework::EigenVector::Flatten(*grad); + auto lr = framework::EigenVector::Flatten(*learning_rate); + + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + v_out.device(place) = v * mu + g; + if (use_nesterov) { + p_out.device(place) = p - g * lr.broadcast(grad_dsize) + + v_out * mu * lr.broadcast(grad_dsize); + } else { + p_out.device(place) = p - lr.broadcast(grad_dsize) * v_out; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 943f81e94933bedd249086ef51ce2d0510c66a1c..b9b9cd7ca05b4373c27f672cc1ee20daab6827a8 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -49,7 +49,19 @@ class MulOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ( x_mat_dims[1], y_mat_dims[0], "First matrix's width must be equal with second matrix's height."); - ctx->SetOutputDim("Out", {x_mat_dims[0], y_mat_dims[1]}); + std::vector output_dims; + output_dims.reserve( + static_cast(x_num_col_dims + y_dims.size() - y_num_col_dims)); + + for (int i = 0; i < x_num_col_dims; ++i) { + output_dims.push_back(x_dims[i]); + } + + for (int i = y_num_col_dims; i < y_dims.size(); ++i) { + output_dims.push_back(y_dims[i]); + } + + ctx->SetOutputDim("Out", framework::make_ddim(output_dims)); ctx->ShareLoD("X", /*->*/ "Out"); } }; @@ -104,19 +116,10 @@ class MulOpGrad : public framework::OperatorWithKernel { auto y_dims = ctx->GetInputDim("Y"); auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); - auto x_mat_dims = - framework::flatten_to_2d(x_dims, Attr("x_num_col_dims")); - auto y_mat_dims = - framework::flatten_to_2d(y_dims, Attr("y_num_col_dims")); - - PADDLE_ENFORCE_EQ( - x_mat_dims[0], out_dims[0], - "The first dimension of Out@GRAD must equal to the first dimension of " - "the first operand."); - PADDLE_ENFORCE_EQ( - y_mat_dims[1], out_dims[1], - "The second dimension of Out@GRAD must equal to the second " - "dimension of the second operand."); + auto x_mat_dims = framework::flatten_to_2d( + x_dims, ctx->Attrs().Get("x_num_col_dims")); + auto y_mat_dims = framework::flatten_to_2d( + y_dims, ctx->Attrs().Get("y_num_col_dims")); auto x_grad_name = framework::GradVarName("X"); auto y_grad_name = framework::GradVarName("Y"); diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 684b1ea0c0c8ddabc9809cc05ed985e0cc250955..bd1bdb4f81b88256822d663fe42ad314338c91ff 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -36,18 +36,25 @@ class MulKernel : public framework::OpKernel { Tensor* z = context.Output("Out"); const Tensor x_matrix = x->dims().size() > 2 - ? framework::ReshapeToMatrix( + ? framework::ReshapeToMatrix( *x, context.template Attr("x_num_col_dims")) : *x; const Tensor y_matrix = y->dims().size() > 2 - ? framework::ReshapeToMatrix( + ? framework::ReshapeToMatrix( *y, context.template Attr("y_num_col_dims")) : *y; z->mutable_data(context.GetPlace()); + auto z_dim = z->dims(); + if (z_dim.size() != 2) { + z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]}); + } math::matmul(context.device_context(), x_matrix, false, y_matrix, false, 1, z, 0); + if (z_dim.size() != 2) { + z->Resize(z_dim); + } } }; @@ -59,33 +66,39 @@ class MulGradKernel : public framework::OpKernel { int y_num_col_dims = ctx.template Attr("y_num_col_dims"); const Tensor* x = ctx.Input("X"); const Tensor* y = ctx.Input("Y"); - const Tensor x_matrix = - x->dims().size() > 2 ? framework::ReshapeToMatrix(*x, x_num_col_dims) - : *x; - const Tensor y_matrix = - y->dims().size() > 2 ? framework::ReshapeToMatrix(*y, y_num_col_dims) - : *y; + const Tensor x_matrix = x->dims().size() > 2 + ? framework::ReshapeToMatrix(*x, x_num_col_dims) + : *x; + const Tensor y_matrix = y->dims().size() > 2 + ? framework::ReshapeToMatrix(*y, y_num_col_dims) + : *y; const Tensor* dout = ctx.Input(framework::GradVarName("Out")); + Tensor dout_mat; + dout_mat.ShareDataWith(*dout); + dout_mat.Resize({framework::flatten_to_2d(x->dims(), x_num_col_dims)[0], + framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]}); + Tensor* dx = ctx.Output(framework::GradVarName("X")); Tensor* dy = ctx.Output(framework::GradVarName("Y")); if (dx) { dx->mutable_data(ctx.GetPlace()); - Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix( - *dx, x_num_col_dims) - : *dx; + Tensor dx_matrix = dx->dims().size() > 2 + ? framework::ReshapeToMatrix(*dx, x_num_col_dims) + : *dx; + // dx = dout * y'. dx: M x K, dout : M x N, y : K x N - math::matmul(ctx.device_context(), *dout, false, y_matrix, true, - 1, &dx_matrix, 0); + math::matmul(ctx.device_context(), dout_mat, false, y_matrix, + true, 1, &dx_matrix, 0); } if (dy) { dy->mutable_data(ctx.GetPlace()); - Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix( - *dy, y_num_col_dims) - : *dy; + Tensor dy_matrix = dy->dims().size() > 2 + ? framework::ReshapeToMatrix(*dy, y_num_col_dims) + : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K - math::matmul(ctx.device_context(), x_matrix, true, *dout, false, - 1, &dy_matrix, 0); + math::matmul(ctx.device_context(), x_matrix, true, dout_mat, + false, 1, &dy_matrix, 0); } } }; diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu index 10cb0e005f483abe91b4ee862ea5b48305ec08c7..143a14fef5783f8ed085d4c4ce2afb3b190d0600 100644 --- a/paddle/operators/multiplex_op.cu +++ b/paddle/operators/multiplex_op.cu @@ -33,8 +33,7 @@ class MultiplexGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), - ctx.device_context()); + index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), ctx.device_context()); auto* index = index_t_cpu.data(); auto stream = reinterpret_cast( ctx.device_context()) @@ -71,8 +70,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel { auto cols = ins[0]->numel() / rows; // copy index to cpu Tensor index_t_cpu; - index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), - ctx.device_context()); + index_t_cpu.CopyFrom(*ids, platform::CPUPlace(), ctx.device_context()); auto* index = index_t_cpu.data(); auto stream = reinterpret_cast( diff --git a/paddle/operators/proximal_gd_op.cc b/paddle/operators/proximal_gd_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..e4b014b9f5866ec0791cba9b3998b1734066eeeb --- /dev/null +++ b/paddle/operators/proximal_gd_op.cc @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/proximal_gd_op.h" + +namespace paddle { +namespace operators { + +class ProximalGDOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of ProximalGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of ProximalGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of ProximalGDOp should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of ProximalGDOp should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), + "Two input of ProximalGD Op's dimension must be same."); + + auto lr_dim = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1, + "Learning Rate should be a scalar."); + + ctx->SetOutputDim("ParamOut", param_dim); + } +}; + +class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ProximalGDOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter value that has to be updated."); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter."); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "The learning rate should be a tensor of size 1."); + + AddOutput("ParamOut", "(Tensor) Output updated parameter value."); + + AddAttr("l1", + "(float, default 0.0) " + "L1 regularization strength.") + .SetDefault(0.0f); + AddAttr("l2", + "(float, default 0.0)" + "L2 regularization strength.") + .SetDefault(0.0f); + AddComment(R"DOC( + +Optimizer that implements the proximal gradient descent algorithm. + +prox_param = param - learning_rate * grad +param = sign(prox_param) / (1 + learning_rate * l2) * + max { |prox_param| - learning_rate * l1 , 0 } + +The paper that proposed Proximal Gradient Descent: +(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf) +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp, + ops::ProximalGDOpMaker); +REGISTER_OP_CPU_KERNEL( + proximal_gd, ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.cu b/paddle/operators/proximal_gd_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..26f4ebaa0f43620fee7ece2d71755be94a0e01a5 --- /dev/null +++ b/paddle/operators/proximal_gd_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +You may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/proximal_gd_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + proximal_gd, ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.h b/paddle/operators/proximal_gd_op.h new file mode 100644 index 0000000000000000000000000000000000000000..bebda0204173ec5c3ec9a7a9da6fb623171f4cea --- /dev/null +++ b/paddle/operators/proximal_gd_op.h @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +class ProximalGDOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* param_out = ctx.Output("ParamOut"); + + param_out->mutable_data(ctx.GetPlace()); + + auto grad = ctx.Input("Grad"); + + auto l1 = static_cast(ctx.Attr("l1")); + auto l2 = static_cast(ctx.Attr("l2")); + + auto p = EigenVector::Flatten(*ctx.Input("Param")); + auto g = EigenVector::Flatten(*grad); + auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); + + auto p_out = EigenVector::Flatten(*param_out); + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + auto prox_param = p - lr.broadcast(grad_dsize) * g; + if (l1 > 0) { + p_out.device(place) = + prox_param.sign() * + (((prox_param.abs() - (lr * l1).broadcast(grad_dsize)) + .cwiseMax(T(0.0))) / + (1.0 + (lr * l2).broadcast(grad_dsize))); + } else { + p_out.device(place) = + prox_param / (1.0 + (lr * l2).broadcast(grad_dsize)); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index e3d08378c2f29fa5d84c24ae7cebfcb0e7a53b25..40303e3adf4db7e8336ed72667fe69afa56c3f69 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -42,7 +42,7 @@ void RecurrentAlgorithm::Run(const Scope& scope, for (size_t step_id = 0; step_id < seq_len; step_id++) { if (step_id > 0) { - rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1); + rnn::LinkMemories(step_scopes, arg_->states, step_id, -1); } (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); } @@ -59,7 +59,8 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope, // Now all variables in scope must be created outside of op. PADDLE_ENFORCE_NOT_NULL(stepnet_); - PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs"); + PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), + "step_unit_ op has no outputs"); if (seq_len > step_scopes->size()) { for (size_t i = step_scopes->size(); i < seq_len; ++i) { @@ -86,7 +87,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope, } void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { - for (auto& attr : arg_->memories) { + for (auto& attr : arg_->states) { auto* pre_mem = step_scope->Var(attr.pre_var)->GetMutable(); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, "memory [%s]'s boot variable [%s] not exists", attr.var, @@ -95,17 +96,17 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const { step_scope->FindVar(attr.boot_var)->GetMutable(); pre_mem->Resize(boot_mem->dims()); PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2); - pre_mem->ShareDataWith(*boot_mem); + pre_mem->ShareDataWith(*boot_mem); } } const rnn::ArgumentName RecurrentOp::kArgName{ - "step_net", "step_scopes", "inlinks", "outlinks", - "memories", "pre_memories", "boot_memories"}; + "step_net", "step_scopes", "inputs", "outputs", + "states", "ex_states", "initial_states"}; const rnn::ArgumentName RecurrentGradientOp::kArgName{ - "step_net", "step_scopes@GRAD", "outlinks@GRAD", "inlinks@GRAD", - "memories", "pre_memories", "boot_memories@GRAD"}; + "step_net", "step_scopes@GRAD", "outputs@GRAD", "inputs@GRAD", + "states", "ex_states", "initial_states@GRAD"}; RecurrentOp::RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, @@ -127,7 +128,7 @@ class RecurrentAlgorithmProtoAndCheckerMaker AddInput(name.inlinks, "the inputs that need to be segmented for each step.") .AsDuplicable(); - AddInput(name.boot_memories, "variables to initialize memories.") + AddInput(name.initial_states, "variables to initialize states.") .AsDuplicable(); AddOutput(name.outlinks, "the outputs that need to concated for all steps.") @@ -135,9 +136,8 @@ class RecurrentAlgorithmProtoAndCheckerMaker AddOutput(name.step_scopes, "step scopes"); // Attributes stored in AttributeMap - AddAttr>(name.pre_memories, - "names of pre-memories"); - AddAttr>(name.memories, "names of memories"); + AddAttr>(name.ex_states, "names of pre-states"); + AddAttr>(name.states, "names of states"); AddComment("This is a recurrent group operator."); } @@ -152,7 +152,7 @@ void RecurrentGradientAlgorithm::Run( rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len); for (int step_id = seq_len - 1; step_id >= 0; --step_id) { if (static_cast(step_id) != seq_len - 1) { - rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1); + rnn::LinkMemories(step_scopes, arg_->states, step_id, 1); } (*stepnet_)->Run(*step_scopes[step_id], dev_ctx); } @@ -162,7 +162,7 @@ void RecurrentGradientAlgorithm::Run( void RecurrentGradientAlgorithm::LinkBootMemoryGradients( Scope* step_scope) const { - for (auto& attr : arg_->memories) { + for (auto& attr : arg_->states) { PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr, "memory variable [%s] does not exists", attr.var); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, @@ -171,7 +171,7 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients( auto* boot_mem_grad = step_scope->Var(attr.boot_var)->GetMutable(); boot_mem_grad->Resize(mem_grad->dims()); - boot_mem_grad->ShareDataWith(*mem_grad); + boot_mem_grad->ShareDataWith(*mem_grad); } } diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index 5e878353ce978830ede03ca6284719615ed39718..0599daa7688a5658ebea8902c4e15e63570539fb 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -13,6 +13,7 @@ limitations under the License. */ #include "paddle/operators/reduce_op.h" +#include "paddle/operators/net_op.h" namespace paddle { namespace operators { diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index 3ba4611458fda0aa2f234c29d27086cd6f5742cc..c89cdf8cab9f209667c5e09b521b8f6e30f202fd 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -33,7 +33,7 @@ class ReshapeKernel : public framework::OpKernel { std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto out_dims = framework::make_ddim(shape_int64); - out->CopyFrom(*in, ctx.GetPlace(), ctx.device_context()); + out->CopyFrom(*in, ctx.GetPlace(), ctx.device_context()); out->Resize(out_dims); } }; @@ -47,7 +47,7 @@ class ReshapeGradKernel : public framework::OpKernel { d_x->mutable_data(ctx.GetPlace()); auto in_dims = d_x->dims(); - d_x->CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context()); + d_x->CopyFrom(*d_out, ctx.GetPlace(), ctx.device_context()); d_x->Resize(in_dims); } }; diff --git a/paddle/operators/rnn/recurrent_op_utils.cc b/paddle/operators/rnn/recurrent_op_utils.cc index 30b8ddeb5bc4220e261a5c37ac195b0348fef936..ee61ea300c33722471189d06eb09f67a083d2a4d 100644 --- a/paddle/operators/rnn/recurrent_op_utils.cc +++ b/paddle/operators/rnn/recurrent_op_utils.cc @@ -36,14 +36,14 @@ void SegmentInputs(const std::vector& step_scopes, LoDTensor* input = input_var->GetMutable(); f::DDim dims = input->dims(); PADDLE_ENFORCE_EQ(static_cast(dims[0]), seq_len, - "all the inlinks be the same length"); + "all the inputs be the same length"); f::DDim step_dims = slice_ddim(dims, 1, dims.size()); for (size_t j = 0; j < seq_len; j++) { Tensor* step_input = step_scopes[j]->Var(inlinks[i])->GetMutable(); // The input of operators of each step is Tensor here. // Maybe need to modify Slice function. - *step_input = input->Slice(j, j + 1); + *step_input = input->Slice(j, j + 1); step_input->Resize(step_dims); } } @@ -71,14 +71,14 @@ void ConcatOutputs(const std::vector& step_scopes, step_scopes[j]->FindVar(outlinks[i])->GetMutable(); // TODO(luotao02) data type and platform::DeviceContext() should set // correctly - (output->Slice(j, j + 1)) - .CopyFrom(*step_output, platform::CPUPlace(), ctx); + (output->Slice(j, j + 1)) + .CopyFrom(*step_output, platform::CPUPlace(), ctx); } } } void LinkMemories(const std::vector& scopes, - const std::vector& memories, + const std::vector& memories, const size_t step_id, const int offset) { PADDLE_ENFORCE_LT(step_id, scopes.size(), "step [%d] is out of range of step scopes' size [%d]", @@ -95,7 +95,7 @@ void LinkMemories(const std::vector& scopes, auto* mem = scope->FindVar(attr.pre_var)->GetMutable(); auto* linked_mem = linked_scope->FindVar(attr.var)->GetMutable(); mem->Resize(linked_mem->dims()); - mem->ShareDataWith(*linked_mem); + mem->ShareDataWith(*linked_mem); } } @@ -106,26 +106,26 @@ void InitArgument(const ArgumentName& name, Argument* arg, arg->inlinks = op.Inputs(name.inlinks); arg->outlinks = op.Outputs(name.outlinks); - auto& boot_memories = - is_grad ? op.Outputs(name.boot_memories) : op.Inputs(name.boot_memories); + auto& boot_memories = is_grad ? op.Outputs(name.initial_states) + : op.Inputs(name.initial_states); // attributes - auto& memories = op.Attr>(name.memories); - auto& pre_memories = op.Attr>(name.pre_memories); + auto& memories = op.Attr>(name.states); + auto& pre_memories = op.Attr>(name.ex_states); PADDLE_ENFORCE(memories.size() == boot_memories.size(), - "the size of memories, boot_memories don't match:%d,%d", + "the size of states, initial_states don't match:%d,%d", memories.size(), boot_memories.size()); PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(), - "the size of pre_memories, boot_memories don't match:%d,%d", + "the size of ex_states, initial_states don't match:%d,%d", pre_memories.size(), boot_memories.size()); - PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set"); + PADDLE_ENFORCE(memories.size() > 0, "more than 1 states should be set"); for (size_t i = 0; i < memories.size(); ++i) { - rnn::MemoryAttr mem_attr; + rnn::StateAttr mem_attr; mem_attr.var = memories[i]; mem_attr.pre_var = pre_memories[i]; mem_attr.boot_var = boot_memories[i]; - (arg->memories).push_back(mem_attr); + (arg->states).push_back(mem_attr); } } diff --git a/paddle/operators/rnn/recurrent_op_utils.h b/paddle/operators/rnn/recurrent_op_utils.h index fe173edb24ad015b9546546565027358f9b93476..fb0e158e07745d58c6211d33e385b324e492b95e 100644 --- a/paddle/operators/rnn/recurrent_op_utils.h +++ b/paddle/operators/rnn/recurrent_op_utils.h @@ -31,7 +31,7 @@ using Scope = framework::Scope; * boot memories in father scope. Other attributes are copied from Op's proto * attributes. */ -struct MemoryAttr { +struct StateAttr { // name of current state variable std::string var; // name of previous step's state variable @@ -46,7 +46,7 @@ struct Argument { std::string step_scopes; std::vector inlinks; std::vector outlinks; - std::vector memories; + std::vector states; }; struct ArgumentName { @@ -54,9 +54,9 @@ struct ArgumentName { std::string step_scopes; std::string inlinks; std::string outlinks; - std::string memories; // the memory name - std::string pre_memories; // the previous memory name - std::string boot_memories; // the boot memory name + std::string states; // the memory name + std::string ex_states; // the previous memory name + std::string initial_states; // the boot memory name }; /** @@ -74,7 +74,7 @@ void ConcatOutputs(const std::vector& step_scopes, const size_t seq_len, const platform::DeviceContext& ctx); void LinkMemories(const std::vector& step_scopes, - const std::vector& memories, const size_t step_id, + const std::vector& memories, const size_t step_id, const int offset); void InitArgument(const ArgumentName& name, Argument* arg, diff --git a/paddle/operators/save_restore_op.cc b/paddle/operators/save_restore_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..314e4e927924bf0442b7afe0184bf344e24c1521 --- /dev/null +++ b/paddle/operators/save_restore_op.cc @@ -0,0 +1,147 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +#include + +namespace paddle { +namespace operators { + +using framework::Tensor; +using framework::LoDTensor; + +inline static std::string VarToFileName(const std::string& folder_path, + const std::string& var_name) { + return folder_path + "/__" + var_name + "__"; +} + +class SaveOp : public framework::OperatorBase { + public: + SaveOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override { + const auto& var_names = this->Inputs("X"); + for (const auto& name : var_names) { + PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name), + "Can not find variable '%s' in the scope.", name); + } + std::string folder_path = this->Attr("folderPath"); + PADDLE_ENFORCE(!folder_path.empty(), + "'folderPath' of SaveOp shouldn't be empty."); + + VLOG(1) << "Save variables to folder: " << folder_path; + for (const auto& name : var_names) { + std::string file_name = VarToFileName(folder_path, name); + std::ofstream fout(file_name, std::ofstream::out); + PADDLE_ENFORCE(fout.is_open(), "Fail to create file %s.", file_name); + const LoDTensor& tensor = scope.FindVar(name)->Get(); + std::string bytes = tensor.SerializeToString(); + fout << bytes; + fout.close(); + } + VLOG(1) << "Compelete saving variables. Items count: " << var_names.size(); + } +}; + +class SaveOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SaveOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(tensor), the tensor count can be 1~INT_MAX, tensors names which " + "values will be saved.") + .AsDuplicable(); + AddAttr("folderPath", "the folderPath for save model."); + AddComment(R"DOC( +Save the input tensors to a binary file based on input tensor names and absolute path. + +All the inputs can carry the LoD (Level of Details) information, +or not. +)DOC"); + } +}; + +class RestoreOp : public framework::OperatorBase { + public: + RestoreOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override { + const auto& var_names = this->Outputs("Out"); + for (const auto& name : var_names) { + PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name), + "Can not find variable '%s' in the scope.", name); + } + std::string folder_path = this->Attr("folderPath"); + PADDLE_ENFORCE(!folder_path.empty(), + "'folderPath' of RestoreOp shouldn't be empty."); + + VLOG(1) << "Try loading variables from folder: " << folder_path; + + for (const auto& name : var_names) { + std::string file_name = VarToFileName(folder_path, name); + std::ifstream fin(file_name, std::ifstream::in); + PADDLE_ENFORCE(fin.is_open(), "Fail to open file %s.", file_name); + const size_t kBufferSize = 4096; // equal to linux page size + char buffer[kBufferSize]; + std::string cache; + while (!fin.eof()) { + fin.read(buffer, kBufferSize); + cache.append(buffer, fin.gcount()); + } + LoDTensor* tensor = scope.FindVar(name)->GetMutable(); + tensor->DeserializeFromString(cache, dev_ctx.GetPlace()); + fin.close(); + } + VLOG(1) << "Complete loading variables."; + } +}; + +class RestoreOpMaker : public framework::OpProtoAndCheckerMaker { + public: + RestoreOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddOutput("Out", + "(tensor), the tensor count can be 1~INT_MAX, tensors which " + "values will be restores.") + .AsDuplicable(); + AddAttr("folderPath", "the folderPath for model file."); + AddAttr("data_type", "output tensor data type") + .SetDefault(framework::DataType::FP32); + AddComment(R"DOC( +Restore the tensors from model file based on absolute path. + +All the tensors outputs may carry the LoD (Level of Details) information, +or not. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(save, paddle::operators::SaveOp, + paddle::framework::EmptyGradOpMaker, + paddle::operators::SaveOpMaker); + +REGISTER_OPERATOR(restore, paddle::operators::RestoreOp, + paddle::framework::EmptyGradOpMaker, + paddle::operators::RestoreOpMaker); diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu index 06f4d759447b6dcd28b50576dfc246fc466d9336..3b32ae2fb77a5d3d4c558742ec469c74d15eee07 100644 --- a/paddle/operators/scatter_op.cu +++ b/paddle/operators/scatter_op.cu @@ -30,7 +30,7 @@ class ScatterOpCUDAKernel : public framework::OpKernel { auto *Updates = ctx.Input("Updates"); auto *Out = ctx.Output("Out"); - Out->ShareDataWith(*Ref); + Out->ShareDataWith(*Ref); GPUScatterAssign(ctx.device_context(), *Updates, *Index, Out); } @@ -48,7 +48,7 @@ class ScatterGradOpCUDAKernel : public framework::OpKernel { auto *dOut = ctx.Input(framework::GradVarName("Out")); // In place gradient: dRef = dO - dRef->ShareDataWith(*dOut); + dRef->ShareDataWith(*dOut); dUpdates->mutable_data(ctx.GetPlace()); // Gradient by Gather: dUpdates = dO[Index] GPUGather(ctx.device_context(), *dOut, *Index, dUpdates); diff --git a/paddle/operators/scatter_op.h b/paddle/operators/scatter_op.h index 6101219006414e4865f676e3ca5d2a88949ad17a..1a4f6f99bfe36cd0de2d4f2af3f6054571d8f188 100644 --- a/paddle/operators/scatter_op.h +++ b/paddle/operators/scatter_op.h @@ -35,7 +35,7 @@ class ScatterOpKernel : public framework::OpKernel { auto *Out = ctx.Output("Out"); // In place output: Out = Ref, Out[Index] += Updates - Out->ShareDataWith(*Ref); + Out->ShareDataWith(*Ref); // Apply ScatterUpdate: Out[index] += Updates[:] ScatterAssign(ctx.device_context(), *Updates, *Index, Out); } @@ -53,7 +53,7 @@ class ScatterGradientOpKernel : public framework::OpKernel { auto *dOut = ctx.Input(framework::GradVarName("Out")); // In place gradient: dRef = dO - dRef->ShareDataWith(*dOut); + dRef->ShareDataWith(*dOut); dUpdates->mutable_data(ctx.GetPlace()); // Gradient by Gather: dUpdates += dO[Index] CPUGather(ctx.device_context(), *dOut, *Index, dUpdates); diff --git a/paddle/operators/sequence_concat_op.h b/paddle/operators/sequence_concat_op.h index a197a05bbb881806b24f9dcce5282a4d972e3adc..6adf96120c99f9b84a1ff947058e65ac3ddff1d4 100644 --- a/paddle/operators/sequence_concat_op.h +++ b/paddle/operators/sequence_concat_op.h @@ -87,16 +87,16 @@ class SequenceConcatOpKernel : public framework::OpKernel { auto out_lod_level = out_lod[level]; for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { - Tensor out_t = out->Slice(static_cast(out_lod_level[i]), - static_cast(out_lod_level[i + 1])); + Tensor out_t = out->Slice(static_cast(out_lod_level[i]), + static_cast(out_lod_level[i + 1])); auto out_stride = framework::stride(out_t.dims()); size_t offset = 0; for (size_t j = 0; j < n; ++j) { auto in_lod_level = ins[j]->lod()[level]; auto in_stride = framework::stride(ins[j]->dims()); - Tensor in_t = ins[j]->Slice(static_cast(in_lod_level[i]), - static_cast(in_lod_level[i + 1])); + Tensor in_t = ins[j]->Slice(static_cast(in_lod_level[i]), + static_cast(in_lod_level[i + 1])); size_t axis_dim = in_t.dims()[axis]; StridedMemcpy(ctx.device_context(), in_t.data(), in_stride, in_t.dims(), out_stride, out_t.data() + offset); @@ -130,8 +130,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel { for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { Tensor out_grad_t = - out_grad->Slice(static_cast(out_lod_level[i]), - static_cast(out_lod_level[i + 1])); + out_grad->Slice(static_cast(out_lod_level[i]), + static_cast(out_lod_level[i + 1])); auto out_grad_stride = framework::stride(out_grad_t.dims()); size_t offset = 0; @@ -139,8 +139,8 @@ class SequenceConcatGradOpKernel : public framework::OpKernel { auto x_grad_lod_level = x_grads[j]->lod()[level]; auto x_grad_stride = framework::stride(x_grads[j]->dims()); Tensor x_grad_t = - x_grads[j]->Slice(static_cast(x_grad_lod_level[i]), - static_cast(x_grad_lod_level[i + 1])); + x_grads[j]->Slice(static_cast(x_grad_lod_level[i]), + static_cast(x_grad_lod_level[i + 1])); size_t axis_dim = x_grad_t.dims()[axis]; StridedMemcpy(ctx.device_context(), out_grad_t.data() + offset, out_grad_stride, out_grad_t.dims(), x_grad_stride, diff --git a/paddle/operators/sequence_pool_op.h b/paddle/operators/sequence_pool_op.h index 41d23ed43f7fea7673544d9362ac7f2b101b3a5d..b5835dad5b0a269cba1c98d98a004824a90c4127 100644 --- a/paddle/operators/sequence_pool_op.h +++ b/paddle/operators/sequence_pool_op.h @@ -64,9 +64,9 @@ class SequencePoolKernel : public framework::OpKernel { out->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { - Tensor in_t = in->Slice(static_cast(lod_level_0[i]), - static_cast(lod_level_0[i + 1])); - Tensor out_t = out->Slice(i, i + 1); + Tensor in_t = in->Slice(static_cast(lod_level_0[i]), + static_cast(lod_level_0[i + 1])); + Tensor out_t = out->Slice(i, i + 1); int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); auto out_e = EigenVector::Flatten(out_t); @@ -120,9 +120,9 @@ class SequencePoolGradKernel : public framework::OpKernel { } auto place = context.GetEigenDevice(); for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { - auto in_g_t = in_g->Slice(static_cast(lod[i]), - static_cast(lod[i + 1])); - auto out_g_t = out_g->Slice(i, i + 1); + auto in_g_t = + in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); + auto out_g_t = out_g->Slice(i, i + 1); int64_t h = static_cast(lod[i + 1] - lod[i]); auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); diff --git a/paddle/operators/sequence_softmax_op.h b/paddle/operators/sequence_softmax_op.h index 96d87c404d217280d74bd088e7a23f539ef6e7ce..3eb1e2844dff6ac94e86dcf4586bb51bc33adbec 100644 --- a/paddle/operators/sequence_softmax_op.h +++ b/paddle/operators/sequence_softmax_op.h @@ -46,8 +46,8 @@ class SequenceSoftmaxKernel : public framework::OpKernel { for (int i = 0; i < static_cast(lod[level].size()) - 1; ++i) { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); - Tensor x_i = x->Slice(start_pos, end_pos); - Tensor out_i = out->Slice(start_pos, end_pos); + Tensor x_i = x->Slice(start_pos, end_pos); + Tensor out_i = out->Slice(start_pos, end_pos); // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); @@ -75,9 +75,9 @@ class SequenceSoftmaxGradKernel : public framework::OpKernel { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); - Tensor out_i = out->Slice(start_pos, end_pos); - Tensor out_grad_i = out_grad->Slice(start_pos, end_pos); - Tensor x_grad_i = x_grad->Slice(start_pos, end_pos); + Tensor out_i = out->Slice(start_pos, end_pos); + Tensor out_grad_i = out_grad->Slice(start_pos, end_pos); + Tensor x_grad_i = x_grad->Slice(start_pos, end_pos); // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 0f78eeab9bc643a1a70c4b6ab02a160bbeda2b33..2acb96d1b4f5903ff6c57b10e7621c8adaf73171 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -21,7 +21,7 @@ class SGDOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; - void InferShape(framework::InferShapeContext *ctx) const override { + void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Param"), "Input(Param) of SGDOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Grad"), @@ -35,15 +35,15 @@ class SGDOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1, "Learning rate should have 1 element"); auto param_dim = ctx->GetInputDim("Param"); - PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), - "Two input of SGD Op's dimension must be same."); + // TODO(qijun): check dimensions of Param and Grad at complie + // and run time. ctx->SetOutputDim("ParamOut", param_dim); } }; class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - SGDOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SGDOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "Input parameter"); AddInput("LearningRate", "Learning rate of SGD"); @@ -58,6 +58,38 @@ param_out = param - learning_rate * grad; )DOC"); } }; + +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output) { + auto in_height = input.height(); + auto out_dims = output->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = input.value(); + auto& in_rows = input.rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = output->data(); + auto* lr = learning_rate.data(); + + for (size_t i = 0; i < in_rows.size(); i++) { + for (int64_t j = 0; j < in_row_numel; j++) { + out_data[in_rows[i] * in_row_numel + j] -= + lr[0] * in_data[i * in_row_numel + j]; + } + } + } +}; + +template struct SparseSGDFunctor; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/sgd_op.cu b/paddle/operators/sgd_op.cu index f5ba6d3c29f8dfbfdea4fbf2c3d5fd7f5b358666..106f9b746ba6614d8fa68b677c47ec04ed26fb81 100644 --- a/paddle/operators/sgd_op.cu +++ b/paddle/operators/sgd_op.cu @@ -14,6 +14,66 @@ #define EIGEN_USE_GPU #include "paddle/operators/sgd_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +namespace { +template +__global__ void SparseSGDFunctorKernel(const T* selected_rows, + const int64_t* rows, + const T* learning_rate, T* tensor_out, + int64_t row_numel, int block_size) { + const int ty = blockIdx.y; + int tid = threadIdx.x; + + selected_rows += ty * row_numel; + tensor_out += rows[ty] * row_numel; + + for (int index = tid; index < row_numel; index += block_size) { + // Since index in rows of SelectedRows can be duplicate, we have to use + // Atomic Operation to avoid concurrent write error. + paddle::platform::CudaAtomicAdd( + tensor_out + index, -1.0 * learning_rate[0] * selected_rows[index]); + } +} +} // namespace + +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output) { + auto in_height = input.height(); + auto out_dims = output->dims(); + PADDLE_ENFORCE_EQ(in_height, out_dims[0]); + + auto& in_value = input.value(); + auto& in_rows = input.rows(); + + int64_t in_row_numel = in_value.numel() / in_rows.size(); + PADDLE_ENFORCE_EQ(in_row_numel, output->numel() / in_height); + + auto* in_data = in_value.data(); + auto* out_data = output->data(); + + int block_size = 256; + dim3 threads(block_size, 1); + dim3 grid(1, in_rows.size()); + SparseSGDFunctorKernel< + T><<(context) + .stream()>>>(in_data, in_rows.data(), learning_rate.data(), + out_data, in_row_numel, block_size); + } +}; + +template struct SparseSGDFunctor; + +} // namespace operators +} // namespace paddle namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(sgd, diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index 26f4012f258771794c736dbfad4af174b017f410..78b595fc6c63d775b627f23cafa9458f1dadd4e5 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -15,31 +15,53 @@ limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/framework/selected_rows.h" namespace paddle { namespace operators { +template +struct SparseSGDFunctor { + void operator()(const platform::DeviceContext& context, + const framework::SelectedRows& input, + const framework::Tensor& learning_rate, + framework::Tensor* output); +}; + template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto param = ctx.Input("Param"); - auto grad = ctx.Input("Grad"); - auto param_out = ctx.Output("ParamOut"); - auto learning_rate = ctx.Input("LearningRate"); + auto* param = ctx.Input("Param"); + auto* param_out = ctx.Output("ParamOut"); + auto* learning_rate = ctx.Input("LearningRate"); - param_out->mutable_data(ctx.GetPlace()); + auto* grad_var = ctx.InputVar("Grad"); + // Actually, all tensors are LoDTensor except SelectedRows. + if (grad_var->IsType()) { + param_out->mutable_data(ctx.GetPlace()); + auto* grad = ctx.Input("Grad"); - auto p = framework::EigenVector::Flatten(*param); - auto g = framework::EigenVector::Flatten(*grad); - auto o = framework::EigenVector::Flatten(*param_out); - auto lr = framework::EigenVector::Flatten(*learning_rate); - auto place = ctx.GetEigenDevice(); + auto p = framework::EigenVector::Flatten(*param); + auto g = framework::EigenVector::Flatten(*grad); + auto o = framework::EigenVector::Flatten(*param_out); + auto lr = framework::EigenVector::Flatten(*learning_rate); + auto place = ctx.GetEigenDevice(); - Eigen::DSizes grad_dsize(grad->numel()); - o.device(place) = p - lr.broadcast(grad_dsize) * g; + Eigen::DSizes grad_dsize(grad->numel()); + o.device(place) = p - lr.broadcast(grad_dsize) * g; + } else if (grad_var->IsType()) { + // TODO(qijun): In Sparse SGD operator, in-place update is enforced. + // This manual optimization brings difficulty to track data dependency. + // It's better to find a more elegant solution. + PADDLE_ENFORCE_EQ(param, param_out); + auto* grad = ctx.Input("Grad"); + SparseSGDFunctor functor; + functor(ctx.device_context(), *grad, *learning_rate, param_out); + } else { + PADDLE_THROW("Unsupported Variable Type of Grad"); + } } }; - } // namespace operators } // namespace paddle diff --git a/paddle/operators/smooth_l1_loss_op.cc b/paddle/operators/smooth_l1_loss_op.cc index a4f0f37764667c43d48c6aa7646d61cdf4f3fd2d..758481943d463f22eb6c6e0be9a99ad99161da5b 100644 --- a/paddle/operators/smooth_l1_loss_op.cc +++ b/paddle/operators/smooth_l1_loss_op.cc @@ -62,11 +62,13 @@ class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("InsideWeight", "Optional input tensor of smooth l1 loss op with the same shape " "as X. If provided, the result of (X - Y) will be multiplied " - "by this tensor element by element."); + "by this tensor element by element.") + .AsDispensable(); AddInput("OutsideWeight", "Optinal input of smooth l1 loss op with the same shape as X." "If provided, the output smooth l1 loss will be multiplied by " - "this tensor element by element."); + "this tensor element by element.") + .AsDispensable(); AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).") .AsIntermediate(); AddOutput("Out", "Smooth l1 loss."); diff --git a/paddle/operators/softmax_with_cross_entropy_op.cu b/paddle/operators/softmax_with_cross_entropy_op.cu index d03a1a76585bc79633d089b776ca07ba908085ba..68ac2b0ea36dda55ac1161eecb80f03178b4f303 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/operators/softmax_with_cross_entropy_op.cu @@ -85,7 +85,7 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { context.Input(framework::GradVarName("Loss"))->data(); Tensor* logit_grad = context.Output(framework::GradVarName("Logits")); - logit_grad->ShareDataWith(*context.Input("Softmax")); + logit_grad->ShareDataWith(*context.Input("Softmax")); T* logit_grad_data = logit_grad->data(); const int batch_size = logit_grad->dims()[0]; diff --git a/paddle/operators/softmax_with_cross_entropy_op.h b/paddle/operators/softmax_with_cross_entropy_op.h index 66d7bc1569e124096f30b6cd91fe22189506e4a5..01027cf63fc1010a226346609d583af0b400ecbb 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.h +++ b/paddle/operators/softmax_with_cross_entropy_op.h @@ -57,7 +57,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel { const Tensor* labels = context.Input("Label"); Tensor* logit_grad = context.Output(framework::GradVarName("Logits")); - logit_grad->ShareDataWith(*context.Input("Softmax")); + logit_grad->ShareDataWith(*context.Input("Softmax")); const int class_num = logit_grad->dims()[1]; if (context.Attr("soft_label")) { diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 612bdd70db28f2c1fbeb66456fae4ca865530f1f..39b53948e3cc58ff1d0ab481143b066b1a2fae16 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -53,10 +53,10 @@ class UniformRandomOp : public framework::OperatorWithKernel { PADDLE_ENFORCE( ctx->Attrs().Get("min") < ctx->Attrs().Get("max"), "uniform_random's min must less then max"); - auto& dims = ctx->Attrs().Get>("dims"); + auto& shape = ctx->Attrs().Get>("shape"); std::vector temp; - temp.reserve(dims.size()); - for (auto dim : dims) { + temp.reserve(shape.size()); + for (auto dim : shape) { temp.push_back(static_cast(dim)); } ctx->SetOutputDim("Out", framework::make_ddim(temp)); @@ -65,7 +65,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { protected: framework::DataType IndicateDataType( const framework::ExecutionContext& ctx) const override { - return static_cast(Attr("data_type")); + return static_cast(ctx.Attr("data_type")); } }; @@ -78,7 +78,7 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC(Uniform random operator. Used to initialize tensor with uniform random generator. )DOC"); - AddAttr>("dims", "the dimension of random tensor"); + AddAttr>("shape", "the dimension of random tensor"); AddAttr("min", "Minimum value of uniform random").SetDefault(-1.0f); AddAttr("max", "Maximun value of uniform random").SetDefault(1.0f); AddAttr("seed", diff --git a/paddle/optimizer/adadelta_optimizer.cc b/paddle/optimizer/adadelta_optimizer.cc index 6eec5d846fa5ef6b25e7646200dad1d452dda806..34913c405075ed72af30ed056f74e8b4d7482488 100644 --- a/paddle/optimizer/adadelta_optimizer.cc +++ b/paddle/optimizer/adadelta_optimizer.cc @@ -25,19 +25,17 @@ void AdadeltaOptimizer::Update(const Tensor* gradient) { } } -const char* AdadeltaOptimizer::SerializeState(int* state_len) { +std::string AdadeltaOptimizer::SerializeState() { AdadeltaOptimizerState state; state.set_num_sample_passed(num_sample_passed_); - std::string lr_str = this->lr_policy_->SerializeState(state_len); + std::string lr_str = this->lr_policy_->SerializeState(); state.mutable_lr_state()->ParseFromString(lr_str); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*accum_gradient_, state.mutable_accum_gradient()); TensorToProto(*accum_delta_, state.mutable_accum_delta()); TensorToProto(*update_delta_, state.mutable_update_delta()); - auto str = state.SerializeAsString(); - *state_len += str.size(); - return str.c_str(); + return state.SerializeAsString(); } void AdadeltaOptimizer::DeserializeState(const std::string& str) { diff --git a/paddle/optimizer/adadelta_optimizer.h b/paddle/optimizer/adadelta_optimizer.h index 1d5eab097f57d049855dd171a1aa6f74c48ae0e7..bc634ee46d60abc9ffc4a31abac5c2f8edaf7aba 100644 --- a/paddle/optimizer/adadelta_optimizer.h +++ b/paddle/optimizer/adadelta_optimizer.h @@ -23,7 +23,7 @@ public: if (update_delta_) delete update_delta_; } void Update(const Tensor *gradient); - const char *SerializeState(int *state_len); + std::string SerializeState(); void DeserializeState(const std::string &state); private: diff --git a/paddle/optimizer/adagrad_optimizer.cc b/paddle/optimizer/adagrad_optimizer.cc index 5b92610ac547ee11cedf2e49e4d7f1db4b2da646..d915ffb8705eaa96bc96b8071a2c534d4d472273 100644 --- a/paddle/optimizer/adagrad_optimizer.cc +++ b/paddle/optimizer/adagrad_optimizer.cc @@ -17,17 +17,15 @@ void AdagradOptimizer::Update(const Tensor* gradient) { learning_rate * decay_ * param[i]; } } -const char* AdagradOptimizer::SerializeState(int* state_len) { +std::string AdagradOptimizer::SerializeState() { AdagradOptimizerState state; state.set_num_sample_passed(num_sample_passed_); - std::string lr_str = this->lr_policy_->SerializeState(state_len); + std::string lr_str = this->lr_policy_->SerializeState(); state.mutable_lr_state()->ParseFromString(lr_str); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*accum_gradient_, state.mutable_accum_gradient()); - auto str = state.SerializeAsString(); - *state_len += str.size(); - return str.c_str(); + return state.SerializeAsString(); } void AdagradOptimizer::DeserializeState(const std::string& str) { diff --git a/paddle/optimizer/adagrad_optimizer.h b/paddle/optimizer/adagrad_optimizer.h index 15d0a965ad0c6967e73b14b465168fa66eb8fba3..b2935f8aff87f710f508c5c5757dd36526ca63f9 100644 --- a/paddle/optimizer/adagrad_optimizer.h +++ b/paddle/optimizer/adagrad_optimizer.h @@ -19,7 +19,7 @@ public: if (accum_gradient_) delete accum_gradient_; } void Update(const Tensor *gradient); - const char *SerializeState(int *state_len); + std::string SerializeState(); void DeserializeState(const std::string &state); private: diff --git a/paddle/optimizer/adam_optimizer.cc b/paddle/optimizer/adam_optimizer.cc index 1ebb6b1e0f7b4edcbac1b28319fd4de576f85f6a..18e5896a22dc8a3c6292293fffc36ca9e3737b4c 100644 --- a/paddle/optimizer/adam_optimizer.cc +++ b/paddle/optimizer/adam_optimizer.cc @@ -22,18 +22,16 @@ void AdamOptimizer::Update(const Tensor *gradient) { } } -const char *AdamOptimizer::SerializeState(int *state_len) { +std::string AdamOptimizer::SerializeState() { AdamOptimizerState state; - std::string lr_str = this->lr_policy_->SerializeState(state_len); + std::string lr_str = this->lr_policy_->SerializeState(); state.mutable_lr_state()->ParseFromString(lr_str); state.set_num_sample_passed(num_sample_passed_); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*momentums_, state.mutable_momentums()); TensorToProto(*velocitys_, state.mutable_velocitys()); - auto str = state.SerializeAsString(); - *state_len += str.size(); - return str.c_str(); + return state.SerializeAsString(); } void AdamOptimizer::DeserializeState(const std::string &str) { diff --git a/paddle/optimizer/adam_optimizer.h b/paddle/optimizer/adam_optimizer.h index 0ea4c8bb8470504282b4d6c12039791ce896e401..d25cdc0731f65e9875d2fbf67783cce62d88af60 100644 --- a/paddle/optimizer/adam_optimizer.h +++ b/paddle/optimizer/adam_optimizer.h @@ -25,7 +25,7 @@ public: if (velocitys_) delete velocitys_; } void Update(const Tensor *gradient); - const char *SerializeState(int *state_len); + std::string SerializeState(); void DeserializeState(const std::string &state); private: diff --git a/paddle/optimizer/lr_policy.h b/paddle/optimizer/lr_policy.h index 036c376e10f465c2866a230caf9224f4af5478bc..bbb1ee48214cecdc6b6cd2a400cc9d12d5e8b64a 100644 --- a/paddle/optimizer/lr_policy.h +++ b/paddle/optimizer/lr_policy.h @@ -10,7 +10,7 @@ class LrPolicy { public: virtual ~LrPolicy() {} virtual double LearningRate(const uint64_t num_sample_passed) = 0; - virtual const char *SerializeState(int *state_len) = 0; + virtual std::string SerializeState() = 0; virtual void DeserializeState(const std::string &state) = 0; }; @@ -21,12 +21,10 @@ public: double LearningRate(const uint64_t num_sample_passed) { return learning_rate_; } - const char *SerializeState(int *state_len) { + std::string SerializeState() { LrPolicyState state; state.set_learning_rate(learning_rate_); - auto str = state.SerializeAsString(); - *state_len = str.size(); - return str.c_str(); + return state.SerializeAsString(); } void DeserializeState(const std::string &str) { LrPolicyState state; @@ -46,14 +44,12 @@ public: return std::max(learning_rate_ - lr_decay_a_ * num_sample_passed, lr_decay_b_); } - const char *SerializeState(int *state_len) { + std::string SerializeState() { LrPolicyState state; state.set_learning_rate(learning_rate_); state.set_lr_decay_a(lr_decay_a_); state.set_lr_decay_b(lr_decay_b_); - auto str = state.SerializeAsString(); - *state_len = str.size(); - return str.c_str(); + return state.SerializeAsString(); } void DeserializeState(const std::string &str) { LrPolicyState state; diff --git a/paddle/optimizer/optimizer.cc b/paddle/optimizer/optimizer.cc index eb7125adee769c97e16986cabf06ea389bf4c143..a2af139d012433214b825bd68289708098b76da8 100644 --- a/paddle/optimizer/optimizer.cc +++ b/paddle/optimizer/optimizer.cc @@ -1,4 +1,7 @@ #include "optimizer.h" +#include +#include +#include #include #include "parameter_optimizer.h" @@ -78,7 +81,13 @@ int paddle_optimizer_get_weights(paddle_optimizer* o, void** param_buffer) { } int paddle_optimizer_get_state(paddle_optimizer* o, const char** state) { - int state_len = 0; - *state = o->impl->SerializeState(&state_len); + std::string s = o->impl->SerializeState(); + int state_len = s.size(); + + if (state_len > 0) { + *state = (char*)std::malloc(state_len); + std::memcpy((void*)*state, (const void*)s.c_str(), state_len); + } + return state_len; } diff --git a/paddle/optimizer/parameter_optimizer.cc b/paddle/optimizer/parameter_optimizer.cc index f6218037925649e741d17f49af972ce2d50f8d3d..db0714635f9366b0404019688daf4708b4a0052f 100644 --- a/paddle/optimizer/parameter_optimizer.cc +++ b/paddle/optimizer/parameter_optimizer.cc @@ -32,6 +32,7 @@ ParameterOptimizer *ParameterOptimizer::Create(const std::string &config_proto, Tensor *parameter, const OptimizerConfig &config) -> ParameterOptimizer * { if (config.optimizer() == OptimizerConfig::SGD) { + LOG(INFO) << "creating SGD optimizer"; return new SGDOptimizer(parameter, lr, config.sgd().momentum(), @@ -39,6 +40,7 @@ ParameterOptimizer *ParameterOptimizer::Create(const std::string &config_proto, config.sgd().nesterov()); } if (config.optimizer() == OptimizerConfig::Adadelta) { + LOG(INFO) << "creating Adadelta optimizer"; return new AdadeltaOptimizer(parameter, lr, config.adadelta().rho(), @@ -46,10 +48,12 @@ ParameterOptimizer *ParameterOptimizer::Create(const std::string &config_proto, config.adadelta().decay()); } if (config.optimizer() == OptimizerConfig::Adagrad) { + LOG(INFO) << "creating Adagrad optimizer"; return new AdagradOptimizer( parameter, lr, config.adagrad().epsilon(), config.adagrad().decay()); } if (config.optimizer() == OptimizerConfig::Adam) { + LOG(INFO) << "creating Adam optimizer"; return new AdamOptimizer(parameter, lr, config.adam().beta_1(), diff --git a/paddle/optimizer/parameter_optimizer.h b/paddle/optimizer/parameter_optimizer.h index d89c9abb791f947172078d4dce5b1c366852591b..8319f84e1b820adf5cc0006045f2e13dffa91797 100644 --- a/paddle/optimizer/parameter_optimizer.h +++ b/paddle/optimizer/parameter_optimizer.h @@ -28,7 +28,7 @@ public: Tensor *parameter); virtual void Update(const Tensor *gradient) = 0; virtual float *get_weight(int *param_size) const; - virtual const char *SerializeState(int *state_len) = 0; + virtual std::string SerializeState() = 0; virtual void DeserializeState(const std::string &state) = 0; protected: diff --git a/paddle/optimizer/parameter_optimizer_test.cpp b/paddle/optimizer/parameter_optimizer_test.cpp index edf4ae37a9beee2911d23dd1ab23e67a18065b1b..c88fa11748716693355042d1784b33d7cfb616f1 100644 --- a/paddle/optimizer/parameter_optimizer_test.cpp +++ b/paddle/optimizer/parameter_optimizer_test.cpp @@ -85,6 +85,7 @@ public: for (size_t i = 0; i < opts_.size(); ++i) { int s = 0; float* newp = (float*)opts_[i]->get_weight(&s); + EXPECT_EQ(s, kSize); for (size_t j = 0; j < kSize; ++j) { EXPECT_EQ(newp[j], (*p)[j]); } @@ -99,10 +100,20 @@ public: } void TestCheckPoint() { + paddle::optimizer::Tensor* p = FixedTensor(kSize); for (size_t i = 0; i < opts_.size(); ++i) { - int state_len = 0; - std::string state = opts_[i]->SerializeState(&state_len); + auto state = opts_[i]->SerializeState(); + opts_[i]->DeserializeState(state); + auto state1 = opts_[i]->SerializeState(); opts_[i]->DeserializeState(state); + EXPECT_EQ(state, state1); + + int s = 0; + float* newp = (float*)opts_[i]->get_weight(&s); + EXPECT_EQ(s, kSize); + for (size_t j = 0; j < kSize; ++j) { + EXPECT_EQ(newp[j], (*p)[j]); + } } } diff --git a/paddle/optimizer/serialization_test.cpp b/paddle/optimizer/serialization_test.cpp index e4d97cbdba545c4ba5adf5b30efd3fc9f3f744ee..4c416f55ee0bd70f9ec6e288b08a5399d8b2bf39 100644 --- a/paddle/optimizer/serialization_test.cpp +++ b/paddle/optimizer/serialization_test.cpp @@ -21,7 +21,22 @@ TEST(TensorToProto, Case1) { paddle::optimizer::Tensor t(3), t1(3); for (size_t i = 0; i < t.size(); ++i) { t[i] = i; - t1[i] = 0; + t1[i] = 10; + } + + paddle::TensorProto proto; + paddle::optimizer::TensorToProto(t, &proto); + paddle::optimizer::ProtoToTensor(proto, &t1); + for (size_t i = 0; i < t1.size(); ++i) { + EXPECT_EQ(t1[i], t[i]); + } +} + +TEST(TensorToProto, Case2) { + paddle::optimizer::Tensor t(1), t1(1); + for (size_t i = 0; i < t.size(); ++i) { + t[i] = i; + t1[i] = 10; } paddle::TensorProto proto; diff --git a/paddle/optimizer/sgd_optimizer.cc b/paddle/optimizer/sgd_optimizer.cc index 15418faa840c19e776f293700ee886991754fb04..1090419083c8b8cf60eca02791ef673287f4a9a4 100644 --- a/paddle/optimizer/sgd_optimizer.cc +++ b/paddle/optimizer/sgd_optimizer.cc @@ -27,16 +27,14 @@ void SGDOptimizer::Update(const Tensor *gradient) { } } -const char *SGDOptimizer::SerializeState(int *state_len) { +std::string SGDOptimizer::SerializeState() { SGDOptimizerState state; state.set_num_sample_passed(num_sample_passed_); - std::string lr_str = this->lr_policy_->SerializeState(state_len); + std::string lr_str = this->lr_policy_->SerializeState(); state.mutable_lr_state()->ParseFromString(lr_str); TensorToProto(*parameter_, state.mutable_parameter()); if (momentum_ != 0.0) TensorToProto(*momentums_, state.mutable_momentums()); - auto str = state.SerializeAsString(); - *state_len += str.size(); - return str.c_str(); + return state.SerializeAsString(); } void SGDOptimizer::DeserializeState(const std::string &str) { @@ -46,7 +44,7 @@ void SGDOptimizer::DeserializeState(const std::string &str) { this->lr_policy_->DeserializeState(lr_state.SerializeAsString()); num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); - if (momentum_ != 0.0) ProtoToTensor(state.parameter(), momentums_); + if (momentum_ != 0.0) ProtoToTensor(state.momentums(), momentums_); } } // namespace optimizer diff --git a/paddle/optimizer/sgd_optimizer.h b/paddle/optimizer/sgd_optimizer.h index b74a902e1aa40a7831b36ab826d72372a3588bcf..6e1a0f0d3f9ecfeb51ccb355d65985a2e6388fb0 100644 --- a/paddle/optimizer/sgd_optimizer.h +++ b/paddle/optimizer/sgd_optimizer.h @@ -23,7 +23,7 @@ public: if (momentums_) delete momentums_; } void Update(const Tensor* gradient); - const char* SerializeState(int* state_len); + std::string SerializeState(); void DeserializeState(const std::string& state); private: diff --git a/paddle/optimizer/tensor.h b/paddle/optimizer/tensor.h index 80a8c93081ea7758d3b5ba016a14d424954db913..86fa625e01b981f0377bd699d191fc865ee89784 100644 --- a/paddle/optimizer/tensor.h +++ b/paddle/optimizer/tensor.h @@ -15,7 +15,8 @@ template class TensorT { public: TensorT(size_t size) : height_(1), width_(size) { - data_ptr_ = std::shared_ptr(new T[size], std::default_delete()); + // new T[size]() initializes all element to zero value. + data_ptr_ = std::shared_ptr(new T[size](), std::default_delete()); data_ = data_ptr_.get(); } diff --git a/paddle/parameter/FirstOrderOptimizer.h b/paddle/parameter/FirstOrderOptimizer.h index 895e8d6a63d1fad0ee7a6f5647402435d418b2f1..f157188a4f736319ea187052b90a17f8be9e9edb 100644 --- a/paddle/parameter/FirstOrderOptimizer.h +++ b/paddle/parameter/FirstOrderOptimizer.h @@ -265,6 +265,10 @@ public: addParameterType(PARAMETER_SECOND_MOMENTUM); } + virtual void startBatch(int64_t numSamplesProcessed) { + learningRate_ = calcLearningRate(numSamplesProcessed, pass_); + } + virtual void finishBatch() { ++step_; } virtual void update(const VectorPtr vecs[], diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index daf519b91d623d4369774dc4e37dcb7b1733666b..eb850b658583f2256629d63fdb64248dbf249937 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -25,3 +25,4 @@ nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_ nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) +nv_test(nccl_test SRCS nccl_test.cu DEPS dynload_cuda gpu_info device_context) diff --git a/paddle/platform/cudnn_helper.h b/paddle/platform/cudnn_helper.h index 0c5719ef5162546578253e383209b1893c0cd71f..ce3421a3cb840e4c1e872eea12dedc1150c85962 100644 --- a/paddle/platform/cudnn_helper.h +++ b/paddle/platform/cudnn_helper.h @@ -22,6 +22,47 @@ limitations under the License. */ namespace paddle { namespace platform { +inline const char* cudnnGetErrorString(cudnnStatus_t status) { + switch (status) { + case CUDNN_STATUS_SUCCESS: + return "CUDNN_STATUS_SUCCESS"; + case CUDNN_STATUS_NOT_INITIALIZED: + return "CUDNN_STATUS_NOT_INITIALIZED"; + case CUDNN_STATUS_ALLOC_FAILED: + return "CUDNN_STATUS_ALLOC_FAILED"; + case CUDNN_STATUS_BAD_PARAM: + return "CUDNN_STATUS_BAD_PARAM"; + case CUDNN_STATUS_INTERNAL_ERROR: + return "CUDNN_STATUS_INTERNAL_ERROR"; + case CUDNN_STATUS_INVALID_VALUE: + return "CUDNN_STATUS_INVALID_VALUE"; + case CUDNN_STATUS_ARCH_MISMATCH: + return "CUDNN_STATUS_ARCH_MISMATCH"; + case CUDNN_STATUS_MAPPING_ERROR: + return "CUDNN_STATUS_MAPPING_ERROR"; + case CUDNN_STATUS_EXECUTION_FAILED: + return "CUDNN_STATUS_EXECUTION_FAILED"; + case CUDNN_STATUS_NOT_SUPPORTED: + return "CUDNN_STATUS_NOT_SUPPORTED"; + case CUDNN_STATUS_LICENSE_ERROR: + return "CUDNN_STATUS_LICENSE_ERROR"; + default: + return "Unknown cudnn error number"; + } +} + +#define CUDNN_VERSION_MIN(major, minor, patch) \ + (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch))) + +#define CUDNN_ENFORCE(condition) \ + do { \ + cudnnStatus_t status = condition; \ + if (status != CUDNN_STATUS_SUCCESS) { \ + VLOG(1) << ::paddle::platform::cudnnGetErrorString(status); \ + PADDLE_THROW("cuDNN call failed"); \ + } \ + } while (false) + enum class DataLayout { kNHWC, kNCHW, @@ -40,12 +81,30 @@ template <> class CudnnDataType { public: static const cudnnDataType_t type = CUDNN_DATA_FLOAT; + typedef const float ScalingParamType; + static ScalingParamType* kOne() { + static ScalingParamType v = 1.0; + return &v; + } + static ScalingParamType* kZero() { + static ScalingParamType v = 0.0; + return &v; + } }; template <> class CudnnDataType { public: static const cudnnDataType_t type = CUDNN_DATA_DOUBLE; + typedef const double ScalingParamType; + static ScalingParamType* kOne() { + static ScalingParamType v = 1.0; + return &v; + } + static ScalingParamType* kZero() { + static ScalingParamType v = 0.0; + return &v; + } }; inline cudnnTensorFormat_t GetCudnnTensorFormat(const DataLayout& order) { diff --git a/paddle/platform/dynload/CMakeLists.txt b/paddle/platform/dynload/CMakeLists.txt index ceb66f84b6b01892cbaf61c79a47ae60d2589164..bb3fec1be9e811c26cc6851314e960e96fc366b3 100644 --- a/paddle/platform/dynload/CMakeLists.txt +++ b/paddle/platform/dynload/CMakeLists.txt @@ -1,2 +1,3 @@ cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags) -nv_library(dynload_cuda SRCS cublas.cc cudnn.cc curand.cc DEPS dynamic_loader) +nv_library(dynload_cuda SRCS cublas.cc cudnn.cc curand.cc nccl.cc + DEPS dynamic_loader nccl) diff --git a/paddle/platform/dynload/cublas.h b/paddle/platform/dynload/cublas.h index 9d8343c0b5e200b390ccda760f09816959952e9d..6b64539b0a9a4d535a53447fbcc0e458f3ac9129 100644 --- a/paddle/platform/dynload/cublas.h +++ b/paddle/platform/dynload/cublas.h @@ -77,6 +77,10 @@ extern void *cublas_dso_handle; __macro(cublasDgemmBatched); \ __macro(cublasCgemmBatched); \ __macro(cublasZgemmBatched); \ + __macro(cublasSgemmStridedBatched); \ + __macro(cublasDgemmStridedBatched); \ + __macro(cublasCgemmStridedBatched); \ + __macro(cublasZgemmStridedBatched); \ __macro(cublasSgetrfBatched); \ __macro(cublasSgetriBatched); \ __macro(cublasDgetrfBatched); \ diff --git a/paddle/platform/dynload/cudnn.h b/paddle/platform/dynload/cudnn.h index 0120625b7c14448f1b8deb88c24a3ee06eaf4f01..b2d69da93bcd4a5c8e694a18ca648ddc4bd947af 100644 --- a/paddle/platform/dynload/cudnn.h +++ b/paddle/platform/dynload/cudnn.h @@ -83,6 +83,7 @@ extern void* cudnn_dso_handle; __macro(cudnnDestroyConvolutionDescriptor); \ __macro(cudnnSetConvolutionNdDescriptor); \ __macro(cudnnGetConvolutionNdDescriptor); \ + __macro(cudnnDeriveBNTensorDescriptor); \ __macro(cudnnCreate); \ __macro(cudnnDestroy); \ __macro(cudnnSetStream); \ diff --git a/paddle/platform/dynload/dynamic_loader.cc b/paddle/platform/dynload/dynamic_loader.cc index ae9a0a982c73de05821579d22b7f9ad99f24a92b..6feba42c0d9d618d27da12e6a6752058b296995e 100644 --- a/paddle/platform/dynload/dynamic_loader.cc +++ b/paddle/platform/dynload/dynamic_loader.cc @@ -35,6 +35,11 @@ DEFINE_string(warpctc_dir, "", "Specify path for loading libwarpctc.so."); DEFINE_string(lapack_dir, "", "Specify path for loading liblapack.so."); +DEFINE_string(nccl_dir, "", + "Specify path for loading nccl library, such as libcublas, " + "libcurand. For instance, /usr/local/cuda/lib64. If default, " + "dlopen will search cuda from LD_LIBRARY_PATH"); + namespace paddle { namespace platform { namespace dynload { @@ -157,6 +162,14 @@ void GetLapackDsoHandle(void** dso_handle) { #endif } +void GetNCCLDsoHandle(void** dso_handle) { +#if defined(__APPLE__) || defined(__OSX__) + GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.dylib", dso_handle); +#else + GetDsoHandleFromSearchPath(FLAGS_nccl_dir, "libnccl.so", dso_handle); +#endif +} + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/platform/dynload/dynamic_loader.h b/paddle/platform/dynload/dynamic_loader.h index a99b05443feb909f10b2c56f4d8bdf3c6fa11e3f..c0e5452e5ae723ec314ebafde86a6ff63980be00 100644 --- a/paddle/platform/dynload/dynamic_loader.h +++ b/paddle/platform/dynload/dynamic_loader.h @@ -58,6 +58,14 @@ void GetWarpCTCDsoHandle(void** dso_handle); */ void GetLapackDsoHandle(void** dso_handle); +/** + * @brief load the DSO of NVIDIA nccl + * + * @param **dso_handle dso handler + * + */ +void GetNCCLDsoHandle(void** dso_handle); + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/platform/dynload/nccl.cc b/paddle/platform/dynload/nccl.cc new file mode 100644 index 0000000000000000000000000000000000000000..8f92b8d94d56047b7d3fb43b15e3c06575c8d57b --- /dev/null +++ b/paddle/platform/dynload/nccl.cc @@ -0,0 +1,30 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/platform/dynload/nccl.h" + +namespace paddle { +namespace platform { +namespace dynload { + +std::once_flag nccl_dso_flag; +void *nccl_dso_handle; + +#define DEFINE_WRAP(__name) DynLoad__##__name __name + +NCCL_RAND_ROUTINE_EACH(DEFINE_WRAP); + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/dynload/nccl.h b/paddle/platform/dynload/nccl.h new file mode 100644 index 0000000000000000000000000000000000000000..0618c7414fd1235e81ee9d92a3a07b53d6ad6ebc --- /dev/null +++ b/paddle/platform/dynload/nccl.h @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include +#include +#include +#include "paddle/platform/dynload/dynamic_loader.h" + +namespace paddle { +namespace platform { +namespace dynload { + +extern std::once_flag nccl_dso_flag; +extern void* nccl_dso_handle; + +#ifdef PADDLE_USE_DSO +#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + auto operator()(Args... args) -> decltype(__name(args...)) { \ + using nccl_func = decltype(__name(args...)) (*)(Args...); \ + std::call_once(nccl_dso_flag, \ + paddle::platform::dynload::GetNCCLDsoHandle, \ + &nccl_dso_handle); \ + void* p_##__name = dlsym(nccl_dso_handle, #__name); \ + return reinterpret_cast(p_##__name)(args...); \ + } \ + }; \ + extern DynLoad__##__name __name +#else +#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + ncclResult_t operator()(Args... args) { \ + return __name(args...); \ + } \ + }; \ + extern DynLoad__##__name __name +#endif + +#define NCCL_RAND_ROUTINE_EACH(__macro) \ + __macro(ncclCommInitAll); \ + __macro(ncclGetUniqueId); \ + __macro(ncclCommInitRank); \ + __macro(ncclCommDestroy); \ + __macro(ncclCommCount); \ + __macro(ncclCommCuDevice); \ + __macro(ncclCommUserRank); \ + __macro(ncclAllReduce); \ + __macro(ncclBcast); \ + __macro(ncclAllGather); \ + __macro(ncclReduce); \ + __macro(ncclGetErrorString); + +NCCL_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_NCCL_WRAP) + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index cd906c3fa9375cd6edaed0377a596771e25043d4..bfe708748a62ff9ac5d151bc652142e1f4925c83 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -29,11 +29,14 @@ limitations under the License. */ #include // for __cxa_demangle #endif +#include + #ifdef PADDLE_WITH_CUDA #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" #include "paddle/platform/dynload/curand.h" +#include "paddle/platform/dynload/nccl.h" #include #include @@ -172,6 +175,17 @@ inline typename std::enable_if::type throw_on_error( throw std::runtime_error(err + string::Sprintf(args...)); } +template +inline typename std::enable_if::type throw_on_error( + ncclResult_t stat, const Args&... args) { + if (stat == ncclSuccess) { + return; + } else { + throw std::runtime_error(platform::dynload::ncclGetErrorString(stat) + + string::Sprintf(args...)); + } +} + #endif // PADDLE_ONLY_CPU template diff --git a/paddle/platform/nccl_test.cu b/paddle/platform/nccl_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..ab8b96f7263aed83407866fedf9e529ce0affe3f --- /dev/null +++ b/paddle/platform/nccl_test.cu @@ -0,0 +1,139 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "glog/logging.h" +#include "gtest/gtest.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/dynload/nccl.h" +#include "paddle/platform/enforce.h" +#include "paddle/platform/gpu_info.h" + +#include +#include +#include + +static int dev_count = 0; + +namespace paddle { +namespace platform { + +TEST(NCCL, init) { + std::vector comms; + comms.resize(dev_count); + + auto status = dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); + PADDLE_ENFORCE(status); + for (int i = 0; i < dev_count; ++i) { + dynload::ncclCommDestroy(comms[i]); + } +} + +template +struct PerThreadData { + thrust::device_vector send_buff; + thrust::device_vector recv_buff; + CUDADeviceContext dev_ctx; + + T* SendBuff() { return thrust::raw_pointer_cast(send_buff.data()); } + + T* RecvBuff() { return thrust::raw_pointer_cast(recv_buff.data()); } + + PerThreadData(int gpu_id, size_t size) : dev_ctx(GPUPlace(gpu_id)) { + send_buff.resize(size); + for (size_t i = 0; i < size; ++i) { + send_buff[i] = static_cast(i); + } + recv_buff.resize(size); + } +}; + +static constexpr int ELEM_COUNT = 10000; + +TEST(NCCL, all_reduce) { + std::vector comms; + comms.resize(dev_count); + VLOG(1) << "Initializing ncclComm"; + auto status = dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); + PADDLE_ENFORCE(status); + VLOG(1) << "ncclComm initialized"; + VLOG(1) << "Creating thread data"; + std::vector>> data; + data.reserve(dev_count); + for (int i = 0; i < dev_count; ++i) { + VLOG(1) << "Creating thread data for device " << i; + SetDeviceId(i); + data.emplace_back(new PerThreadData(i, ELEM_COUNT)); + } + VLOG(1) << "Thread data created"; + + VLOG(1) << "Check send_buf data"; + for (int i = 0; i < dev_count; ++i) { + VLOG(1) << "Check on device " << i; + SetDeviceId(i); + thrust::host_vector tmp = data[i]->send_buff; + for (size_t j = 0; j < tmp.size(); ++j) { + ASSERT_NEAR(static_cast(j), tmp[j], 1e-5); + } + } + + VLOG(1) << "Invoking ncclAllReduce"; + + for (int i = 0; i < dev_count; ++i) { + VLOG(1) << "Invoking ncclAllReduce with device " << i; + SetDeviceId(i); + PADDLE_ENFORCE(dynload::ncclAllReduce( + data[i]->SendBuff(), data[i]->RecvBuff(), ELEM_COUNT, ncclDouble, + ncclSum, comms[i], data[i]->dev_ctx.stream())); + VLOG(1) << "Invoked ncclAllReduce for device " << i; + } + + VLOG(1) << "Invoked ncclAllReduce"; + + VLOG(1) << "Sync devices"; + for (int i = 0; i < dev_count; ++i) { + VLOG(1) << "Sync device " << i; + SetDeviceId(i); + data[i]->dev_ctx.Wait(); + } + VLOG(1) << "device synced"; + + for (int i = 0; i < dev_count; ++i) { + SetDeviceId(i); + VLOG(1) << "Checking vector on device " << i; + thrust::host_vector tmp = data[i]->recv_buff; + for (size_t j = 0; j < tmp.size(); ++j) { + auto elem = static_cast(j); + elem *= dev_count; + ASSERT_NEAR(tmp[j], elem, 1e-4); + } + } + + for (int i = 0; i < dev_count; ++i) { + dynload::ncclCommDestroy(comms[i]); + } +} +} // namespace platform +} // namespace paddle + +int main(int argc, char** argv) { + dev_count = paddle::platform::GetCUDADeviceCount(); + if (dev_count <= 1) { + LOG(WARNING) + << "Cannot test multi-gpu nccl, because the CUDA device count is " + << dev_count; + return 0; + } + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 0efc6932349a5b3ad295d195a16737a642e18943..5370360a7de26e409a1545182a12d3df1f37658b 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -35,6 +35,7 @@ struct GPUPlace { GPUPlace() : GPUPlace(0) {} explicit GPUPlace(int d) : device(d) {} + inline int GetDeviceId() const { return device; } // needed for variant equality comparison inline bool operator==(const GPUPlace &o) const { return device == o.device; } inline bool operator!=(const GPUPlace &o) const { return !(*this == o); } diff --git a/paddle/pserver/ParameterClient2.cpp b/paddle/pserver/ParameterClient2.cpp index 54063a809a4f9e558f8d364f5c437f2b6d98925b..9562c649867a8f82f0262a049398b2f17026a983 100644 --- a/paddle/pserver/ParameterClient2.cpp +++ b/paddle/pserver/ParameterClient2.cpp @@ -186,6 +186,7 @@ void ParameterClient2::sendParallel(int tid, parameter->getMat(recvParameterType).get()); CHECK(recvMat); size_t width = parameter->getConfig().dims(1); + // TODO(wuyi): need add lock here? may also cause resize. buf = recvMat->getLocalRow(block.begin_pos() / width); } /// sparse_id is not useful while receiving data since sparse data @@ -265,9 +266,9 @@ void ParameterClient2::prepareSendData( uint64_t beginDim = 0; uint64_t endDim = 0; - // FIXME(typhoonzero): let it resize first - prefetchMat->getLocalRow(nLocalBlocks + 1); - sendMat->getLocalRow(nLocalBlocks + 1); + // HACK(typhoonzero): let it resize first + prefetchMat->getLocalRow(nLocalBlocks); + sendMat->getLocalRow(nLocalBlocks); for (size_t row = 0; row < nLocalBlocks; ++row) { int64_t blockId = localIndices[row]; // local row -> sparse row diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index 46c24e2cd53c068a25e1a5c8c6df600c3111e20a..d7cd738828a10b431370c92026b89d62add1275e 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -4,3 +4,5 @@ if(WITH_PYTHON) DEPS pybind python backward proto_desc tensor_array paddle_memory executor ${GLOB_OP_LIB}) endif(WITH_PYTHON) + +cc_binary(print_operators_doc SRCS print_operators_doc.cc DEPS ${GLOB_OP_LIB} tensor_array) diff --git a/paddle/pybind/print_operators_doc.cc b/paddle/pybind/print_operators_doc.cc new file mode 100644 index 0000000000000000000000000000000000000000..24f2a9383f7a069f1a8c7ed2bf3da46720470efa --- /dev/null +++ b/paddle/pybind/print_operators_doc.cc @@ -0,0 +1,132 @@ +#include +#include // std::stringstream +#include + +#include "paddle/framework/op_info.h" +#include "paddle/framework/op_registry.h" +#include "paddle/pybind/pybind.h" + +std::string Escape(const std::string& s) { + std::string r; + for (size_t i = 0; i < s.size(); i++) { + switch (s[i]) { + case '\"': + r += "\\\""; + break; + case '\\': + r += "\\\\"; + break; + case '\n': + r += "\\n"; + break; + case '\t': + r += "\\t"; + case '\r': + break; + default: + r += s[i]; + break; + } + } + return r; +} + +std::string AttrType(paddle::framework::AttrType at) { + switch (at) { + case paddle::framework::INT: + return "int"; + case paddle::framework::FLOAT: + return "float"; + case paddle::framework::STRING: + return "string"; + case paddle::framework::BOOLEAN: + return "bool"; + case paddle::framework::INTS: + return "int array"; + case paddle::framework::FLOATS: + return "float array"; + case paddle::framework::STRINGS: + return "string array"; + case paddle::framework::BOOLEANS: + return "bool array"; + case paddle::framework::BLOCK: + return "block id"; + } + return "UNKNOWN"; // not possible +} + +void PrintVar(const paddle::framework::OpProto::Var& v, std::stringstream& ss) { + ss << " { " + << "\n" + << " \"name\" : \"" << Escape(v.name()) << "\",\n" + << " \"comment\" : \"" << Escape(v.comment()) << "\",\n" + << " \"duplicable\" : " << v.duplicable() << ",\n" + << " \"intermediate\" : " << v.intermediate() << "\n" + << " },"; +} + +void PrintAttr(const paddle::framework::OpProto::Attr& a, + std::stringstream& ss) { + ss << " { " + << "\n" + << " \"name\" : \"" << Escape(a.name()) << "\",\n" + << " \"type\" : \"" << AttrType(a.type()) << "\",\n" + << " \"comment\" : \"" << Escape(a.comment()) << "\",\n" + << " \"generated\" : " << a.generated() << "\n" + << " },"; +} + +void PrintOpProto(const std::string& type, + const paddle::framework::OpInfo& opinfo, + std::stringstream& ss) { + std::cerr << "Processing " << type << "\n"; + + const paddle::framework::OpProto* p = opinfo.proto_; + if (p == nullptr) { + return; // It is possible that an operator doesn't have OpProto. + } + + ss << "{\n" + << " \"type\" : \"" << Escape(p->type()) << "\",\n" + << " \"comment\" : \"" << Escape(p->comment()) << "\",\n"; + + ss << " \"inputs\" : [ " + << "\n"; + for (int i = 0; i < p->inputs_size(); i++) { + PrintVar(p->inputs(i), ss); + } + ss.seekp(-1, ss.cur); // remove the trailing comma + ss << " ], " + << "\n"; + + ss << " \"outputs\" : [ " + << "\n"; + for (int i = 0; i < p->outputs_size(); i++) { + PrintVar(p->outputs(i), ss); + } + ss.seekp(-1, ss.cur); // remove the trailing comma + ss << " ], " + << "\n"; + + ss << " \"attrs\" : [ " + << "\n"; + for (int i = 0; i < p->attrs_size(); i++) { + PrintAttr(p->attrs(i), ss); + } + ss.seekp(-1, ss.cur); // remove the trailing comma + ss << " ] " + << "\n"; + + ss << "},"; +} + +int main() { + std::stringstream ss; + ss << "[\n"; + for (auto& iter : paddle::framework::OpInfoMap::Instance().map()) { + PrintOpProto(iter.first, iter.second, ss); + } + ss.seekp(-1, ss.cur); // remove the trailing comma + ss << "]\n"; + std::cout << ss.str(); +} diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index b360b05d16c9a1c135fa56cb37919dece8f16788..6bf6eb9fd404a7fa16f2b169dd18f34f0a4e324c 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -100,21 +100,11 @@ using namespace paddle::framework; // NOLINT // Bind Methods void BindProgramDesc(py::module &m) { py::class_(m, "ProgramDesc", "") - .def_static("instance", - []() -> ProgramDescBind * { - return &ProgramDescBind::Instance(&GetProgramDesc()); - }, - py::return_value_policy::reference) - .def_static("__create_program_desc__", - []() -> ProgramDescBind * { - // Only used for unit-test - auto *prog_desc = new ProgramDesc; - auto *block = prog_desc->mutable_blocks()->Add(); - block->set_idx(0); - block->set_parent_idx(-1); - return &ProgramDescBind::Instance(prog_desc); - }, - py::return_value_policy::reference) + .def(py::init<>()) + .def("__init__", + [](ProgramDescBind &self, const ProgramDescBind &other) { + new (&self) ProgramDescBind(other); + }) .def("append_block", &ProgramDescBind::AppendBlock, py::return_value_policy::reference) .def("append_backward", @@ -163,6 +153,11 @@ void BindBlockDesc(py::module &m) { return self.Var(name); }, py::return_value_policy::reference) + .def("has_var", + [](BlockDescBind &self, py::bytes byte_name) { + std::string name = byte_name; + return self.HasVar(name); + }) .def("find_var", [](BlockDescBind &self, py::bytes byte_name) { std::string name = byte_name; @@ -171,8 +166,8 @@ void BindBlockDesc(py::module &m) { py::return_value_policy::reference) .def("all_vars", &BlockDescBind::AllVars, py::return_value_policy::reference) - .def("all_ops", &BlockDescBind::AllOps, - py::return_value_policy::reference) + .def("op_size", &BlockDescBind::OpSize) + .def("op", &BlockDescBind::Op, py::return_value_policy::reference) .def("serialize_to_string", [](BlockDescBind &block_desc) -> py::bytes { const BlockDesc *desc = block_desc.Proto(); PADDLE_ENFORCE(desc->IsInitialized(), @@ -211,20 +206,26 @@ void BindVarDsec(py::module &m) { .def("set_lod_level", &VarDescBind::SetLoDLevel) .def("type", &VarDescBind::GetType) .def("set_type", &VarDescBind::SetType) - .def("serialize_to_string", [](VarDescBind &var_desc) -> py::bytes { - const VarDesc *desc = var_desc.Proto(); - PADDLE_ENFORCE(desc->IsInitialized(), - "VarDesc has not been initialized."); - std::string res; - PADDLE_ENFORCE( - desc->SerializeToString(&res), - "Serialize VarDesc Error. This could be a bug of Paddle."); - return res; - }); + .def("serialize_to_string", + [](VarDescBind &var_desc) -> py::bytes { + const VarDesc *desc = var_desc.Proto(); + PADDLE_ENFORCE(desc->IsInitialized(), + "VarDesc has not been initialized."); + std::string res; + PADDLE_ENFORCE( + desc->SerializeToString(&res), + "Serialize VarDesc Error. This could be a bug of Paddle."); + return res; + }) + .def("persistable", &VarDescBind::Persistable) + .def("set_persistable", &VarDescBind::SetPersistable); py::enum_(var_desc, "VarType", "") .value("LOD_TENSOR", VarDesc::LOD_TENSOR) - .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS); + .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS) + .value("FEED_MINIBATCH", VarDesc::FEED_MINIBATCH) + .value("FETCH_LIST", VarDesc::FETCH_LIST) + .value("STEP_SCOPES", VarDesc::STEP_SCOPES); } void BindOpDesc(py::module &m) { @@ -257,6 +258,7 @@ void BindOpDesc(py::module &m) { .def("block_attr", &OpDescBind::GetBlockAttr) .def("check_attrs", &OpDescBind::CheckAttrs) .def("infer_shape", &OpDescBind::InferShape) + .def("infer_var_type", &OpDescBind::InferVarType) .def("serialize_to_string", [](OpDescBind &op_desc) -> py::bytes { const OpDesc *desc = op_desc.Proto(); PADDLE_ENFORCE(desc->IsInitialized(), diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index fcae92ad99f7b393104ac04fd725ad3d43db04ad..b6e44fdbad6e2817e3077901f58177adc4bb0c71 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" +#include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/selected_rows.h" #include "paddle/framework/tensor_array.h" @@ -83,10 +84,12 @@ PYBIND11_PLUGIN(core) { .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) + .def("set", PyCPUTensorSetFromArray) #ifdef PADDLE_WITH_CUDA .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) + .def("set", PyCUDATensorSetFromArray) #endif .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) .def("set_float_element", TensorSetElement) @@ -110,6 +113,7 @@ PYBIND11_PLUGIN(core) { new (&instance) LoDTensor(new_lod); #endif }) + .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); }) .def("set_lod", [](LoDTensor &self, const std::vector> &lod) { #ifndef PADDLE_WITH_CUDA @@ -153,7 +157,15 @@ PYBIND11_PLUGIN(core) { py::return_value_policy::reference) .def("set_height", &SelectedRows::set_height) .def("height", &SelectedRows::height) - .def("set_rows", &SelectedRows::set_rows) + .def("set_rows", + [](SelectedRows &self, std::vector rows) { +#ifndef PADDLE_WITH_CUDA + self.set_rows(rows); +#else + Vector new_rows(rows); + self.set_rows(new_rows); +#endif + }) .def("rows", [](SelectedRows &self) { #ifndef PADDLE_WITH_CUDA return self.rows(); @@ -186,6 +198,11 @@ All parameter, weight, gradient are variables in Paddle. return self.GetMutable(); }, py::return_value_policy::reference) + .def("get_selected_rows", + [](Variable &self) -> SelectedRows * { + return self.GetMutable(); + }, + py::return_value_policy::reference) .def("get_net", [](Variable &self) -> operators::NetOp * { return self.GetMutable(); @@ -208,15 +225,16 @@ All parameter, weight, gradient are variables in Paddle. //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { std::vector ret_values; - - OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type, - const OpInfo &info) { - if (!info.HasOpProtoAndChecker()) return; - std::string str; - PADDLE_ENFORCE(info.Proto().SerializeToString(&str), - "Serialize OpProto Error. This could be a bug of Paddle."); - ret_values.emplace_back(str); - }); + for (auto &iter : OpInfoMap::Instance().map()) { + auto &info = iter.second; + if (info.HasOpProtoAndChecker()) { + std::string str; + PADDLE_ENFORCE( + info.Proto().SerializeToString(&str), + "Serialize OpProto Error. This could be a bug of Paddle."); + ret_values.emplace_back(str); + } + } return ret_values; }); m.def_submodule( @@ -250,6 +268,17 @@ All parameter, weight, gradient are variables in Paddle. .def(py::init<>()) .def("__str__", string::to_string); + py::class_(m, "Place") + .def(py::init<>()) + .def("set_place", + [](platform::Place &self, const platform::CPUPlace &cpu_place) { + self = cpu_place; + }) + .def("set_place", + [](platform::Place &self, const platform::GPUPlace &gpu_place) { + self = gpu_place; + }); + py::class_(m, "Operator") .def_static("create", [](py::bytes protobin) { @@ -259,7 +288,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - return OpRegistry::CreateOp(desc); + return OpRegistry::CreateOp(desc, nullptr); }) .def("backward", [](const OperatorBase &forwardOp, @@ -363,7 +392,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); + auto rnn_op = OpRegistry::CreateOp(desc, nullptr); return static_cast(rnn_op.release()); }) .def("set_stepnet", [](operators::RecurrentOp &self, @@ -381,22 +410,22 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); + auto rnn_op = OpRegistry::CreateOp(desc, nullptr); return static_cast( rnn_op.release()); }) - .def("set_stepnet", + .def("set_step_unit", [](operators::DynamicRecurrentOp &self, const operators::NetOp &net) - -> void { self.SetStepNet(net.Clone()); }) + -> void { self.rnn.SetStepUnit(net.Clone()); }) .def("get_state", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.state(name); }) + -> const TensorArray & { return self.rnn.state(name); }) .def("get_step_input", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.step_input(name); }) + -> const TensorArray & { return self.rnn.step_input(name); }) .def("get_step_output", [](operators::DynamicRecurrentOp &self, const std::string &name) - -> const TensorArray & { return self.step_output(name); }); + -> const TensorArray & { return self.rnn.step_output(name); }); // cond_op py::class_(m, "CondOp") @@ -408,7 +437,7 @@ All parameter, weight, gradient are variables in Paddle. PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - auto cond_op = OpRegistry::CreateOp(desc); + auto cond_op = OpRegistry::CreateOp(desc, nullptr); return static_cast(cond_op.release()); }) .def("set_truenet", @@ -422,18 +451,15 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "Executor") .def(py::init &>()) - .def("run", - [](Executor &self, const ProgramDesc &program_desc, int block_id) { - framework::Scope &global_scope = GetGlobalScope(); - self.Run(program_desc, &global_scope, block_id); - }); + .def("run", [](Executor &self, ProgramDescBind *program_bind, + Scope *scope, int block_id) { + self.Run(*program_bind->Proto(), scope, block_id); + }); m.def("unique_integer", UniqueIntegerGenerator); m.def("is_compile_gpu", IsCompileGPU); - m.def("set_feed_variable_float", framework::SetFeedVariable); - m.def("set_feed_variable_double", framework::SetFeedVariable); - m.def("set_feed_variable_int", framework::SetFeedVariable); + m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); BindProgramDesc(m); @@ -441,6 +467,8 @@ All parameter, weight, gradient are variables in Paddle. BindVarDsec(m); BindOpDesc(m); + m.def("op_support_gpu", OpSupportGPU); + return m.ptr(); } } // namespace pybind diff --git a/paddle/scripts/cluster_train_v2/fabric/conf.py b/paddle/scripts/cluster_train_v2/fabric/conf.py new file mode 100644 index 0000000000000000000000000000000000000000..e96503d093a4317df7bb006043eb42098f51b6f5 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/conf.py @@ -0,0 +1,39 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +HOSTS = [ + "root@10.1.9.7", + "root@10.1.18.7", + "root@10.1.32.9", +] +''' +workspace configuration +''' +#root dir for workspace, can be set as any director with real user account +ROOT_DIR = "/root" +''' +network configuration +''' +#pserver nics +PADDLE_NIC = "eth0" +#pserver port +PADDLE_PORT = 7164 +#pserver ports num +PADDLE_PORTS_NUM = 1 +#pserver sparse ports num +PADDLE_PORTS_NUM_FOR_SPARSE = 1 +#trainer whether use gpu +PADDLE_USE_GPU = "False" +#environments setting for all processes in cluster job +LD_LIBRARY_PATH = "/usr/local/cuda/lib64:/usr/lib64" diff --git a/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..6606c01265af1fa8009e67906a3dbbe5c95ebc0d --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/Dockerfile @@ -0,0 +1,11 @@ +FROM docker.paddlepaddlehub.com/paddle:0.10.0rc2 +RUN apt-get update && apt-get install -y openssh-server +RUN mkdir /var/run/sshd + +RUN echo 'root:root' |chpasswd + +RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config +RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config + +EXPOSE 22 +CMD ["/usr/sbin/sshd", "-D"] diff --git a/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0784b2d1b8785796f94fff1607643218564fc126 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/docker_cluster/ssh_servers.yaml @@ -0,0 +1,23 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: ssh-servers +spec: + replicas: 3 + template: + metadata: + labels: + app: ssh-servers + spec: + containers: + - name: ssh-servers + image: docker.paddlepaddlehub.com/paddlessh + resources: + limits: + cpu: 500m + memory: 1Gi + requests: + cpu: 500m + memory: 1Gi + ports: + - containerPort: 22 diff --git a/paddle/scripts/cluster_train_v2/fabric/run.sh b/paddle/scripts/cluster_train_v2/fabric/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..f6324bcb136803ebc30e69bcdaa2f8725cb0ccba --- /dev/null +++ b/paddle/scripts/cluster_train_v2/fabric/run.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +python paddle.py \ + --job_dispatch_package="/root/wuyi/fabric_submit/workspace" \ + --dot_period=10 \ + --ports_num_for_sparse=1 \ + --log_period=50 \ + --num_passes=5 \ + --trainer_count=2 \ + --saving_period=1 \ + --local=0 \ + --config=./trainer_config.py \ + --save_dir=./output \ + --use_gpu=0 diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..1a2d19e823541750830fcaa25f65b2f8e1ea2b49 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile @@ -0,0 +1,43 @@ +# Build this image: docker build -t mpi . +# + +FROM paddledev/paddle:0.10.0rc3 + +ENV DEBIAN_FRONTEND noninteractive + +RUN apt-get update -y && \ + apt-get upgrade -y && \ + apt-get install -y openssh-server zip unzip vim sudo \ +gcc gfortran openmpi-checkpoint binutils wget curl git openmpi-bin openmpi-common libopenmpi-dev && \ +pip install mpi4py numpy virtualenv scipy matplotlib lxml sqlalchemy suds ipython obspy && \ +mkdir /var/run/sshd && \ +echo 'root:tutorial' | chpasswd && \ +sed -i 's/PermitRootLogin without-password/PermitRootLogin yes/' /etc/ssh/sshd_config && \ +# SSH login fix. Otherwise user is kicked off after login +sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd && \ +echo "export VISIBLE=now" >> /etc/profile && \ +adduser --disabled-password --gecos "" tutorial && \ +echo "tutorial ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers && \ +mkdir /home/tutorial/.ssh/ + +ENV HOME /home/tutorial +ENV NOTVISIBLE "in users profile" + +# ------------------------------------------------------------ +# Set-Up SSH with our Github deploy key +# ------------------------------------------------------------ + +ADD ssh/config /home/tutorial/.ssh/config +ADD ssh/id_rsa.mpi /home/tutorial/.ssh/id_rsa +ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/id_rsa.pub +ADD ssh/id_rsa.mpi.pub /home/tutorial/.ssh/authorized_keys + +#--------------------------------------------------------------- +#LD_LIBRARY_PATH +#--------------------------------------------------------------- + +RUN export LD_LIBRARY_PATH=/usr/lib/openmpi/lib/ + +WORKDIR /home/tutorial +EXPOSE 22 +CMD ["/usr/sbin/sshd", "-D"] diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml new file mode 100644 index 0000000000000000000000000000000000000000..34835e5eb8d7cb92ad3cf7758a47c9e565a7dcf6 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/head.yaml @@ -0,0 +1,25 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: mpi-header + labels: + app: mpi-header +spec: + replicas: 1 + template: + metadata: + labels: + app: mpi-header + spec: + containers: + - image: typhoon1986/paddle-openmpi + name : mpi-header + resources: + limits: + cpu: 500m + memory: 2Gi + requests: + cpu: 500m + memory: 2Gi + ports: + - containerPort: 22 diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2fd5cb4d44a25efac68dd8c9195dea9fd8f84a26 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/mpi-nodes.yaml @@ -0,0 +1,26 @@ +apiVersion: extensions/v1beta1 +kind: Deployment +metadata: + name: mpi-nodes + labels: + app: mpi-nodes +spec: + replicas: 3 + template: + metadata: + labels: + app: mpi-nodes + spec: + containers: + - image: typhoon1986/paddle-openmpi + name : mpi-nodes + resources: + limits: + cpu: 500m + memory: 2Gi + requests: + cpu: 500m + memory: 2Gi + ports: + - containerPort: 22 + imagePullPolicy: Always diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config new file mode 100644 index 0000000000000000000000000000000000000000..a9ecad07c39e4a9d6f0572d6cbf77795d99681f2 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/config @@ -0,0 +1 @@ +StrictHostKeyChecking no diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi new file mode 100644 index 0000000000000000000000000000000000000000..23768343edf5258cf525523d471f67071a24f5de --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi @@ -0,0 +1,27 @@ +-----BEGIN RSA PRIVATE KEY----- +MIIEogIBAAKCAQEA7PWLZmgdJ508dD15T6+xqGDvL9Ehzo9SgsnN6xJ+qpUvvOi4 +1axW0AqR4MnPTg/uuvk+x4tUpuufOW4w22UTGjsdvmIVWa9ujLtcRiN3YPY+SU+Y +O5FfqKg7r/hBn+/GMcSoffwSs7vVgmhBBnp/mJh2O1cOAFZEe98/47mbg3/kHBAk +36NOQktaU3l48B38EhBTnjWfcEGm1HcTRPFxXV5Wiko6ZhKFEuHcTVKng4ROtUqE +mgHyI0aB7TAxg4na0ejItsYWEPWGeDOw6ms/4MwylxNosWzHFPW9p4zgLCLNr+b6 +bDDfYKjXZflAuTQtQhLmJUwD9uuYLAijpSE2fQIDAQABAoIBADgcgRET8Gt0CV/B +OtvKz/f+VEVvcWD3gWNlJDTZIVOFllNWjIZUlA4ZoqenQkbK8Q4nfV1FOht4yjCQ +TlN1oMtiWk297i5Zo4UBzPzy4w774I39oh/g8dT/WXr2/5s+7SDV38xNh6Q2A34o +79T35wUcfUrZ93/O7dKjb/6d8hx2FMha0wVKqY4lmG1lQE3bbx3kakec0PdvU5kO +YHKlpqj3pMR7CpMa+4yL/iXFwWYmnK+uu+zw7JR7PwvH1CzrnvW438wjQ1QmYbSx +mHHOE89X67Lsl5hn81qYWBhpwAlBwi1qscsE0cV9GcFyKqWFqZsj5coM9u3CRfvy +lrWe1OUCgYEA+LBUFEd3Hxs4sFiYElJ8R9SAs1udaqPvAl01hTEijJLfYlMMVs/y +rgNN7j22zjDak2f8QdyMJZX7EZdRmdYcHO0csYOwbYvalzcnwk+U3mxmdD3r4xSo +DSvkJ70fogAqUlcVIg2re6fCmZVJQTvMQYTVEM8zQomJRt/Lb2esSfsCgYEA8+zv +44aToe8uqiDs4w8guRW7LCDkTw4z4IVo9JUibIaPjaAs5bZEBXSB43EEywXCR75H +fML0rU1PVvKh1rqcvZdVzm+XMWVr3asPk0sapaiHaTcmyZvJRDxxqbLFp0zRP1T6 +cCtXNFdHWU4KiuKrUi6cDyOKchpfkSZa4seiT+cCgYB+n4FgBfdQPlMB70oW4irn +g/q32CjxuGCk6oKqu5bkzo+xB6obtavSEFqouIGQwO056tNVUY+GP7Rjg5GH663K +yKw4cl3tmS0Gm43B8TVSfw03mKO3rrfWZQe5eCFYIg9qd26KNT2gK435FzsCXQkm +PxUhhu6JrW/ZR2/U3Iur6wKBgADrWLAb1ryagSuE+j+U1AO+kDkHWrTtkcZ72jxp +v3p3O11GSEUJXdJDcSXhTCpTuDq6/dv7hB6PFwh126RKicKxKlKf2wsFndV1Cpb8 +hnovW2tLGOtTmfuW2rrQAKyzvmolsNfxYd/BoHQ2thV16z1hDZeFA8WQUeHjKh6G +sBbrAoGATdtQlaUxx4izua6k02ihkxx/cRYwDl2N8UDvDBHokS7vJFMX8b8NpsGg +zMElnqSpu/pe/0UG7N2MtPF6uyMcX8AZzzcsRkiMkDvWJzYt8Jpf+Eyd/uryF+Yv +yrXaOEY83tm6x/fny5ZaZmk8lNth7bfWywuTMkZLX3fYpWtIeE4= +-----END RSA PRIVATE KEY----- diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub new file mode 100644 index 0000000000000000000000000000000000000000..015f2b42e71920e00de090cbb1108d9a12ed5f0c --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/ssh/id_rsa.mpi.pub @@ -0,0 +1 @@ +ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDs9YtmaB0nnTx0PXlPr7GoYO8v0SHOj1KCyc3rEn6qlS+86LjVrFbQCpHgyc9OD+66+T7Hi1Sm6585bjDbZRMaOx2+YhVZr26Mu1xGI3dg9j5JT5g7kV+oqDuv+EGf78YxxKh9/BKzu9WCaEEGen+YmHY7Vw4AVkR73z/juZuDf+QcECTfo05CS1pTeXjwHfwSEFOeNZ9wQabUdxNE8XFdXlaKSjpmEoUS4dxNUqeDhE61SoSaAfIjRoHtMDGDidrR6Mi2xhYQ9YZ4M7Dqaz/gzDKXE2ixbMcU9b2njOAsIs2v5vpsMN9gqNdl+UC5NC1CEuYlTAP265gsCKOlITZ9 oweidner@peahi diff --git a/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh b/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..c645495448f9844de5ae9024b6a0f41452522765 --- /dev/null +++ b/paddle/scripts/cluster_train_v2/openmpi/start_mpi_train.sh @@ -0,0 +1,28 @@ +#!/bin/bash +# General trainning configurations + +NICS=eth0 +PADDLE_INIT_PORT=7164 +PADDLE_INIT_PORTS_NUM=1 +PADDLE_INIT_PORTS_NUM_FOR_SPARSE=1 +PADDLE_INIT_PSERVERS=$(cat machines | sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/,/g') +PADDLE_INIT_USE_GPU=False + +PADDLE_INIT_NUM_GRADIENT_SERVERS=${OMPI_COMM_WORLD_SIZE} +PADDLE_INIT_TRAINER_ID=${OMPI_COMM_WORLD_RANK} +PADDLE_CLUSTER_TRAIN=True + +env + +# start pserver +stdbuf -oL nohup paddle pserver --port=$PADDLE_INIT_PORT --ports_num=$PADDLE_INIT_PORTS_NUM \ + --ports_num_for_sparse=$PADDLE_INIT_PORTS_NUM_FOR_SPARSE --nics=$NICS \ + --comment=paddle_cluster_pserver \ + --num_gradient_servers=$PADDLE_INIT_NUM_GRADIENT_SERVERS &> logs/pserver.log & + +# start trainer +# NOTE: train.py will use the above environment variables as configuration +python train.py &> logs/train.log + +# kill background pservers when train finishes +ps -ef | grep pserver | awk '{print $2}' | xargs kill diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 2ac455d771bf78377ce4ee7d921393d3b3958e3c..a08716c5a559def54bb7b989f250b489f6a805a2 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -141,10 +141,17 @@ RUN sed -i '${APT_MIRROR}' /etc/apt/sources.list EOF fi +if [[ ${WITH_GPU} == "ON" ]]; then + NCCL_DEPS="apt-get install -y libnccl-dev &&" +else + NCCL_DEPS="" +fi + cat >> /paddle/build/Dockerfile < ¶meters) { ParameterUpdater::init(parameters); - for (auto ¶ : parameters_) { - para->getBuf(PARAMETER_VALUE)->zeroMem(); - para->getBuf(PARAMETER_GRADIENT)->zeroMem(); - } - // create parameter server client. if (useEtcd_) { parameterClient_ = @@ -109,6 +104,8 @@ void NewRemoteParameterUpdater::init( LOG(ERROR) << "got unsupported v1 learning_rate_schedule config: " << trainerConfig_.learning_rate_schedule() << ", set to const"; optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const); + optimizerConfigV2.mutable_const_lr()->set_learning_rate( + trainerConfig_.learning_rate()); } // overwrite optimizerConfigV2 for per-parameter(layer) configs diff --git a/paddle/trainer/tests/sample_trainer_config_branch_net.conf b/paddle/trainer/tests/sample_trainer_config_branch_net.conf index c2594bc13c250a877a7b8a77e11405671c4d8907..3d8fb77a11958218091d2ee72e1d5a40ad1d9f5b 100644 --- a/paddle/trainer/tests/sample_trainer_config_branch_net.conf +++ b/paddle/trainer/tests/sample_trainer_config_branch_net.conf @@ -17,7 +17,7 @@ from paddle.trainer_config_helpers import * ################################### Data Configuration ################################### TrainData(ProtoData(files = "trainer/tests/mnist.list")) ################################### Algorithm Configuration ################################### -settings(batch_size = 256, +settings(batch_size = 128, learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) ################################### Network Configuration ################################### data = data_layer(name ="input", size=784) @@ -44,10 +44,11 @@ a2 = img_conv_layer(input=tmp, shared_biases=True, act=ReluActivation()) -tmp = concat_layer(input=[a1, a2]) +tmp = addto_layer(input=[a1, a2], + act=ReluActivation(), + bias_attr=False) tmp = img_pool_layer(input=tmp, - num_channels=64, pool_size=3, stride=2, padding=1, @@ -55,40 +56,69 @@ tmp = img_pool_layer(input=tmp, b1 = img_conv_layer(input=tmp, filter_size=3, - num_filters=64, + num_filters=32, padding=1, shared_biases=True, act=ReluActivation()) b1 = img_pool_layer(input=b1, pool_size=3, - stride=1, - padding=1, + stride=2, + padding=0, pool_type=MaxPooling()) b2 = img_conv_layer(input=tmp, - filter_size=5, + filter_size=3, num_filters=64, - padding=2, + padding=1, shared_biases=True, act=ReluActivation()) b2 = img_pool_layer(input=b2, pool_size=5, - stride=1, - padding=2, + stride=2, + padding=1, pool_type=MaxPooling()) -tmp = addto_layer(input=[b1, b2], - act=ReluActivation(), - bias_attr=False) +tmp = concat_layer(input=[b1, b2]) tmp = img_pool_layer(input=tmp, + num_channels=96, pool_size=3, stride=2, padding=1, pool_type=MaxPooling()) +tmp = img_conv_layer(input=tmp, + filter_size=3, + num_filters=32, + padding=1, + shared_biases=True, + act=LinearActivation(), + bias_attr=False) + +tmp = batch_norm_layer(input=tmp, + use_global_stats=False, + act=ReluActivation()) + +c1 = img_conv_layer(input=tmp, + filter_size=1, + num_filters=32, + padding=0, + shared_biases=True, + act=ReluActivation()) + +c2 = img_conv_layer(input=tmp, + filter_size=3, + num_filters=32, + padding=1, + shared_biases=True, + act=ReluActivation()) + +tmp = addto_layer(input=[c1, c2], + act=ReluActivation(), + bias_attr=False) + tmp = fc_layer(input=tmp, size=64, bias_attr=False, act=TanhActivation()) diff --git a/paddle/trainer/tests/sample_trainer_config_simple_net.conf b/paddle/trainer/tests/sample_trainer_config_simple_net.conf index 77f78161535c49da4ef7fc1563cff58c021aecef..c615b5622b7e50b7aa99a9fcf9f63d7b4351417c 100644 --- a/paddle/trainer/tests/sample_trainer_config_simple_net.conf +++ b/paddle/trainer/tests/sample_trainer_config_simple_net.conf @@ -17,7 +17,7 @@ from paddle.trainer_config_helpers import * ################################### Data Configuration ################################### TrainData(ProtoData(files = "trainer/tests/mnist.list")) ################################### Algorithm Configuration ################################### -settings(batch_size = 1000, +settings(batch_size = 128, learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) ################################### Network Configuration ################################### data = data_layer(name ="input", size=784) @@ -38,9 +38,14 @@ tmp = img_pool_layer(input=tmp, tmp = img_conv_layer(input=tmp, filter_size=3, - num_filters=64, + num_filters=32, padding=1, shared_biases=True, + act=LinearActivation(), + bias_attr=False) + +tmp = batch_norm_layer(input=tmp, + use_global_stats=False, act=ReluActivation()) tmp = img_pool_layer(input=tmp, diff --git a/python/paddle/trainer/PyDataProvider2.py b/python/paddle/trainer/PyDataProvider2.py index 248da4ae8d1fb24652625ae8fc9ef314a028b912..05635833bf1645f78f5ba15caee3e9b8da9f5544 100644 --- a/python/paddle/trainer/PyDataProvider2.py +++ b/python/paddle/trainer/PyDataProvider2.py @@ -175,7 +175,7 @@ def index_slot(value_range, seq_type=SequenceType.NO_SEQUENCE): dense_vector = dense_slot sparse_binary_vector = sparse_non_value_slot -sparse_vector = sparse_value_slot +sparse_float_vector = sparse_value_slot integer_value = index_slot # dense_array can be used for variable-length input feature. @@ -216,7 +216,7 @@ def sparse_binary_vector_sub_sequence(dim): return sparse_binary_vector(dim, seq_type=SequenceType.SUB_SEQUENCE) -def sparse_vector_sequence(dim): +def sparse_float_vector_sequence(dim): """ Data type of a sequence of sparse vector, which most elements are zero, others could be any float value. @@ -226,11 +226,11 @@ def sparse_vector_sequence(dim): :return: An input type object :rtype: InputType """ - return sparse_vector(dim, seq_type=SequenceType.SEQUENCE) + return sparse_float_vector(dim, seq_type=SequenceType.SEQUENCE) -def sparse_vector_sub_sequence(dim): - return sparse_vector(dim, seq_type=SequenceType.SUB_SEQUENCE) +def sparse_float_vector_sub_sequence(dim): + return sparse_float_vector(dim, seq_type=SequenceType.SUB_SEQUENCE) def integer_value_sequence(value_range): diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 09c92d3513e86a7657880c01736f5f41f53cfcf6..e88e962cff5bbfcb8be1014dbaab85568d2625ff 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -2420,6 +2420,7 @@ class BatchNormLayer(LayerBase): # If not use is_static, even set learning_rate = 0, decay_rate = 0, # these paras will change if set average_window in configure. use_gpu = bool(int(g_command_config_args.get("use_gpu", 0))) + use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) is_shared = True if not use_gpu else False for i in xrange(2): inputs.append( @@ -2433,11 +2434,17 @@ class BatchNormLayer(LayerBase): parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0))) cudnn_version = int(g_command_config_args.get("cudnn_version", 0)) - # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU. - # Also based on cudnn version. + # Automatically select cudnn_batch_norm for GPU, batch_norm for CPU + # and mkldnn_batch_norm for MKLDNN. Also based on cudnn version. + if batch_norm_type == "mkldnn_batch_norm": + config_assert(use_mkldnn, "mkldnn_batch_norm only support MKLDNN") use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \ + not use_mkldnn and batch_norm_type != "mkldnn_batch_norm" and \ ((not parallel_nn) or self.config.device > -1) - self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm" + if use_cudnn: + self.layer_type = "cudnn_batch_norm" + else: + self.layer_type = "mkldnn_batch_norm" if use_mkldnn else "batch_norm" super(BatchNormLayer, self).__init__( name, self.layer_type, 0, inputs=inputs, **xargs) diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 09315b9d9224076d91c16a6c0b949d4ab289bf70..cc1b34df9e7cf8d17bafeb57624548de017066e9 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -3014,16 +3014,19 @@ def batch_norm_layer(input, :param input: batch normalization input. Better be linear activation. Because there is an activation inside batch_normalization. :type input: LayerOutput - :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm - supports both CPU and GPU. cudnn_batch_norm requires - cuDNN version greater or equal to v4 (>=v4). But - cudnn_batch_norm is faster and needs less memory - than batch_norm. By default (None), we will - automaticly select cudnn_batch_norm for GPU and - batch_norm for CPU. Otherwise, select batch norm - type based on the specified type. If you use cudnn_batch_norm, + :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm. + batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm + requires cuDNN version greater or equal to v4 (>=v4). + But cudnn_batch_norm is faster and needs less + memory than batch_norm. mkldnn_batch_norm requires + enable use_mkldnn. By default (None), we will + automaticly select cudnn_batch_norm for GPU, + mkldnn_batch_norm for MKLDNN and batch_norm for CPU. + Otherwise, select batch norm type based on the + specified type. If you use cudnn_batch_norm, we suggested you use latest version, such as v5.1. :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm" + or "mkldnn_batch_norm" :param act: Activation Type. Better be relu. Because batch normalization will normalize input near zero. :type act: BaseActivation @@ -3063,6 +3066,7 @@ def batch_norm_layer(input, else: num_channels = input.size assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \ + (batch_norm_type == "mkldnn_batch_norm") or \ (batch_norm_type == "cudnn_batch_norm") l = Layer( name=name, diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index 93e8ac173e721d9623fce91f30ac4642d273caba..3821d075cba5d39b5808a39093b8570d9302b667 100644 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -26,8 +26,9 @@ __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', - 'simple_attention', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', - 'bidirectional_lstm', 'inputs', 'outputs' + 'simple_attention', 'dot_product_attention', 'simple_gru2', + 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', 'inputs', + 'outputs' ] ###################################################### @@ -1361,6 +1362,7 @@ def simple_attention(encoded_sequence, compute attention weight. :type transform_param_attr: ParameterAttribute :return: a context vector + :rtype: LayerOutput """ assert encoded_proj.size == decoder_state.size proj_size = encoded_proj.size @@ -1396,6 +1398,90 @@ def simple_attention(encoded_sequence, input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) +@wrap_name_default() +def dot_product_attention(encoded_sequence, + attended_sequence, + transformed_state, + softmax_param_attr=None, + name=None): + """ + Calculate and return a context vector with dot-product attention mechanism. + The dimension of the context vector equals to that of the attended_sequence. + + .. math:: + + a(s_{i-1},h_{j}) & = s_{i-1}^\mathrm{T} h_{j} + + e_{i,j} & = a(s_{i-1}, h_{j}) + + a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}} + + c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}z_{j} + + where :math:`h_{j}` is the jth element of encoded_sequence, + :math:`z_{j}` is the jth element of attended_sequence, + :math:`s_{i-1}` is transformed_state. + + The example usage is: + + .. code-block:: python + + context = dot_product_attention(encoded_sequence=enc_seq, + attended_sequence=att_seq, + transformed_state=state,) + + :param name: A prefix attached to the name of each layer that defined inside + the dot_product_attention. + :type name: basestring + :param softmax_param_attr: The parameter attribute of sequence softmax + that is used to produce attention weight. + :type softmax_param_attr: ParameterAttribute + :param encoded_sequence: The output hidden vectors of the encoder. + :type encoded_sequence: LayerOutput + :param attended_sequence: The attention weight is computed by a feed forward neural + network which has two inputs : decoder's transformed hidden + state of previous time step and encoder's output. + attended_sequence is the sequence to be attended. + :type attended_sequence: LayerOutput + :param transformed_state: The transformed hidden state of decoder in previous time step. + Since the dot-product operation will be performed on it and the + encoded_sequence, their dimensions must be equal. For flexibility, + we suppose transformations of the decoder's hidden state have been + done outside dot_product_attention and no more will be performed + inside. Then users can use either the original or transformed one. + :type transformed_state: LayerOutput + :return: The context vector. + :rtype: LayerOutput + """ + assert transformed_state.size == encoded_sequence.size + + expanded = expand_layer( + input=transformed_state, + expand_as=encoded_sequence, + name='%s_expand' % name) + + m = linear_comb_layer( + weights=expanded, + vectors=encoded_sequence, + name='%s_dot-product' % name) + + attention_weight = fc_layer( + input=m, + size=1, + act=SequenceSoftmaxActivation(), + param_attr=softmax_param_attr, + name="%s_softmax" % name, + bias_attr=False) + + scaled = scaling_layer( + weight=attention_weight, + input=attended_sequence, + name='%s_scaling' % name) + + return pooling_layer( + input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) + + def inputs(layers, *args): """ Declare the inputs of network. The order of input should be as same as diff --git a/python/paddle/v2/dataset/common.py b/python/paddle/v2/dataset/common.py index 053ae151c571e5557c9f2f9f4ec866f546a77797..e31e501ce93c5dc20693a8724ee7dd864f9aef55 100644 --- a/python/paddle/v2/dataset/common.py +++ b/python/paddle/v2/dataset/common.py @@ -65,7 +65,14 @@ def download(url, module_name, md5sum): os.makedirs(dirname) filename = os.path.join(dirname, url.split('/')[-1]) - if not (os.path.exists(filename) and md5file(filename) == md5sum): + retry = 0 + retry_limit = 3 + while not (os.path.exists(filename) and md5file(filename) == md5sum): + if retry < retry_limit: + retry += 1 + else: + raise RuntimeError("Cannot download {0} within retry limit {2}". + format(url, retry_limit)) print "Cache file %s not found, downloading %s" % (filename, url) r = requests.get(url, stream=True) total_length = r.headers.get('content-length') diff --git a/python/paddle/v2/framework/backward.py b/python/paddle/v2/framework/backward.py new file mode 100644 index 0000000000000000000000000000000000000000..6827792cb351243f926aeca5f37324dc987d6a79 --- /dev/null +++ b/python/paddle/v2/framework/backward.py @@ -0,0 +1,45 @@ +from paddle.v2.framework import framework as framework + +__all__ = ['append_backward_ops'] + + +def append_backward_ops(loss, parameter_list=None, no_grad_set=None): + """ + Create and add gradient Operators in BlockDesc to compute + gradients of `loss` for parameters in parameter_list + + :param loss: an variable generated by cost function. + :type loss: Variable + :param no_grad_set: variable that should not create gradient + :type no_grad_set: set + :param parameter_list: parameters that need to compute gradient and + update to optimize the lost. + :type: list + :return: list of (parameters, gradients) pair. + :rtype: list[Variable] + """ + assert isinstance(loss, framework.Variable) + param_grad_map = loss.block.program.append_backward(loss, no_grad_set or + set()) + if parameter_list is not None: + parameters = parameter_list + else: + params = loss.block.program.global_block().all_parameters() + parameters = [param.name for param in params] + params_and_grads = [] + for param in parameters: + if param not in param_grad_map: + raise ValueError("param %s is not in map" % param) + grad_info = param_grad_map[param] + grad_block = loss.block.program.block(grad_info[1]) + if not grad_block.has_var(grad_info[0]): + raise ValueError("grad block[{0}] did not have grad var {1}".format( + grad_info[1], grad_info[0])) + # Get the param var from the global block + param_var = loss.block.program.global_block().var(param) + grad_var = grad_block.var(grad_info[0]) + if loss.block.has_var(grad_info[0]): + params_and_grads.append((param_var, grad_var)) + else: + params_and_grads.append((param_var, None)) + return params_and_grads diff --git a/python/paddle/v2/framework/executor.py b/python/paddle/v2/framework/executor.py new file mode 100644 index 0000000000000000000000000000000000000000..82b83d4bb6ac9d4c6a67d925db290c7c5e2d933f --- /dev/null +++ b/python/paddle/v2/framework/executor.py @@ -0,0 +1,64 @@ +import paddle.v2.framework.core as core +from paddle.v2.framework.framework import Block, Program + +g_scope = core.Scope() + + +class Executor(object): + def __init__(self, places): + if not isinstance(places, list) and not isinstance(places, tuple): + places = [places] + + act_places = [] + for each in places: + p = core.Place() + p.set_place(each) + act_places.append(p) + + self.executor = core.Executor(act_places) + + def run(self, + program, + feed, + fetch_list, + feed_var_name='feed', + fetch_var_name='fetch', + scope=None): + if not isinstance(program, Program): + raise TypeError() + + if scope is None: + scope = g_scope + + program = program.clone() + global_block = program.global_block() + feed_var = global_block.create_var( + name=feed_var_name, + type=core.VarDesc.VarType.FEED_MINIBATCH, + persistable=True) + + for i, name in enumerate(feed): + out = global_block.var(name) + global_block.prepend_op( + 'feed', + inputs={'X': [feed_var]}, + outputs={'Out': [out]}, + attrs={'col': i}) + core.set_feed_variable(scope, feed[name], feed_var.name, i) + + fetch_var = global_block.create_var( + name=fetch_var_name, + type=core.VarDesc.VarType.FETCH_LIST, + persistable=True) + for i, var in enumerate(fetch_list): + global_block.append_op( + type='fetch', + inputs={'X': [var]}, + outputs={'Out': [fetch_var]}, + attrs={'col': i}) + + self.executor.run(program.desc, scope, 0) + return [ + core.get_fetch_variable(scope, fetch_var_name, i) + for i in xrange(len(fetch_list)) + ] diff --git a/python/paddle/v2/framework/framework.py b/python/paddle/v2/framework/framework.py index a17f988bf433078bfb4c06dab57896e2648953ce..b3f8be8be9ac5c0c6c15646d39d4796df0fd87e2 100644 --- a/python/paddle/v2/framework/framework.py +++ b/python/paddle/v2/framework/framework.py @@ -15,6 +15,7 @@ class Variable(object): shape=None, dtype=None, lod_level=None, + persistable=None, **kwargs): self.block = block @@ -52,8 +53,8 @@ class Variable(object): if is_new_var: self.desc.set_data_type(dtype) else: - old_dtype = self.data_type() - if dtype != old_shape: + old_dtype = self.data_type + if dtype != old_dtype: raise ValueError("Variable {0} has been created before. " "The previous data type is {1}; the new " "data type is {2}. They are not " @@ -70,6 +71,17 @@ class Variable(object): "lod_level is {2}. They are not " "matched".format(self.name, self.lod_level, lod_level)) + if persistable is not None: + if is_new_var: + self.desc.set_persistable(persistable) + else: + if persistable != self.persistable: + raise ValueError( + "Variable {0} has been created before." + "The previous persistable is {1}; the new " + "persistable is {2}. They are not matched".format( + self.name, self.persistable, persistable)) + self.block.vars[name] = self self.op = None @@ -80,6 +92,10 @@ class Variable(object): __repr__ = __str__ + @property + def persistable(self): + return self.desc.persistable() + @property def name(self): return self.desc.name() @@ -97,6 +113,10 @@ class Variable(object): def lod_level(self): return self.desc.lod_level() + @property + def type(self): + return self.desc.type() + @staticmethod def _unique_var_name_(): uid = core.unique_integer() # unique during whole process. @@ -176,31 +196,32 @@ class Operator(object): self.desc.set_type(type) proto = OpProtoHolder.instance().get_op_proto(type) - if inputs is not None: - given = set() - need = set() - for n in inputs: - given.add(n) - for m in proto.inputs: - need.add(m.name) - if not given == need: - raise ValueError( - "Incorrect setting for input(s) of operator \"%s\". Need: [%s] Given: [%s]" - % (type, ", ".join(str(e) for e in need), ", ".join( - str(e) for e in given))) + def find_name(var_list, name): + for var_name in var_list: + if var_name == name: + return True + return False + if inputs is not None: for in_proto in proto.inputs: - in_argus = inputs[in_proto.name] - if not isinstance(in_argus, list): - in_argus = [in_argus] - if not in_proto.duplicable and len(in_argus) > 1: - raise ValueError( - "Input %s expects only one input, but %d are given." % - (in_proto.name, len(in_argus))) - in_argu_names = [] - for argu in in_argus: - in_argu_names.append(argu.name) - self.desc.set_input(in_proto.name, in_argu_names) + found = find_name(inputs, in_proto.name) + assert found or in_proto.dispensable, "Input {} not found".format( + in_proto.name) + + if found: + in_argus = inputs[in_proto.name] + if not isinstance(in_argus, list): + in_argus = [in_argus] + if not in_proto.duplicable and len(in_argus) > 1: + raise ValueError( + "Input %s expects only one input, but %d are given." + % (in_proto.name, len(in_argus))) + in_argu_names = [] + for argu in in_argus: + in_argu_names.append(argu.name) + self.desc.set_input(in_proto.name, in_argu_names) + else: + self.desc.set_input(in_proto.name, []) if outputs is not None: given = set() @@ -232,15 +253,18 @@ class Operator(object): if attrs is not None: for attr in proto.attrs: attr_name = attr.name - if not attr_name in attrs: + if (not attr_name in attrs) or (attrs[attr_name] is None): continue - if not isinstance(attrs[attr_name], Block): - self.desc.set_attr(attr_name, attrs[attr_name]) - else: + if isinstance(attrs[attr_name], Block): self.desc.set_block_attr(attr_name, attrs[attr_name].desc) + else: + self.desc.set_attr(attr_name, attrs[attr_name]) self.desc.check_attrs() - self.desc.infer_shape(self.block.desc) + no_kernel_op_set = {'feed', 'fetch', 'save', 'restore'} + if type not in no_kernel_op_set: + self.desc.infer_var_type(self.block.desc) + self.desc.infer_shape(self.block.desc) def __str__(self): protostr = self.desc.serialize_to_string() @@ -306,6 +330,17 @@ class Block(object): def idx(self): return self.desc.id + def var(self, name): + if not isinstance(name, basestring): + raise TypeError() + v = self.vars.get(name, None) + if v is None: + raise ValueError("var %s not in this block" % name) + return v + + def all_parameters(self): + return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)} + def create_var(self, *args, **kwargs): return Variable(self, *args, **kwargs) @@ -314,7 +349,10 @@ class Block(object): def create_parameter(self, *args, **kwargs): global_block = self.program.global_block() - return Parameter(global_block, *args, **kwargs) + param = Parameter(global_block, *args, **kwargs) + if 'init_attr' in kwargs: + self._prepend_initialize_ops_(param, kwargs['init_attr']) + return param def append_op(self, *args, **kwargs): op_desc = self.desc.append_op() @@ -335,19 +373,26 @@ class Block(object): self.create_var(name=var.name(), desc=var, type=var.type()) # sync operators from cpp - ops_in_cpp = self.desc.all_ops() - first_op_in_python = self.ops[0].desc - last_op_in_python = self.ops[len(self.ops) - 1].desc - start_index = None - end_index = None - for index in range(len(ops_in_cpp)): - if first_op_in_python == ops_in_cpp[index]: - start_index = index - if last_op_in_python == ops_in_cpp[index]: - end_index = index - assert start_index is not None - assert end_index is not None - assert start_index <= end_index + ops_in_cpp = [] + for op_idx in range(0, self.desc.op_size()): + ops_in_cpp.append(self.desc.op(op_idx)) + + if len(self.ops) != 0: + first_op_in_python = self.ops[0].desc + last_op_in_python = self.ops[len(self.ops) - 1].desc + start_index = None + end_index = None + for index in range(len(ops_in_cpp)): + if first_op_in_python == ops_in_cpp[index]: + start_index = index + if last_op_in_python == ops_in_cpp[index]: + end_index = index + assert start_index is not None + assert end_index is not None + assert start_index <= end_index + else: + start_index = 0 + end_index = -1 # sync ops append to the head of cpp_ops for index in range((start_index - 1 - 1), -1, -1): @@ -365,20 +410,21 @@ class Block(object): for index in range(len(self.ops)): assert self.ops[index].desc == ops_in_cpp[index] + def _prepend_initialize_ops_(self, param, init_attr): + op_type = init_attr['type'] + init_attr['shape'] = param.shape + init_attr['data_type'] = int(param.data_type) + op = self.prepend_op( + type=op_type, + inputs=None, + outputs={'Out': [param]}, + attrs=init_attr) + param.op = op -class Program(object): - @classmethod - def instance(cls): - # From https://stackoverflow.com/questions/8212053 - # Making Program as a Singleton class. - if not hasattr(cls, '_instance'): - cls._instance = cls() - return cls._instance - def __init__(self, desc=None): - if desc is None: - desc = core.ProgramDesc.instance() - self.desc = desc +class Program(object): + def __init__(self): + self.desc = core.ProgramDesc() self.blocks = [Block(self, 0)] self.current_block_idx = 0 @@ -387,16 +433,32 @@ class Program(object): proto = framework_pb2.ProgramDesc.FromString(str(protostr)) return proto.__str__() - __repr__ = __str__ + def clone(self): + p = Program() + p.desc = core.ProgramDesc(self.desc) + p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())] + p.sync_with_cpp() + return p + + def __repr__(self): + return str(self) def global_block(self): return self.blocks[0] + def block(self, index): + return self.blocks[index] + def current_block(self): return self.blocks[self.current_block_idx] - def append_backward(self, target, no_grad_set): + def append_backward(self, target, no_grad_set=None): + """ + return map(param_name -> (grad_name, block_index, op_index)) + """ assert isinstance(target, Variable) + if no_grad_set is None: + no_grad_set = set() param_to_grad_info = self.desc.append_backward(target.desc, no_grad_set) self.sync_with_cpp() return param_to_grad_info @@ -429,29 +491,14 @@ class Parameter(Variable): if each < 0: raise ValueError("Parameter shape should not be related with " "batch-size") - Variable.__init__(self, block, shape=shape, dtype=dtype, **kwargs) + + Variable.__init__( + self, block, persistable=True, shape=shape, dtype=dtype, **kwargs) self.trainable = kwargs.get('trainable', True) - self.init_attr = kwargs.get('initialize_attr', { - 'type': 'uniform_random', - 'min': -1.0, - 'max': 1.0 - }) self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) - self._append_initialize_ops_() - - def _append_initialize_ops_(self): - attr = self.init_attr - op_type = attr.pop('type', None) - block = self.block - assert isinstance(block, Block) - shape = self.shape - attr['dims'] = shape - attr['data_type'] = int(self.data_type) - op = block.prepend_op( - type=op_type, inputs=None, outputs={'Out': [self]}, attrs=attr) - self.op = op # program is a global instance. -g_program = Program.instance() +g_program = Program() +g_init_program = Program() diff --git a/python/paddle/v2/framework/layer_helper.py b/python/paddle/v2/framework/layer_helper.py index 26d3e04310b6b0415af31d1630575b32dce186d5..f3da32f0e07a22204b3feaed5d1d8d01556e4655 100644 --- a/python/paddle/v2/framework/layer_helper.py +++ b/python/paddle/v2/framework/layer_helper.py @@ -1,8 +1,11 @@ -from paddle.v2.framework.framework import Variable, OpProtoHolder, g_program -import paddle.v2.framework.core as core import copy import itertools +import paddle.v2.framework.core as core + +from paddle.v2.framework.framework import Variable, g_program, \ + g_init_program + def unique_name(prefix): uid = core.unique_integer() # unique during whole process. @@ -29,6 +32,14 @@ class LayerHelper(object): else: return prog + @property + def init_program(self): + prog = self.kwargs.get('init_program', None) + if prog is None: + return g_init_program + else: + return prog + def append_op(self, *args, **kwargs): return self.program.current_block().append_op(*args, **kwargs) @@ -66,16 +77,14 @@ class LayerHelper(object): actual = self.kwargs.get('param_attr', None) return actual if actual is not None else default - def bias_attr(self, size, dtype): - bias_attr = self.kwargs.get('bias_attr', False) - if bias_attr is None or bias_attr: + def bias_attr(self): + bias_attr = self.kwargs.get('bias_attr', None) + if bias_attr is True: bias_attr = { 'name': None, 'init_attr': { 'type': 'fill_constant', - 'value': 0.0, - 'shape': [size], - 'dataType': dtype + 'value': 0.0 } } return bias_attr @@ -113,29 +122,32 @@ class LayerHelper(object): def create_parameter(self, attr, shape, dtype, suffix='w'): if attr['name'] is None: attr['name'] = unique_name(".".join([self.name, suffix])) + self.init_program.global_block().create_parameter( + dtype=dtype, shape=shape, **attr) return self.program.global_block().create_parameter( - name=attr['name'], - dtype=dtype, - shape=shape, - initialize_attr=attr['init_attr']) + name=attr['name'], dtype=dtype, shape=shape) def create_tmp_variable(self, dtype): return self.program.current_block().create_var( - name=unique_name(".".join([self.name, 'tmp'])), dtype=dtype) + name=unique_name(".".join([self.name, 'tmp'])), + dtype=dtype, + persistable=False) + + def create_variable(self, *args, **kwargs): + return self.program.current_block().create_var(*args, **kwargs) def create_global_variable(self, *args, **kwargs): - return self.program.global_block().create_var(*args, **kwargs) + return self.program.global_block().create_var( + *args, persistable=False, **kwargs) def append_bias_op(self, input_var): - bias_attr = self.bias_attr( - self.kwargs['size'], dtype=input_var.data_type) + size = list(input_var.shape[1:]) + bias_attr = self.bias_attr() if not bias_attr: return input_var + b = self.create_parameter( - attr=bias_attr, - shape=[self.kwargs['size']], - dtype=input_var.data_type, - suffix='b') + attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b') tmp = self.create_tmp_variable(dtype=input_var.data_type) self.append_op( type='elementwise_add', diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index 44b587b116e2ebfc5329348027492a4ee27b04e5..6894c40c3a6514f448133f029c4de8cc30405515 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -1,19 +1,23 @@ -from paddle.v2.framework.layer_helper import LayerHelper +from paddle.v2.framework.layer_helper import LayerHelper, unique_name import paddle.v2.framework.core as core -from paddle.v2.framework.framework import OpProtoHolder, Variable +from paddle.v2.framework.framework import OpProtoHolder, Variable, Program import re -__all__ = ['fc_layer', 'data_layer', 'cross_entropy'] +__all__ = [ + 'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat', + 'StaticRNN' +] -def fc_layer(input, - size, - param_attr=None, - bias_attr=True, - name=None, - act=None, - num_flatten_dims=1, - program=None): +def fc(input, + size, + param_attr=None, + bias_attr=True, + name=None, + act=None, + num_flatten_dims=1, + program=None, + init_program=None): # create helper helper = LayerHelper('fc', **locals()) @@ -23,7 +27,10 @@ def fc_layer(input, mul_results = [] for input_var, param_attr in helper.iter_inputs_and_params(): input_shape = input_var.shape - param_shape = list(input_shape[num_flatten_dims:]) + [size] + param_shape = [ + reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) + ] + [size] + w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype) tmp = helper.create_tmp_variable(dtype) @@ -34,7 +41,8 @@ def fc_layer(input, "Y": w, }, outputs={"Out": tmp}, - attrs={'x_num_col_dims': num_flatten_dims}) + attrs={'x_num_col_dims': num_flatten_dims, + 'y_num_col_dims': 1}) mul_results.append(tmp) # sum @@ -50,13 +58,34 @@ def fc_layer(input, return helper.append_activation(pre_activation) -def data_layer(name, - shape, - data_type='float32', - type=core.VarDesc.VarType.LOD_TENSOR, - program=None): +def embedding(input, + size, + data_type='float32', + param_attr=None, + program=None, + init_program=None): + helper = LayerHelper('embedding', **locals()) + w = helper.create_parameter( + attr=helper.param_attr, shape=size, dtype=data_type) + tmp = helper.create_tmp_variable(data_type) + helper.append_op( + type='lookup_table', + inputs={'Ids': input, + 'W': w}, + outputs={'Out': tmp}) + return tmp + + +def data(name, + shape, + data_type='float32', + type=core.VarDesc.VarType.LOD_TENSOR, + append_batch_size=True, + program=None, + init_program=None): helper = LayerHelper('data', **locals()) - shape = [-1] + shape # append batch size as -1 + if append_batch_size: + shape = [-1] + shape # append batch size as -1 return helper.create_global_variable( name=name, shape=shape, dtype=data_type, type=type) @@ -111,6 +140,20 @@ def _create_op_func_(op_type): _create_op_func_('mean') +_create_op_func_('mul') + + +def concat(input, axis, program=None, init_program=None): + helper = LayerHelper('concat', **locals()) + if not isinstance(input, list) and not isinstance(input, tuple): + input = [input] + out = helper.create_tmp_variable(dtype=input[0].data_type) + helper.append_op( + type='concat', + inputs={'X': input}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out def cross_entropy(input, label, **kwargs): @@ -141,3 +184,260 @@ def square_error_cost(input, label, **kwargs): outputs={'Y': [square_out]}, attrs={'factor': 2.0}) return square_out + + +def conv2d(input, + num_filters, + name=None, + filter_size=[1, 1], + act=None, + groups=None, + stride=[1, 1], + padding=None, + bias_attr=None, + param_attr=None, + program=None, + init_program=None): + helper = LayerHelper('conv2d', **locals()) + dtype = helper.input_dtype() + + num_channels = input.shape[1] + if groups is None: + num_filter_channels = num_channels + else: + if num_channels % groups is not 0: + raise ValueError("num_channels must be divisible by groups.") + num_filter_channels = num_channels / groups + + if isinstance(filter_size, int): + filter_size = [filter_size, filter_size] + if isinstance(stride, int): + stride = [stride, stride] + if isinstance(padding, int): + padding = [padding, padding] + + input_shape = input.shape + filter_shape = [num_filters, num_filter_channels] + filter_size + filter = helper.create_parameter( + attr=helper.param_attr, shape=filter_shape, dtype=dtype) + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='conv2d', + inputs={ + 'Input': input, + 'Filter': filter, + }, + outputs={"Output": pre_bias}, + attrs={'strides': stride, + 'paddings': padding, + 'groups': groups}) + + pre_act = helper.append_bias_op(pre_bias) + + return helper.append_activation(pre_act) + + +def pool2d(input, + pool_size, + pool_type, + pool_stride=[1, 1], + pool_padding=[0, 0], + global_pooling=False, + program=None, + init_program=None): + if pool_type not in ["max", "avg"]: + raise ValueError( + "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", + str(pool_type)) + if isinstance(pool_size, int): + pool_size = [pool_size, pool_size] + if isinstance(pool_stride, int): + pool_stride = [pool_stride, pool_stride] + if isinstance(pool_padding, int): + pool_padding = [pool_padding, pool_padding] + + helper = LayerHelper('conv2d', **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="pool2d", + inputs={"X": input}, + outputs={"Out": pool_out}, + attrs={ + "pooling_type": pool_type, + "ksize": pool_size, + "global_pooling": global_pooling, + "strides": pool_stride, + "paddings": pool_padding + }) + + return pool_out + + +class BlockGuard(object): + """ + BlockGuard used to create sub-block in program by using Python `with` + keyword. + """ + + def __init__(self, program): + if not isinstance(program, Program): + raise TypeError("BlockGuard takes a program") + self.program = program + + def __enter__(self): + self.program.create_block() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.program.rollback() + if exc_type is not None: + return False # re-raise exception + return True + + +class StaticRNNGuard(BlockGuard): + def __init__(self, rnn): + if not isinstance(rnn, StaticRNN): + raise TypeError("StaticRNNGuard takes an StaticRNN") + super(StaticRNNGuard, self).__init__(rnn.helper.program) + self.rnn = rnn + + def __enter__(self): + self.rnn.status = StaticRNN.IN_RNN_BLOCK + return super(StaticRNNGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.rnn.status = StaticRNN.AFTER_RNN_BLOCK + self.rnn.complete_rnn_op() + return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) + + +class StaticRNNMemoryLink(object): + """ + :param init: the initial variable for Memory + :type init: Variable + :param pre_mem: the memory variable in previous time step + :type pre_mem: Variable + :param mem: the memory variable in current time step + :type mem: Variable + """ + + def __init__(self, init, pre_mem, mem=None): + self.init = init + self.pre_mem = pre_mem + self.mem = mem + + +class StaticRNN(object): + BEFORE_RNN_BLOCK = 0 + IN_RNN_BLOCK = 1 + AFTER_RNN_BLOCK = 2 + + def __init__(self, name=None, program=None): + self.helper = LayerHelper("static_rnn", name=name, program=program) + self.memories = {} # memory map, from pre_mem.name --> MemoryLink + self.inputs = [] # input variable list in current block + self.outputs = [] # output variable list in parent block + self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. + # sequence length, since it is a static RNN, sequence length are fixed. + self.seq_len = None + + def step(self): + return StaticRNNGuard(self) + + def _assert_in_rnn_block_(self, method): + if self.status != StaticRNN.IN_RNN_BLOCK: + raise ValueError("You must invoke {0} in rnn block".format(method)) + + def memory(self, init=None, shape=None, dtype=None, init_value=0): + self._assert_in_rnn_block_('memory') + if init is None: + if shape is None or dtype is None: + raise ValueError( + "if init is None, memory at least need shape and dtype") + parent_block = self.parent_block() + var_name = unique_name("@".join([self.helper.name, "memory_boot"])) + boot_var = parent_block.create_var( + name=var_name, shape=shape, dtype=dtype, persistable=False) + + parent_block.append_op( + type="fill_constant", + inputs={}, + outputs={'Out': [boot_var]}, + attrs={ + 'value': init_value, + 'shape': boot_var.shape, + 'data_type': boot_var.data_type + }) + + return self.memory(init=boot_var) + else: + pre_mem = self.helper.create_variable( + name=unique_name("@".join([self.helper.name, "mem"])), + dtype=init.data_type, + shape=init.shape) + self.memories[pre_mem.name] = StaticRNNMemoryLink( + init=init, pre_mem=pre_mem) + return pre_mem + + def step_input(self, x): + self._assert_in_rnn_block_('step_input') + if not isinstance(x, Variable): + raise TypeError("step input takes a Variable") + if self.seq_len is None: + self.seq_len = x.shape[1] + elif self.seq_len != x.shape[1]: + raise ValueError("Static RNN only take fix seq_len input") + + ipt = self.helper.create_variable( + name=x.name, + dtype=x.data_type, + shape=[-1] + list(x.shape[2:]), + type=x.type) + self.inputs.append(ipt) + return ipt + + def step_output(self, o): + self._assert_in_rnn_block_('step_output') + if not isinstance(o, Variable): + raise TypeError("step output takes a Variable") + + out_var = self.parent_block().create_var( + name=o.name, + shape=[-1, self.seq_len] + list(o.shape[1:]), + dtype=o.data_type) + + self.outputs.append(out_var) + + def output(self, *outputs): + for each in outputs: + self.step_output(each) + + def update_memory(self, mem, var): + if not isinstance(mem, Variable) or not isinstance(var, Variable): + raise TypeError("update memory should take variables") + self.memories[mem.name].mem = var + + def parent_block(self): + prog = self.helper.program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def complete_rnn_op(self): + # TODO(yuyang18): Create RNN Op here. + # Implement this method after RNN op complete. + pass diff --git a/python/paddle/v2/framework/nets.py b/python/paddle/v2/framework/nets.py new file mode 100644 index 0000000000000000000000000000000000000000..8a83ebfb9639f6fae6344b68509a80580881dab0 --- /dev/null +++ b/python/paddle/v2/framework/nets.py @@ -0,0 +1,27 @@ +import paddle.v2.framework.layers as layers + + +def simple_img_conv_pool(input, + filter_size, + num_filters, + pool_size, + pool_stride, + act, + program=None, + init_program=None): + conv_out = layers.conv2d( + input=input, + num_filters=num_filters, + filter_size=filter_size, + act=act, + program=program, + init_program=init_program) + + pool_out = layers.pool2d( + input=conv_out, + pool_size=pool_size, + pool_type='max', + pool_stride=pool_stride, + program=program, + init_program=init_program) + return pool_out diff --git a/python/paddle/v2/framework/optimizer.py b/python/paddle/v2/framework/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..3ad87d7bf1a3d3e76a5a46ede51adb930349a5de --- /dev/null +++ b/python/paddle/v2/framework/optimizer.py @@ -0,0 +1,444 @@ +from collections import defaultdict + +import paddle.v2.framework.framework as framework +from paddle.v2.framework.backward import append_backward_ops + +__all__ = [ + 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer' +] + + +class Optimizer(object): + """Optimizer Base class. + + Define the common interface of an optimizer. + User should not use this class directly, + but need to use one of it's implementation. + """ + + def __init__(self): + # Dictionary of accumulators. Some optimizer subclasses need to + # allocate and manage extra variables associated with the parameters + # to train. These variables are called accumulators. + # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...} + self._accumulators = defaultdict(lambda: dict()) + + def _append_optimize_op(self, block, param_and_grad): + """ append optimize operator to block and return all the added optimize_op + """ + raise NotImplementedError() + + def _initialize_tensors(self, block): + """Create all necessary tensors, that will be shared for all parameter updates. + + Tensors like learning rate should be initialized here. + + Args: + block: the block in which the loss variable is present + """ + pass + + def _create_accumulators(self, block, parameters): + """Create all accumulators needed by the parameters + + Args: + block: the block in which the loss variable is present + parameters: list of parameter variables for the optimizer + """ + pass + + def _finish_update(self, block): + """Finish any custom updates needed + before completing an optimization step + + Args: + block: the block in which the loss variable is present + parameters: list of parameter variables for the optimizer + + Returns: + list of finish ops or None + """ + pass + + def _add_accumulator(self, block, name, param, dtype=None, fill_value=0.0): + """Utility function to add an accumulator for a parameter + + Args: + block: the block in which the loss variable is present + name: name of the accumulator + param: parameter variable for which accumulator is to be added + dtype: data type of the accumulator variable + fill_value: value to initialize the accumulator variable + """ + if (name in self._accumulators and + param.name in self._accumulators[name]): + raise Exception("Accumulator {} already exists for parmeter {}". + format(name, param.name)) + global_block = block.program.global_block() + param_shape = list(param.shape) + param_acc = global_block.create_var( + dtype=dtype, shape=param_shape, lod_level=0) + + # Initialize the accumulator with fill_value + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + global_block.append_op( + type="fill_constant", + outputs={"Out": param_acc}, + attrs={"shape": param_shape, + "value": fill_value}) + + # Add to accumulators dict + self._accumulators[name][param.name] = param_acc + + def _get_accumulator(self, name, param): + """Utility function to fetch an accumulator for a parameter + + Args: + name: name of the accumulator + param: parameter variable for which accumulator is to be fetched + + Returns: + accumulator variable for the parameter + """ + if (name not in self._accumulators or + param.name not in self._accumulators[name]): + raise Exception("Accumulator {} does not exist for parameter {}". + format(name, param.name)) + return self._accumulators[name][param.name] + + def create_optimization_pass(self, parameters_and_grads, loss): + """Add optimization operators to update gradients to variables. + + Args: + loss: the target that this optimization is for. + parameters_and_grads: a list of (variable, gradient) pair to update. + + Returns: + return_op_list: a list of operators that will complete one step of + optimization. This will include parameter update ops, global step + update ops and any other custom ops required by subclasses to manage + their internal state. + """ + # This is a default implementation of create_optimization_pass that + # can be shared by most optimizers. This implementation assumes that + # the subclass will implement the _append_optimize_op method and the + # _initialize_tensors method. The subclass can extend the + # _create_accumulators method if it needs to create accumulators + # for parameters and extend _finish_update method to add custom ops. + + # Create any accumulators + self._create_accumulators(loss.block, + [p[0] for p in parameters_and_grads]) + # Create any necessary tensors + self._initialize_tensors(loss.block) + + optimize_ops = [] + for param_and_grad in parameters_and_grads: + if param_and_grad[1] is not None: + optimize_op = self._append_optimize_op(loss.block, + param_and_grad) + optimize_ops.append(optimize_op) + + # Returned list of ops can include more ops in addition + # to optimization ops + return_ops = optimize_ops + + # Get custom finish ops for subclasses + # FIXME: Need to fix this once we figure out how to handle dependencies + finish_ops = self._finish_update(loss.block) + if finish_ops is not None: + return_ops += finish_ops + + return return_ops + + def minimize(self, loss, parameter_list=None, no_grad_set=None): + """Add operations to minimize `loss` by updating `parameter_list`. + + This method combines interface `append_backward_ops()` and + `create_optimization_pass()` into one. + """ + params_grads = append_backward_ops(loss, parameter_list, no_grad_set or + set()) + optimize_ops = self.create_optimization_pass(params_grads, loss) + return optimize_ops + + +class SGDOptimizer(Optimizer): + """ Simple SGD optimizer without any state. + """ + + def __init__(self, learning_rate): + assert learning_rate is not None + super(SGDOptimizer, self).__init__() + self.type = "sgd" + self._learning_rate = learning_rate + + def _initialize_tensors(self, block): + assert isinstance(block, framework.Block) + lr_shape = [1] + # create a variable for learning_rate + self._lr = block.create_var( + dtype="float32", shape=lr_shape, lod_level=0) + + # create an op to init the learning_rate + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + block.append_op( + type="fill_constant", + outputs={"Out": self._lr}, + attrs={"shape": lr_shape, + "value": self._learning_rate}) + + def _append_optimize_op(self, block, param_and_grad): + assert isinstance(block, framework.Block) + + # create the optimize op + sgd_op = block.append_op( + type=self.type, + inputs={ + "Param": param_and_grad[0], + "Grad": param_and_grad[1], + "LearningRate": self._lr + }, + outputs={"ParamOut": param_and_grad[0]}) + + return sgd_op + + +class MomentumOptimizer(Optimizer): + """Simple Momentum optimizer with velocity state + """ + _velocity_acc_str = "velocity" + + def __init__(self, learning_rate, momentum, use_nesterov=False): + assert learning_rate is not None + assert momentum is not None + super(MomentumOptimizer, self).__init__() + self.type = "momentum" + self._learning_rate = learning_rate + self._momentum = momentum + self._use_nesterov = bool(use_nesterov) + + def _initialize_tensors(self, block): + assert isinstance(block, framework.Block) + lr_shape = [1] + # create a variable for learning_rate + self._lr = block.create_var( + dtype="float32", shape=lr_shape, lod_level=0) + + # create an op to init the learning_rate + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + block.append_op( + type="fill_constant", + outputs={"Out": self._lr}, + attrs={"shape": lr_shape, + "value": self._learning_rate}) + + def _create_accumulators(self, block, parameters): + assert isinstance(block, framework.Block) + + for p in parameters: + self._add_accumulator(block, self._velocity_acc_str, p, 'float32') + + def _append_optimize_op(self, block, param_and_grad): + assert isinstance(block, framework.Block) + + velocity_acc = self._get_accumulator(self._velocity_acc_str, + param_and_grad[0]) + # create the momentum optimize op + momentum_op = block.append_op( + type=self.type, + inputs={ + "Param": param_and_grad[0], + "Grad": param_and_grad[1], + "Velocity": velocity_acc, + "LearningRate": self._lr + }, + outputs={ + "ParamOut": param_and_grad[0], + "VelocityOut": velocity_acc + }, + attrs={"mu": self._momentum, + "useNesterov": self._use_nesterov}) + + return momentum_op + + +class AdagradOptimizer(Optimizer): + """Simple Adagrad optimizer with moment state + """ + _moment_acc_str = "moment" + + def __init__(self, learning_rate, epsilon=1.0e-6): + assert learning_rate is not None + assert epsilon is not None + super(AdagradOptimizer, self).__init__() + self.type = "adagrad" + self._learning_rate = learning_rate + self._epsilon = epsilon + + def _initialize_tensors(self, block): + assert isinstance(block, framework.Block) + lr_shape = [1] + # create a variable for learning_rate + self._lr = block.create_var( + dtype="float32", shape=lr_shape, lod_level=0) + + # create an op to init the learning_rate + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + block.append_op( + type="fill_constant", + outputs={"Out": self._lr}, + attrs={"shape": lr_shape, + "value": self._learning_rate}) + + def _create_accumulators(self, block, parameters): + assert isinstance(block, framework.Block) + + for p in parameters: + self._add_accumulator(block, self._moment_acc_str, p, 'float32') + + def _append_optimize_op(self, block, param_and_grad): + assert isinstance(block, framework.Block) + + moment_acc = self._get_accumulator(self._moment_acc_str, + param_and_grad[0]) + + # create the adagrad optimizer op + adagrad_op = block.append_op( + type=self.type, + inputs={ + "Param": param_and_grad[0], + "Grad": param_and_grad[1], + "Moment": moment_acc, + "LearningRate": self._lr + }, + outputs={"ParamOut": param_and_grad[0], + "MomentOut": moment_acc}, + attrs={"epsilon": self._epsilon}) + + return adagrad_op + + +class AdamOptimizer(Optimizer): + """Implements the Adam Optimizer + """ + _moment1_acc_str = "moment1" + _moment2_acc_str = "moment2" + + def __init__(self, + learning_rate=0.001, + beta1=0.9, + beta2=0.999, + epsilon=1e-8): + assert learning_rate is not None + assert beta1 is not None + assert beta2 is not None + assert epsilon is not None + super(AdamOptimizer, self).__init__() + self.type = "adam" + self._learning_rate = learning_rate + self._beta1 = beta1 + self._beta2 = beta2 + self._epsilon = epsilon + + def _initialize_tensors(self, block): + assert isinstance(block, framework.Block) + lr_shape = [1] + # create a variable for learning_rate + self._lr = block.create_var( + dtype="float32", shape=lr_shape, lod_level=0) + + # create an op to init the learning_rate + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + block.append_op( + type="fill_constant", + outputs={"Out": self._lr}, + attrs={"shape": lr_shape, + "value": self._learning_rate}) + + def _create_accumulators(self, block, parameters): + assert isinstance(block, framework.Block) + + global_block = block.program.global_block() + # Create beta1 and beta2 power tensors + beta_shape = [1] + # Create variables for beta1 and beta2 powers + self._beta1_pow_acc = global_block.create_var( + dtype="float32", shape=beta_shape, lod_level=0) + self._beta2_pow_acc = global_block.create_var( + dtype="float32", shape=beta_shape, lod_level=0) + + # Initialize beta1 and beta2 power accumulators + # FIXME: Fix when Initialization design has been implemented + # https://github.com/PaddlePaddle/Paddle/pull/4852 + global_block.append_op( + type="fill_constant", + outputs={"Out": self._beta1_pow_acc}, + attrs={"shape": beta_shape, + "value": self._beta1}) + global_block.append_op( + type="fill_constant", + outputs={"Out": self._beta2_pow_acc}, + attrs={"shape": beta_shape, + "value": self._beta2}) + + # Create accumulator tensors for first and second moments + for p in parameters: + self._add_accumulator(block, self._moment1_acc_str, p, 'float32') + self._add_accumulator(block, self._moment2_acc_str, p, 'float32') + + def _append_optimize_op(self, block, param_and_grad): + assert isinstance(block, framework.Block) + + moment1 = self._get_accumulator(self._moment1_acc_str, + param_and_grad[0]) + moment2 = self._get_accumulator(self._moment2_acc_str, + param_and_grad[0]) + # create the momentum optimize op + adam_op = block.append_op( + type=self.type, + inputs={ + "Param": param_and_grad[0], + "Grad": param_and_grad[1], + "LearningRate": self._lr, + "Moment1": moment1, + "Moment2": moment2, + "Beta1Pow": self._beta1_pow_acc, + "Beta2Pow": self._beta2_pow_acc + }, + outputs={ + "ParamOut": param_and_grad[0], + "Moment1Out": moment1, + "Moment2Out": moment2 + }, + attrs={ + "beta1": self._beta1, + "beta2": self._beta2, + "epsilon": self._epsilon + }) + + return adam_op + + def _finish_update(self, block): + """Update Beta1 and Beta2 Power accumulators + """ + assert isinstance(block, framework.Block) + global_block = block.program.global_block() + scale_beta1 = global_block.append_op( + type="scale", + inputs={"X": self._beta1_pow_acc}, + outputs={"Out": self._beta1_pow_acc}, + attrs={"scale": self._beta1}) + + scale_beta2 = global_block.append_op( + type="scale", + inputs={"X": self._beta2_pow_acc}, + outputs={"Out": self._beta2_pow_acc}, + attrs={"scale": self._beta2}) + + return [scale_beta1, scale_beta2] diff --git a/python/paddle/v2/framework/tests/.gitignore b/python/paddle/v2/framework/tests/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..28433306d49112cc860f4ace9efca2b2d70deb3f --- /dev/null +++ b/python/paddle/v2/framework/tests/.gitignore @@ -0,0 +1 @@ +image/ diff --git a/python/paddle/v2/framework/tests/op_test.py b/python/paddle/v2/framework/tests/op_test.py index 215fa0b94e423755b7bc3f05a2b14a8c85451202..a7de01dcddd65b6f0f064e6ce6fcb3e5cad73931 100644 --- a/python/paddle/v2/framework/tests/op_test.py +++ b/python/paddle/v2/framework/tests/op_test.py @@ -4,6 +4,8 @@ import random import itertools import paddle.v2.framework.core as core from paddle.v2.framework.op import Operator +from paddle.v2.framework.executor import Executor +from paddle.v2.framework.framework import Program, OpProtoHolder def grad_var_name(var_name): @@ -177,7 +179,12 @@ def get_backward_op(scope, op, no_grad_set): return backward_op -def get_gradient(scope, op, inputs, outputs, grad_name, place, +def get_gradient(scope, + op, + inputs, + outputs, + grad_names, + place, no_grad_set=None): ctx = core.DeviceContext.create(place) @@ -193,8 +200,52 @@ def get_gradient(scope, op, inputs, outputs, grad_name, place, backward_op.run(scope, ctx) - out = np.array(scope.find_var(grad_name).get_tensor()) - return out + return [ + np.array(scope.find_var(grad_name).get_tensor()) + for grad_name in grad_names + ] + + +def append_input_output(block, op_proto, np_list, is_input): + '''Insert VarDesc and generate Python variable instance''' + proto_list = op_proto.inputs if is_input else op_proto.outputs + + def create_var(block, name, np_list, var_proto): + if name not in np_list: + assert var_proto.intermediate, "{} not found".format(name) + shape = None + lod_level = None + else: + np_value = np_list[name] + if isinstance(np_value, tuple): + shape = list(np_value[0].shape) + lod_level = len(np_value[1]) + else: + shape = list(np_value.shape) + lod_level = 0 + return block.create_var( + dtype="float32", shape=shape, lod_level=lod_level, name=name) + + var_dict = {} + for var_proto in proto_list: + var_name = str(var_proto.name) + if is_input: + if (var_name not in np_list) and var_proto.dispensable: + continue + assert (var_name in np_list) or (var_proto.dispensable), \ + "Missing {} as input".format(var_name) + if var_proto.duplicable: + assert isinstance(np_list[var_name], list), \ + "Duplicable {} should be set as list".format(var_name) + var_list = [] + for (name, np_value) in np_list[var_name]: + var_list.append( + create_var(block, name, {name: np_value}, var_proto)) + var_dict[var_name] = var_list + else: + var_dict[var_name] = create_var(block, var_name, np_list, var_proto) + + return var_dict class OpTest(unittest.TestCase): @@ -213,48 +264,104 @@ class OpTest(unittest.TestCase): np.random.set_state(cls._np_rand_state) random.setstate(cls._py_rand_state) + def feed_var(self, input_vars, place): + feed_map = {} + for var_name in input_vars: + if isinstance(input_vars[var_name], list): + for name, np_value in self.inputs[var_name]: + tensor = core.LoDTensor() + tensor.set(np_value, place) + feed_map[name] = tensor + else: + tensor = core.LoDTensor() + if isinstance(self.inputs[var_name], tuple): + tensor.set(self.inputs[var_name][0], place) + tensor.set_lod(self.inputs[var_name][1]) + else: + tensor.set(self.inputs[var_name], place) + feed_map[var_name] = tensor + + return feed_map + def check_output_with_place(self, place, atol): - self.scope = core.Scope() - op_inputs = self.inputs if hasattr(self, "inputs") else dict() - op_outputs = self.outputs if hasattr(self, "outputs") else dict() - op_attrs = self.attrs if hasattr(self, "attrs") else dict() - self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs, - op_attrs) - if isinstance(place, core.GPUPlace) and not self.op.support_gpu(): - return - set_input(self.scope, self.op, self.inputs, place) - ctx = core.DeviceContext.create(place) - self.op.run(self.scope, ctx) + op_proto = OpProtoHolder.instance().get_op_proto(self.op_type) + + program = Program() + block = program.global_block() + + inputs = append_input_output(block, op_proto, self.inputs, True) + outputs = append_input_output(block, op_proto, self.outputs, False) + + op = block.append_op( + type=self.op_type, + inputs=inputs, + outputs=outputs, + attrs=self.attrs if hasattr(self, "attrs") else dict()) + + fetch_list = [] + for var_name, var in outputs.iteritems(): + if var_name in self.outputs: + if isinstance(var, list): + for v in var: + fetch_list.append(v) + else: + fetch_list.append(var) - for out_name, out_dup in Operator.get_op_outputs(self.op.type()): + feed_map = self.feed_var(inputs, place) + + exe = Executor(place) + outs = exe.run(program, feed=feed_map, fetch_list=fetch_list) + + for out_name, out_dup in Operator.get_op_outputs(self.op_type): if out_name not in self.outputs: continue + def find_actual(target_name, fetch_list): + found = [ + i for i, var in enumerate(fetch_list) + if var.name == target_name + ] + self.assertTrue( + len(found) == 1, "Found {} {}".format( + len(found), target_name)) + return found[0] + if out_dup: sub_out = self.outputs[out_name] if not isinstance(sub_out, list): raise AssertionError("sub_out type %s is not list", type(sub_out)) - for sub_out_name, expect in sub_out: - actual = np.array( - self.scope.find_var(sub_out_name).get_tensor()) + idx = find_actual(sub_out_name, fetch_list) + actual_t = np.array(outs[idx]) + expect_t = expect[0] \ + if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( - actual, expect, atol=atol), - "output name: " + out_name + " has diff.") + actual_t, expect_t, atol=atol), + "Output (" + sub_out_name + ") has diff at " + + str(place)) + if isinstance(expect, tuple): + self.assertListEqual( + actual_t.lod(), expect[1], "Output (" + sub_out_name + + ") has different lod at " + str(place)) else: - actual = np.array(self.scope.find_var(out_name).get_tensor()) + idx = find_actual(out_name, fetch_list) + actual_t = outs[idx] expect = self.outputs[out_name] - + expect_t = expect[0] if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( - actual, expect, atol=atol), - "output name: " + out_name + " has diff.") + actual_t, expect_t, atol=atol), + "Output (" + out_name + ") has diff at " + str(place)) + if isinstance(expect, tuple): + self.assertListEqual(actual_t.lod(), expect[1], + "Output (" + out_name + + ") has different lod at " + str(place)) def check_output(self, atol=1e-5): places = [core.CPUPlace()] - if core.is_compile_gpu(): + if core.is_compile_gpu() and core.op_support_gpu(self.op_type): places.append(core.GPUPlace(0)) for place in places: self.check_output_with_place(place, atol) @@ -283,7 +390,8 @@ class OpTest(unittest.TestCase): output_names, no_grad_set=None, in_place=False, - max_relative_error=0.005): + max_relative_error=0.005, + user_defined_grads=None): self.scope = core.Scope() op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_outputs = self.outputs if hasattr(self, "outputs") else dict() @@ -296,7 +404,7 @@ class OpTest(unittest.TestCase): if not type(output_names) is list: output_names = [output_names] - numeric_grads = [ + numeric_grads = user_defined_grads or [ get_numeric_gradient( self.scope, self.op, @@ -310,11 +418,9 @@ class OpTest(unittest.TestCase): ] cpu_place = core.CPUPlace() - cpu_analytic_grads = [ - get_gradient(self.scope, self.op, self.inputs, self.outputs, - grad_name, cpu_place, no_grad_set) - for grad_name in grad_names - ] + cpu_analytic_grads = get_gradient(self.scope, self.op, self.inputs, + self.outputs, grad_names, cpu_place, + no_grad_set) self.__assert_is_close(numeric_grads, cpu_analytic_grads, grad_names, max_relative_error, @@ -322,11 +428,9 @@ class OpTest(unittest.TestCase): if core.is_compile_gpu() and self.op.support_gpu(): gpu_place = core.GPUPlace(0) - gpu_analytic_grads = [ - get_gradient(self.scope, self.op, self.inputs, self.outputs, - grad_name, gpu_place, no_grad_set) - for grad_name in grad_names - ] + gpu_analytic_grads = get_gradient(self.scope, self.op, self.inputs, + self.outputs, grad_names, + gpu_place, no_grad_set) self.__assert_is_close(numeric_grads, gpu_analytic_grads, grad_names, max_relative_error, diff --git a/python/paddle/v2/framework/tests/test_accuracy_op.py b/python/paddle/v2/framework/tests/test_accuracy_op.py index b6f3a35d6f58ba90b39e3f6296ae635220a2e965..02be9a02910bee3eae63e12cceaa51cf53591539 100644 --- a/python/paddle/v2/framework/tests/test_accuracy_op.py +++ b/python/paddle/v2/framework/tests/test_accuracy_op.py @@ -16,7 +16,9 @@ class TestAccuracyOp(OpTest): if ele == label[rowid]: num_correct += 1 break - self.outputs = {'Accuracy': [num_correct / float(n)]} + self.outputs = { + 'Accuracy': np.array([num_correct / float(n)]).astype("float32") + } def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/framework/tests/test_activation_op.py b/python/paddle/v2/framework/tests/test_activation_op.py index 5831b880e4c5ef881929920e87ac64d6c87a2ab5..c1668cd00ff6c3782dd17a789e4ad93b92e5209d 100644 --- a/python/paddle/v2/framework/tests/test_activation_op.py +++ b/python/paddle/v2/framework/tests/test_activation_op.py @@ -172,8 +172,8 @@ class TestBRelu(OpTest): def setUp(self): self.op_type = "brelu" x = np.random.uniform(-1, 1, [4, 4]).astype("float32") - t_min = 1 - t_max = 4 + t_min = 1.0 + t_max = 4.0 # The same with TestAbs x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02 @@ -218,7 +218,7 @@ class TestSoftRelu(OpTest): def setUp(self): self.op_type = "soft_relu" x = np.random.uniform(-3, 3, [4, 4]).astype("float32") - threshold = 2 + threshold = 2.0 # The same reason with TestAbs x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold + 0.02 @@ -303,7 +303,7 @@ class TestPow(OpTest): def setUp(self): self.op_type = "pow" self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} - self.attrs = {'factor': 3} + self.attrs = {'factor': 3.0} self.outputs = {'Y': np.power(self.inputs['X'], 3)} def test_check_output(self): diff --git a/python/paddle/v2/framework/tests/test_adam_op.py b/python/paddle/v2/framework/tests/test_adam_op.py index ff6faafa6e2119fde11b9eb6cd2a65a75334ebe6..a0d6655d4cbcff8ed3d55df0f4e68fc6591fbb11 100644 --- a/python/paddle/v2/framework/tests/test_adam_op.py +++ b/python/paddle/v2/framework/tests/test_adam_op.py @@ -33,14 +33,12 @@ class TestAdamOp1(OpTest): self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} - param_out, moment1_out, moment2_out, beta1_pow_out, \ - beta2_pow_out = adam_step(self.inputs, self.attrs) + param_out, moment1_out, \ + moment2_out = adam_step(self.inputs, self.attrs) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, - 'Beta1PowOut': beta1_pow_out, - 'Beta2PowOut': beta2_pow_out, 'ParamOut': param_out } @@ -78,14 +76,12 @@ class TestAdamOp2(OpTest): attributes = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} - param_out, moment1_out, moment2_out, beta1_pow_out, \ - beta2_pow_out = adam_step(self.inputs, attributes) + param_out, moment1_out, \ + moment2_out = adam_step(self.inputs, attributes) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, - 'Beta1PowOut': beta1_pow_out, - 'Beta2PowOut': beta2_pow_out, 'ParamOut': param_out } @@ -127,14 +123,12 @@ class TestAdamOpMultipleSteps(OpTest): def test_check_output(self): for _ in range(self.num_steps): - param_out, moment1_out, moment2_out, beta1_pow_out, \ - beta2_pow_out = adam_step(self.inputs, self.attrs) + param_out, moment1_out, \ + moment2_out = adam_step(self.inputs, self.attrs) self.outputs = { 'Moment1Out': moment1_out, 'Moment2Out': moment2_out, - 'Beta1PowOut': beta1_pow_out, - 'Beta2PowOut': beta2_pow_out, 'ParamOut': param_out } @@ -145,8 +139,10 @@ class TestAdamOpMultipleSteps(OpTest): self.inputs['Param'] = param_out self.inputs['Moment1'] = moment1_out self.inputs['Moment2'] = moment2_out - self.inputs['Beta1Pow'] = beta1_pow_out - self.inputs['Beta2Pow'] = beta2_pow_out + + # Update powers of Beta1 and Beta2 for next time step + self.inputs['Beta1Pow'] *= self.attrs['beta1'] + self.inputs['Beta2Pow'] *= self.attrs['beta1'] # Randomize gradient for next step self.inputs['Grad'] = np.random.uniform( @@ -175,11 +171,9 @@ def adam_step(inputs, attributes): moment1_out = beta1 * moment1 + (1 - beta1) * grad moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad) - beta1_pow_out = beta1_pow * beta1 - beta2_pow_out = beta2_pow * beta2 - lr_t = lr * np.sqrt(1 - beta2_pow_out) / (1 - beta1_pow_out) + lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon)) - return param_out, moment1_out, moment2_out, beta1_pow_out, beta2_pow_out + return param_out, moment1_out, moment2_out if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_adamax_op.py b/python/paddle/v2/framework/tests/test_adamax_op.py index af81075d6ad508dcd473ed596b00b036d87d894f..8e5a15aa3d12bbaae99cae6fcb627a336e48f684 100644 --- a/python/paddle/v2/framework/tests/test_adamax_op.py +++ b/python/paddle/v2/framework/tests/test_adamax_op.py @@ -31,14 +31,13 @@ class TestAdamaxOp1(OpTest): self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} - param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( - self.inputs, self.attrs) + param_out, moment_out, inf_norm_out = adamax_step(self.inputs, + self.attrs) self.outputs = { 'ParamOut': param_out, 'MomentOut': moment_out, - 'InfNormOut': inf_norm_out, - 'Beta1PowOut': beta1_pow_out + 'InfNormOut': inf_norm_out } def test_check_output(self): @@ -73,14 +72,12 @@ class TestAdamaxOp2(OpTest): } attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} - param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( - self.inputs, attrs) + param_out, moment_out, inf_norm_out = adamax_step(self.inputs, attrs) self.outputs = { 'ParamOut': param_out, 'MomentOut': moment_out, - 'InfNormOut': inf_norm_out, - 'Beta1PowOut': beta1_pow_out + 'InfNormOut': inf_norm_out } def test_check_output(self): @@ -117,19 +114,15 @@ class TestAdamaxOpMultipleSteps(OpTest): self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon} - param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( - self.inputs, self.attrs) - def test_check_output(self): for _ in range(self.num_steps): - param_out, moment_out, inf_norm_out, beta1_pow_out = adamax_step( - self.inputs, self.attrs) + param_out, moment_out, inf_norm_out = adamax_step(self.inputs, + self.attrs) self.outputs = { 'ParamOut': param_out, 'MomentOut': moment_out, - 'InfNormOut': inf_norm_out, - 'Beta1PowOut': beta1_pow_out + 'InfNormOut': inf_norm_out } # Verify output for this step @@ -139,7 +132,9 @@ class TestAdamaxOpMultipleSteps(OpTest): self.inputs['Param'] = param_out self.inputs['Moment'] = moment_out self.inputs['InfNorm'] = inf_norm_out - self.inputs['Beta1Pow'] = beta1_pow_out + + # Update Beta1 Power accumulator for next step + self.inputs['Beta1Pow'] *= self.attrs['beta1'] # Randomize gradient for next step self.inputs['Grad'] = np.random.uniform( @@ -167,11 +162,10 @@ def adamax_step(inputs, attributes): moment_out = beta1 * moment + (1 - beta1) * grad inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad)) - beta1_pow_out = beta1_pow * beta1 - lr_t = (lr / (1 - beta1_pow_out)) + lr_t = (lr / (1 - beta1_pow)) param_out = param - lr_t * np.divide(moment_out, inf_norm_out) - return param_out, moment_out, inf_norm_out, beta1_pow_out + return param_out, moment_out, inf_norm_out if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_batch_norm_op.py b/python/paddle/v2/framework/tests/test_batch_norm_op.py new file mode 100644 index 0000000000000000000000000000000000000000..b7b071c24da59c048f221a8130d9c2b8ad674911 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_batch_norm_op.py @@ -0,0 +1,197 @@ +import unittest +import numpy as np +from op_test import OpTest, get_backward_op, grad_var_name +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator + + +def _reference_training(x, scale, offset, epsilon, data_format): + if data_format != "NHWC": + raise ValueError("data_format must be NHWC, got %s." % data_format) + x_square = x * x + x_square_sum = np.sum(x_square, (0, 1, 2)) + x_sum = np.sum(x, axis=(0, 1, 2)) + element_count = np.size(x) / int(np.shape(x)[-1]) + mean = x_sum / element_count + var = x_square_sum / element_count - mean * mean + normalized = (x - mean) / np.sqrt(var + epsilon) + return (normalized * scale + offset), mean, var + + +def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format): + # Use the following formulas to calculate gradients: + # grad_scale = + # sum(grad_y * (x - mean)) * rsqrt(var + epsilon) + # + # grad_offset = sum(output_y) + # + # grad_x = + # 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) - + # (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon)) + if data_format != "NHWC": + raise ValueError("data_format must be NHWC, got %s." % data_format) + grad_x = scale * (grad_y - np.mean( + grad_y, axis=(0, 1, 2)) - (x - mean) * np.mean( + grad_y * (x - mean), axis=(0, 1, 2)) / + (var + epsilon)) / np.sqrt(var + epsilon) + grad_scale = np.sum(grad_y * (x - mean) / np.sqrt(var + epsilon), + axis=(0, 1, 2)) + grad_offset = np.sum(grad_y, axis=(0, 1, 2)) + return grad_x, grad_scale, grad_offset + + +def create_or_get_tensor(scope, var_name, var, place): + tensor = scope.var(var_name).get_tensor() + if var is not None: + assert isinstance(var, np.ndarray) + tensor.set_lod([[]]) + tensor.set_dims(var.shape) + tensor.set(var, place) + return tensor + + +def set_output_grad(scope, outputs, place): + def __set_tensor__(name): + out_tensor = scope.find_var(name).get_tensor() + grad_tensor = scope.var(grad_var_name(name)).get_tensor() + out_dtype = out_tensor.dtype() + if out_dtype == core.DataType.FP64: + data = np.ones(out_tensor.shape(), dtype=np.float64) + elif out_dtype == core.DataType.FP32: + data = np.ones(out_tensor.shape(), dtype=np.float32) + else: + raise ValueError("Not supported data type " + str(out_dtype)) + + grad_tensor.set(data, place) + + for output in outputs: + __set_tensor__(output) + + +class TestBatchNormOp(OpTest): + def __assert_close(self, tensor, np_array, msg, atol=1e-4): + self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) + + def test_forward_backward(self): + # attr + data_format = "NHWC" + epsilon = 0.00001 + momentum = 0.9 + + channel_num = 2 + x_shape = [2, 3, 4, channel_num] + scale_shape = [channel_num] + + # input + x_val = np.random.random_sample(x_shape).astype(np.float32) + scale_val = np.random.random_sample(scale_shape).astype(np.float32) + bias_val = np.random.random_sample(scale_shape).astype(np.float32) + + mean = np.zeros(scale_shape).astype(np.float32) + variance = np.zeros(scale_shape).astype(np.float32) + + # run forward + y_out, saved_mean, var_ref = _reference_training( + x_val, scale_val, bias_val, epsilon, data_format) + + # run backward + mean_out = saved_mean * (1 - momentum) + variance_out = var_ref * (1 - momentum) + saved_variance = 1 / np.sqrt(var_ref + epsilon) + + # for gradient test + y_grad = np.ones(x_shape).astype(np.float32) + x_grad_ref, scale_grad_ref, bias_grad_ref = _reference_grad( + x_val, y_grad, scale_val, saved_mean, var_ref, epsilon, data_format) + + def test_with_place(place): + scope = core.Scope() + + # create input + x_tensor = create_or_get_tensor(scope, "x_val", x_val, place) + scale_tensor = create_or_get_tensor(scope, "scale_val", scale_val, + place) + bias_tensor = create_or_get_tensor(scope, "bias_val", bias_val, + place) + mean_tensor = create_or_get_tensor(scope, "mean", mean, place) + variance_tensor = create_or_get_tensor(scope, "variance", variance, + place) + + # create output + y_tensor = create_or_get_tensor(scope, "y_out", None, place) + saved_mean_tensor = create_or_get_tensor(scope, "saved_mean", None, + place) + saved_variance_tensor = create_or_get_tensor( + scope, "saved_variance", None, place) + mean_out_tensor = mean_tensor + variance_out_tensor = variance_tensor + + batch_norm_op = Operator( + "batch_norm", + # inputs + X="x_val", + Scale="scale_val", + Bias="bias_val", + Mean="mean", + Variance="variance", + # outputs + Y="y_out", + MeanOut="mean", + VarianceOut="variance", + SavedMean="saved_mean", + SavedVariance="saved_variance", + # attrs + is_test=False, + tensor_format=data_format, + momentum=momentum, + epsilon=epsilon) + + ctx = core.DeviceContext.create(place) + batch_norm_op.run(scope, ctx) + + # check forward result + self.__assert_close(y_tensor, y_out, "y_out") + self.__assert_close(saved_mean_tensor, saved_mean, "saved_mean") + self.__assert_close(saved_variance_tensor, saved_variance, + "saved_variance") + self.__assert_close(mean_out_tensor, mean_out, "mean_out") + # FIXME(qiao) figure out why with cuDNN variance_out have a higher error rate + if isinstance(place, core.GPUPlace): + atol = 5e-2 + else: + atol = 1e-4 + self.__assert_close(variance_out_tensor, variance_out, + "variance_out", atol) + + # run backward + batch_norm_op_grad = get_backward_op(scope, batch_norm_op, set()) + set_output_grad( + scope, + ["y_out", "mean", "variance", "saved_mean", "saved_variance"], + place) + batch_norm_op_grad.run(scope, ctx) + + x_grad_tensor = create_or_get_tensor(scope, + grad_var_name("x_val"), None, + place) + scale_grad_tensor = create_or_get_tensor(scope, + grad_var_name("scale_val"), + None, place) + bias_grad_tensor = create_or_get_tensor(scope, + grad_var_name("bias_val"), + None, place) + + # check gradient output + self.__assert_close(x_grad_tensor, x_grad_ref, "x_grad") + self.__assert_close(scale_grad_tensor, scale_grad_ref, "scale_grad") + self.__assert_close(bias_grad_tensor, bias_grad_ref, "bias_grad") + + places = [core.CPUPlace()] + if core.is_compile_gpu() and core.op_support_gpu("batch_norm"): + places.append(core.GPUPlace(0)) + for place in places: + test_with_place(place) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_clip_op.py b/python/paddle/v2/framework/tests/test_clip_op.py index 5df6a494989017bab0416e0af962b2a85db046ba..a7e1bf174408e4139db0435d9f4bb0c885f76705 100644 --- a/python/paddle/v2/framework/tests/test_clip_op.py +++ b/python/paddle/v2/framework/tests/test_clip_op.py @@ -37,14 +37,14 @@ class TestCase1(TestClipOp): def initTestCase(self): self.shape = (8, 16, 8) self.max = 0.7 - self.min = 0 + self.min = 0.0 class TestCase2(TestClipOp): def initTestCase(self): self.shape = (8, 16) - self.max = 1 - self.min = 0 + self.max = 1.0 + self.min = 0.0 class TestCase3(TestClipOp): diff --git a/python/paddle/v2/framework/tests/test_conv2dtranspose_op.py b/python/paddle/v2/framework/tests/test_conv2dtranspose_op.py new file mode 100644 index 0000000000000000000000000000000000000000..71ca262f00378381d2d65e87d198d6b1755e9a2b --- /dev/null +++ b/python/paddle/v2/framework/tests/test_conv2dtranspose_op.py @@ -0,0 +1,102 @@ +import unittest +import numpy as np +from op_test import OpTest + + +def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): + # [2, 3, 5, 5] + in_n, in_c, in_h, in_w = input_.shape + # [3, 6, 3, 3] + f_c, out_c, f_h, f_w = filter_.shape + assert in_c == f_c + + stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad'] + out_h = (in_h - 1) * stride[0] + f_h + out_w = (in_w - 1) * stride[1] + f_w + + out = np.zeros((in_n, out_c, out_h, out_w)) + + for n in range(in_n): + for i in range(in_h): + for j in range(in_w): + input_masked = input_[n, :, i, j] # (c) + input_masked = np.reshape(input_masked, (in_c, 1, 1)) + input_masked = np.tile(input_masked, (1, f_h, f_w)) + + for k in range(out_c): + tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0) + i1, i2 = i * stride[0], i * stride[0] + f_h + j1, j2 = j * stride[0], j * stride[0] + f_w + out[n, k, i1:i2, j1:j2] += tmp_out + + return out + + +class TestConv2dTransposeOp(OpTest): + def setUp(self): + # init as conv transpose + self.init_op_type() + + # [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7] + self.init_test_case() + + conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad} + input_ = np.random.random(self.input_size).astype("float32") + filter_ = np.random.random(self.filter_size).astype("float32") + output = conv2dtranspose_forward_naive(input_, filter_, + conv2dtranspose_param) + # print 'deconv output py', output, output.shape + + self.inputs = {'Input': input_, 'Filter': filter_} + self.attrs = { + 'strides': self.stride, + 'paddings': self.pad, + # 'dilations': self.dilations + } + self.outputs = {'Output': output} + + def test_check_output(self): + print 'check output here' + self.check_output() + + def test_check_grad(self): + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.05) + + def test_check_grad_no_filter(self): + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.05, + no_grad_set=set(['Filter'])) + + def test_check_grad_no_input(self): + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.05, + no_grad_set=set(['Input'])) + + def init_test_case(self): + self.pad = [0, 0] + self.stride = [1, 1] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.op_type = "conv2dtranspose" + + +""" +class TestCudnn(TestConv2dOp): + def init_group(self): + self.groups = 1 + + def init_op_type(self): + self.op_type = "conv_cudnn" +""" + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_cross_entropy_op.py b/python/paddle/v2/framework/tests/test_cross_entropy_op.py index 919b6c3f6745a9c6115e7af857c1a30354305f89..e1c45c2674ee9cc7c7240bdd67de05cb218ac287 100644 --- a/python/paddle/v2/framework/tests/test_cross_entropy_op.py +++ b/python/paddle/v2/framework/tests/test_cross_entropy_op.py @@ -21,7 +21,7 @@ class TestCrossEntropyOp1(OpTest): self.inputs = {"X": X, "Label": label} self.outputs = {"Y": cross_entropy} - self.attrs = {"softLabel": False} + self.attrs = {"soft_label": False} def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py b/python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py index 2b01e43454e70c12b423db9925837cf336f79935..fa2ccd0c3b74a2ee8b8fd9eb8986cb79ff07c98e 100644 --- a/python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py @@ -4,6 +4,12 @@ import unittest from paddle.v2.framework.op import Operator, DynamicRecurrentOp import numpy as np +# for siplicity, just one level LoD +lod_py = [[0, 4, 7, 9, 10]] +input_dim = 30 +num_sents = len(lod_py[0]) - 1 +weight_dim = 15 + def create_tensor(scope, name, shape, np_data): tensor = scope.var(name).get_tensor() @@ -12,6 +18,17 @@ def create_tensor(scope, name, shape, np_data): return tensor +class PyRNNStep(object): + def __init__(self): + + self.x = np.random.normal(size=(lod_py[0][-1], + input_dim)).astype("float32") + self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32") + self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32") + self.h_boot = np.random.normal(size=(num_sents, + input_dim)).astype("float32") + + class DynamicRecurrentOpTest(unittest.TestCase): ''' Test RNNOp @@ -23,17 +40,13 @@ class DynamicRecurrentOpTest(unittest.TestCase): - U vars: - x - memories: + states: - h outputs: - h ''' - # for siplicity, just one level LoD - lod_py = [[0, 4, 7, 9, 10]] - input_dim = 30 - num_sents = len(lod_py[0]) - 1 - weight_dim = 15 + py = PyRNNStep() def forward(self): self.scope = core.Scope() @@ -42,64 +55,55 @@ class DynamicRecurrentOpTest(unittest.TestCase): self.create_step_net() ctx = core.DeviceContext.create(core.CPUPlace()) self.rnnop.run(self.scope, ctx) - state = self.rnnop.get_state("h@mem") + state = self.rnnop.get_state("h@state") print 'state size: ', state.size() step_inputs = self.rnnop.get_step_input("x") print "x size ", step_inputs.size() for i in range(step_inputs.size()): print "x %d" % i, np.array(step_inputs.read(i).get_dims()) - step_outputs = self.rnnop.get_step_output('h@mem') + step_outputs = self.rnnop.get_step_output('h@state') print 'step_outputs.size ', step_outputs.size() - output = self.scope.find_var("h@mem").get_tensor() - + output = self.scope.find_var("h@state").get_tensor() print 'output', np.array(output).shape def create_global_variables(self): - x = np.random.normal(size=(self.lod_py[0][-1], - self.input_dim)).astype("float32") - W = np.random.normal(size=(self.input_dim, - self.input_dim)).astype("float32") - U = np.random.normal(size=(self.input_dim, - self.input_dim)).astype("float32") - h_boot = np.random.normal(size=(self.num_sents, - self.input_dim)).astype("float32") # create inlink - x_tensor = create_tensor(self.scope, "x", - [self.num_sents, self.input_dim], x) - x_tensor.set_lod(self.lod_py) - create_tensor(self.scope, "W", [self.input_dim, self.input_dim], W) - create_tensor(self.scope, "U", [self.input_dim, self.input_dim], U) - create_tensor(self.scope, "h_boot", [self.num_sents, self.input_dim], - h_boot) + x_tensor = create_tensor(self.scope, "x", [num_sents, input_dim], + self.py.x) + x_tensor.set_lod(lod_py) + create_tensor(self.scope, "W", [input_dim, input_dim], self.py.W) + create_tensor(self.scope, "U", [input_dim, input_dim], self.py.U) + create_tensor(self.scope, "h_boot", [num_sents, input_dim], + self.py.h_boot) self.scope.var("step_scopes") - self.scope.var("h@mem") + self.scope.var("h@state") def create_rnn_op(self): # create RNNOp self.rnnop = DynamicRecurrentOp( # inputs - inlinks=["x"], - boot_memories=["h_boot"], - step_net="stepnet", + inputs=["x"], + initial_states=["h_boot"], + step_net="step_unit", # outputs - outlinks=["h@mem"], + outputs=["h@state"], step_scopes="step_scopes", # attributes - pre_memories=["h@pre"], - memories=["h@mem"]) + ex_states=["h@pre"], + states=["h@state"]) def create_step_net(self): - stepnet = core.Net.create() + step_unit = core.Net.create() x_fc_op = Operator("mul", X="x", Y="W", Out="Wx") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") - sig_op = Operator("sigmoid", X="sum", Y="h@mem") + sig_op = Operator("sigmoid", X="sum", Y="h@state") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: - stepnet.append_op(op) - stepnet.complete_add_op(True) - self.rnnop.set_stepnet(stepnet) + step_unit.append_op(op) + step_unit.complete_add_op(True) + self.rnnop.set_step_unit(step_unit) def test_forward(self): print 'test recurrent op forward' @@ -107,5 +111,58 @@ class DynamicRecurrentOpTest(unittest.TestCase): print 'pd_output', pd_output +class RecurrentGradientOpTest(unittest.TestCase): + py = PyRNNStep() + + def create_forward_op(self): + # create RNNOp + self.forward_op = DynamicRecurrentOp( + # inputs + inputs=["x"], + initial_states=["h_boot"], + step_net="step_unit", + # outputs + outputs=["h@state"], + step_scopes="step_scopes", + # attributes + ex_states=["h@pre"], + states=["h@state"]) + + def create_gradient_op(self): + a = set() + backward_op = core.DynamicRecurrentOp.backward(self.forward_op, a) + + def create_step_net(self): + step_unit = core.Net.create() + x_fc_op = Operator("mul", X="x", Y="W", Out="Wx") + h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") + sum_op = Operator("sum", X=["Wx", "Uh"], Out="sum") + sig_op = Operator("sigmoid", X="sum", Y="h@state") + + for op in [x_fc_op, h_fc_op, sum_op, sig_op]: + step_unit.append_op(op) + step_unit.complete_add_op(True) + self.forward_op.set_step_unit(step_unit) + + def create_global_variables(self): + # create inlink + x_tensor = create_tensor(self.scope, "x", [num_sents, input_dim], + self.py.x) + x_tensor.set_lod(lod_py) + create_tensor(self.scope, "W", [input_dim, input_dim], self.py.W) + create_tensor(self.scope, "U", [input_dim, input_dim], self.py.U) + create_tensor(self.scope, "h_boot", [num_sents, input_dim], + self.py.h_boot) + self.scope.var("step_scopes") + self.scope.var("h@state") + + def test_grad(self): + self.scope = core.Scope() + self.create_forward_op() + self.create_global_variables() + self.create_step_net() + self.create_gradient_op() + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_elementwise_add_op.py b/python/paddle/v2/framework/tests/test_elementwise_add_op.py index f3101a709b8bcf58e8682ab3d0ca5217a7f3572d..57daddd5698f77527bc5b78c436065a851867ae0 100644 --- a/python/paddle/v2/framework/tests/test_elementwise_add_op.py +++ b/python/paddle/v2/framework/tests/test_elementwise_add_op.py @@ -92,5 +92,33 @@ class TestElementwiseAddOp_broadcast_3(TestElementwiseOp): } +class TestElementwiseAddOp_rowwise_add_0(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_add" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(3, 4).astype(np.float32) + } + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': self.inputs['X'] + self.inputs['Y'].reshape(1, 3, 4) + } + + +class TestElementwiseAddOp_rowwise_add_1(TestElementwiseOp): + def setUp(self): + self.op_type = "elementwise_add" + self.inputs = { + 'X': np.random.rand(2, 1).astype(np.float32), + 'Y': np.random.rand(1).astype(np.float32) + } + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': self.inputs['X'] + self.inputs['Y'].reshape(1, 1) + } + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_executor_and_mul.py b/python/paddle/v2/framework/tests/test_executor_and_mul.py new file mode 100644 index 0000000000000000000000000000000000000000..35f775711167ce0d210044ab4cb382db802f39a5 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_executor_and_mul.py @@ -0,0 +1,36 @@ +import unittest +from paddle.v2.framework.layers import mul, data +import paddle.v2.framework.core as core +from paddle.v2.framework.executor import Executor +from paddle.v2.framework.framework import g_program +import numpy + + +class TestExecutor(unittest.TestCase): + def test_mul(self): + a = data(name='a', shape=[784], data_type='float32') + b = data( + name='b', + shape=[784, 100], + data_type='float32', + append_batch_size=False) + out = mul(x=a, y=b) + place = core.CPUPlace() + a_np = numpy.random.random((100, 784)).astype('float32') + tensor_a = core.LoDTensor() + tensor_a.set(a_np, place) + b_np = numpy.random.random((784, 100)).astype('float32') + tensor_b = core.LoDTensor() + tensor_b.set(b_np, place) + exe = Executor(place) + outs = exe.run(g_program, + feed={'a': tensor_a, + 'b': tensor_b}, + fetch_list=[out]) + out = numpy.array(outs[0]) + self.assertEqual((100, 100), out.shape) + self.assertTrue(numpy.allclose(out, numpy.dot(a_np, b_np))) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_fc_op.py b/python/paddle/v2/framework/tests/test_fc_op.py deleted file mode 100644 index 9f56fe5049c66aa5fce40ce815105e7871ebc3b2..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_fc_op.py +++ /dev/null @@ -1,62 +0,0 @@ -import unittest -import numpy as np -from op_test import OpTest - - -class TestFCOp1(OpTest): - def setUp(self): - x0 = np.random.random((16, 32)).astype("float32") - w0 = np.random.random((32, 10)).astype("float32") - - mul_out0 = np.dot(x0, w0) - identity_out = mul_out0 - - self.op_type = "fc" - self.inputs = {"X": [("X0", x0)], "W": [("W0", w0)]} - self.outputs = {"MulOut": [("MulOut0", mul_out0)], "Out": identity_out} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(["X0", "W0"], "Out", max_relative_error=0.01) - - -class TestFCOp2(OpTest): - def setUp(self): - x0 = np.random.random((16, 4, 8)).astype("float32") - x1 = np.random.random((4, 4, 32)).astype("float32") - w0 = np.random.random((32, 10)).astype("float32") - w1 = np.random.random((32, 10)).astype("float32") - b = np.random.random(10).astype("float32") - - mul_out0 = np.dot(x0.reshape(16, 4 * 8), w0) - mul_out1 = np.dot(x1.reshape(4 * 4, 32), w1) - sum_out = mul_out0 + mul_out1 - add_out = np.add(sum_out, b) - sigmoid_out = 1 / (1 + np.exp(-add_out)) - - self.op_type = "fc" - self.inputs = { - "X": [("X0", x0), ("X1", x1)], - "W": [("W0", w0), ("W1", w1)], - "B": b - } - self.attrs = {"xNumColDims": [1, 2], "activation": "sigmoid"} - self.outputs = { - "MulOut": [("MulOut0", mul_out0), ("MulOut1", mul_out1)], - "SumOut": sum_out, - "AddOut": add_out, - "Out": sigmoid_out - } - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad( - ["X0", "X1", "W0", "W1", "B"], "Out", max_relative_error=0.01) - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_feed_fetch_method.py b/python/paddle/v2/framework/tests/test_feed_fetch_method.py index 47eedddcb6f47927ea3918d7f6c379c5710592c6..fbd659ece0188140e197982ea818d7c3897daf4e 100644 --- a/python/paddle/v2/framework/tests/test_feed_fetch_method.py +++ b/python/paddle/v2/framework/tests/test_feed_fetch_method.py @@ -5,6 +5,7 @@ import numpy as np class TestFeedFetch(unittest.TestCase): def test_feed_fetch(self): + scope = core.Scope() place = core.CPUPlace() input_array = np.ones((4, 4, 6)).astype("float32") input_array[0, 0, 0] = 3 @@ -12,9 +13,9 @@ class TestFeedFetch(unittest.TestCase): input_tensor = core.LoDTensor([[0, 2, 4]]) input_tensor.set(input_array, place) - core.set_feed_variable_float(input_tensor, "feed", 0) + core.set_feed_variable(scope, input_tensor, "feed", 0) - output_tensor = core.get_fetch_variable("feed", 0) + output_tensor = core.get_fetch_variable(scope, "feed", 0) output_lod = output_tensor.lod() self.assertEqual(0, output_lod[0][0]) diff --git a/python/paddle/v2/framework/tests/test_fit_a_line.py b/python/paddle/v2/framework/tests/test_fit_a_line.py new file mode 100644 index 0000000000000000000000000000000000000000..b20e3357894c2bacad83f0a99632710c586602de --- /dev/null +++ b/python/paddle/v2/framework/tests/test_fit_a_line.py @@ -0,0 +1,73 @@ +import paddle.v2 as paddle +import paddle.v2.framework.layers as layers +import paddle.v2.framework.core as core +import paddle.v2.framework.optimizer as optimizer + +from paddle.v2.framework.framework import Program, g_program +from paddle.v2.framework.executor import Executor + +import numpy as np + +init_program = Program() +program = Program() +x = layers.data( + name='x', + shape=[13], + data_type='float32', + program=program, + init_program=init_program) + +y_predict = layers.fc(input=x, + size=1, + act=None, + program=program, + init_program=init_program) + +y = layers.data( + name='y', + shape=[1], + data_type='float32', + program=program, + init_program=init_program) + +cost = layers.square_error_cost( + input=y_predict, label=y, program=program, init_program=init_program) +avg_cost = layers.mean(x=cost, program=program, init_program=init_program) + +sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +opts = sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 20 + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.uci_housing.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = core.CPUPlace() +exe = Executor(place) + +exe.run(init_program, feed={}, fetch_list=[]) + +PASS_NUM = 100 +for pass_id in range(PASS_NUM): + for data in train_reader(): + x_data = np.array(map(lambda x: x[0], data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("float32") + + tensor_x = core.LoDTensor() + tensor_x.set(x_data, place) + # print tensor_x.get_dims() + + tensor_y = core.LoDTensor() + tensor_y.set(y_data, place) + # print tensor_y.get_dims() + outs = exe.run(program, + feed={'x': tensor_x, + 'y': tensor_y}, + fetch_list=[avg_cost]) + out = np.array(outs[0]) + + if out[0] < 10.0: + exit(0) # if avg cost less than 10.0, we think our code is good. +exit(1) diff --git a/python/paddle/v2/framework/tests/test_identity_op.py b/python/paddle/v2/framework/tests/test_identity_op.py deleted file mode 100644 index 26cec1fcc3ad003281c9c41571d475b55bd30026..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_identity_op.py +++ /dev/null @@ -1,20 +0,0 @@ -import unittest -import numpy as np -from op_test import OpTest - - -class TestIdentityOp(OpTest): - def setUp(self): - self.op_type = "identity" - self.inputs = {'X': np.random.random((10, 10)).astype("float32")} - self.outputs = {'Y': self.inputs['X']} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - self.check_grad(['X'], 'Y') - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_increment_op.py b/python/paddle/v2/framework/tests/test_increment_op.py new file mode 100644 index 0000000000000000000000000000000000000000..e174272b05b9413cc2bc1e099c4dd17899829e76 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_increment_op.py @@ -0,0 +1,41 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestIncrementOpPositiveStep(OpTest): + """Test increment op with positive step + """ + + def setUp(self): + self.op_type = "increment" + self.inputs = {'X': np.random.random((10, 10)).astype("float32")} + self.attrs = {'step': 14.8} + self.outputs = {'Out': self.inputs['X'] + self.attrs['step']} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +class TestIncrementOpNegativeStep(OpTest): + """Test increment op with negative step + """ + + def setUp(self): + self.op_type = "increment" + self.inputs = {'X': np.random.random((10, 10)).astype("float32")} + self.attrs = {'step': -3.8} + self.outputs = {'Out': self.inputs['X'] + self.attrs['step']} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_infer_shape.py b/python/paddle/v2/framework/tests/test_infer_shape.py index 19bb45acef9a7443a974bf5f11afab5d067321f7..5cfb9e6687f733353cfdbfbd1ad830c2bed8463b 100644 --- a/python/paddle/v2/framework/tests/test_infer_shape.py +++ b/python/paddle/v2/framework/tests/test_infer_shape.py @@ -5,7 +5,7 @@ import paddle.v2.framework.core as core class TestInferShape(unittest.TestCase): def test_sum_op(self): - prog = core.ProgramDesc.__create_program_desc__() + prog = core.ProgramDesc() self.assertIsNotNone(prog) block = prog.block(0) self.assertIsNotNone(block) @@ -33,7 +33,7 @@ class TestInferShape(unittest.TestCase): self.assertEqual(out.shape(), shape) def test_mul_op(self): - prog = core.ProgramDesc.__create_program_desc__() + prog = core.ProgramDesc() self.assertIsNotNone(prog) block = prog.block(0) self.assertIsNotNone(block) diff --git a/python/paddle/v2/framework/tests/test_interp_op.py b/python/paddle/v2/framework/tests/test_interp_op.py deleted file mode 100644 index 066569b96c9611bd20e7192f8bd6caa6e467202f..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/test_interp_op.py +++ /dev/null @@ -1,28 +0,0 @@ -import unittest -import numpy as np -from op_test import OpTest - - -class TestInterpOp(OpTest): - def setUp(self): - self.op_type = "interp" - x = np.random.random((2, 3)).astype("float32") - y = np.random.random((2, 3)).astype("float32") - w = np.random.random(2).astype("float32") - - sub_out = x - y - mul_out = sub_out * w.reshape(2, 1) - out = mul_out + y - - self.inputs = {'X': x, 'Y': y, 'W': w} - self.outputs = {'Out': out, 'SubOut': sub_out, 'MulOut': mul_out} - - def test_check_output(self): - self.check_output() - - def test_check_grad_normal(self): - self.check_grad(['X', 'Y'], 'Out') - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_layers.py b/python/paddle/v2/framework/tests/test_layers.py index 1ef2591cca066788deed8a1c0f6443850251fb80..7aedb985f98f2d8953e0968d19ece9c70d792246 100644 --- a/python/paddle/v2/framework/tests/test_layers.py +++ b/python/paddle/v2/framework/tests/test_layers.py @@ -1,4 +1,5 @@ -from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost +import paddle.v2.framework.layers as layers +import paddle.v2.framework.nets as nets from paddle.v2.framework.framework import Program, g_program import paddle.v2.framework.core as core import unittest @@ -6,38 +7,158 @@ import unittest class TestBook(unittest.TestCase): def test_fit_a_line(self): - pd = core.ProgramDesc.__create_program_desc__() - program = Program(desc=pd) - x = data_layer( + program = Program() + x = layers.data( name='x', shape=[13], data_type='float32', program=program) - y_predict = fc_layer(input=x, size=1, act=None, program=program) + y_predict = layers.fc(input=x, size=1, act=None, program=program) - y = data_layer( + y = layers.data( name='y', shape=[1], data_type='float32', program=program) - cost = square_error_cost(input=y_predict, label=y, program=program) + cost = layers.square_error_cost( + input=y_predict, label=y, program=program) - avg_cost = mean(x=cost, program=program) + avg_cost = layers.mean(x=cost, program=program) self.assertIsNotNone(avg_cost) + program.append_backward(avg_cost) print str(program) def test_recognize_digits_mlp(self): - pd = core.ProgramDesc.__create_program_desc__() - program = Program(desc=pd) + program = Program() # Change g_program, so the rest layers use `g_program` - images = data_layer( + images = layers.data( name='pixel', shape=[784], data_type='float32', program=program) - label = data_layer( + label = layers.data( name='label', shape=[1], data_type='int32', program=program) - hidden1 = fc_layer(input=images, size=128, act='relu', program=program) - hidden2 = fc_layer(input=hidden1, size=64, act='relu', program=program) - predict = fc_layer( - input=hidden2, size=10, act='softmax', program=program) - cost = cross_entropy(input=predict, label=label, program=program) - avg_cost = mean(x=cost, program=program) + hidden1 = layers.fc(input=images, size=128, act='relu', program=program) + hidden2 = layers.fc(input=hidden1, size=64, act='relu', program=program) + predict = layers.fc(input=hidden2, + size=10, + act='softmax', + program=program) + cost = layers.cross_entropy(input=predict, label=label, program=program) + avg_cost = layers.mean(x=cost, program=program) self.assertIsNotNone(avg_cost) print str(program) + def test_simple_conv2d(self): + program = Program() + images = layers.data( + name='pixel', shape=[3, 48, 48], data_type='int32', program=program) + layers.conv2d( + input=images, num_filters=3, filter_size=[4, 4], program=program) + + print str(program) + + def test_recognize_digits_conv(self): + program = Program() + + images = layers.data( + name='pixel', + shape=[1, 28, 28], + data_type='float32', + program=program) + label = layers.data( + name='label', shape=[1], data_type='int32', program=program) + conv_pool_1 = nets.simple_img_conv_pool( + input=images, + filter_size=5, + num_filters=2, + pool_size=2, + pool_stride=2, + act="relu", + program=program) + conv_pool_2 = nets.simple_img_conv_pool( + input=conv_pool_1, + filter_size=5, + num_filters=4, + pool_size=2, + pool_stride=2, + act="relu", + program=program) + + predict = layers.fc(input=conv_pool_2, + size=10, + act="softmax", + program=program) + cost = layers.cross_entropy(input=predict, label=label, program=program) + avg_cost = layers.mean(x=cost, program=program) + + program.append_backward(avg_cost) + + print str(program) + + def test_word_embedding(self): + program = Program() + dict_size = 10000 + embed_size = 32 + first_word = layers.data( + name='firstw', shape=[1], data_type='int32', program=program) + second_word = layers.data( + name='secondw', shape=[1], data_type='int32', program=program) + third_word = layers.data( + name='thirdw', shape=[1], data_type='int32', program=program) + forth_word = layers.data( + name='forthw', shape=[1], data_type='int32', program=program) + next_word = layers.data( + name='nextw', shape=[1], data_type='int32', program=program) + + embed_param_attr_1 = { + 'name': 'shared_w', + 'init_attr': { + 'max': 1.0, + 'type': 'uniform_random', + 'min': -1.0 + } + } + embed_param_attr_2 = {'name': 'shared_w'} + + embed_first = layers.embedding( + input=first_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_1, + program=program) + embed_second = layers.embedding( + input=second_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program) + + embed_third = layers.embedding( + input=third_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program) + embed_forth = layers.embedding( + input=forth_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program) + + concat_embed = layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], + axis=1, + program=program) + + hidden1 = layers.fc(input=concat_embed, + size=256, + act='sigmoid', + program=program) + predict_word = layers.fc(input=hidden1, + size=dict_size, + act='softmax', + program=program) + cost = layers.cross_entropy( + input=predict_word, label=next_word, program=program) + avg_cost = layers.mean(x=cost, program=program) + self.assertIsNotNone(avg_cost) + + print str(program) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_lookup_table_op.py b/python/paddle/v2/framework/tests/test_lookup_table_op.py index b259bb67e832adcb31b0ab4e992738be2b85f884..2c48f9bf93b939aa631cd54e8fb14b5cba22f2e0 100644 --- a/python/paddle/v2/framework/tests/test_lookup_table_op.py +++ b/python/paddle/v2/framework/tests/test_lookup_table_op.py @@ -8,7 +8,8 @@ class TestLookupTableOp(OpTest): self.op_type = "lookup_table" table = np.random.random((17, 31)).astype("float32") ids = np.random.randint(0, 17, 4).astype("int32") - self.inputs = {'W': table, 'Ids': ids} + ids_expand = np.expand_dims(ids, axis=1) + self.inputs = {'W': table, 'Ids': ids_expand} self.outputs = {'Out': table[ids]} def test_check_output(self): diff --git a/python/paddle/v2/framework/tests/test_lstm_op.py b/python/paddle/v2/framework/tests/test_lstm_op.py new file mode 100644 index 0000000000000000000000000000000000000000..93a4e450e916716e27573d192bace73f271733de --- /dev/null +++ b/python/paddle/v2/framework/tests/test_lstm_op.py @@ -0,0 +1,189 @@ +import unittest +import numpy as np +from op_test import OpTest + +SIGMOID_THRESHOLD_MIN = -40.0 +SIGMOID_THRESHOLD_MAX = 13.0 +EXP_MAX_INPUT = 40.0 + + +def identity(x): + return x + + +def sigmoid(x): + y = np.copy(x) + y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN + y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX + return 1. / (1. + np.exp(-y)) + + +def tanh(x): + y = -2. * x + y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT + return (2. / (1. + np.exp(y))) - 1. + + +def relu(x): + return np.maximum(x, 0) + + +ACTVATION = { + 'identity': identity, + 'sigmoid': sigmoid, + 'tanh': tanh, + 'relu': relu +} + + +def lstm( + input, # T x 4D + lod, # 1 x N + h0=None, # N x D + c0=None, # N x D + w_h=None, # D x 4D + w_b=None, # 1 x 4D + w_c=None, # 1 x 3D + is_reverse=False, + act_gate=None, + act_cell=None, + act_cand=None): + def _step(x, w_h, w_c, h_pre, c_pre, act_gate, act_cell, act_cand): + g = np.dot(h_pre, w_h) # 1 x 4D + g = g + x + g = np.reshape(g, (1, g.size)) + c_tmp, g_i, g_f, g_o = np.split(g, 4, axis=1) + if w_c is None: + g_i = act_gate(g_i) # 1 x D + g_f = act_gate(g_f) # 1 x D + else: + w_ic, w_fc, w_oc = np.split(w_c, 3, axis=1) + g_i = act_gate(g_i + w_ic * c_pre) # 1 x D + g_f = act_gate(g_f + w_fc * c_pre) # 1 x D + c = g_f * c_pre + g_i * act_cand(c_tmp) # 1 x D + + if w_c is None: + g_o = act_gate(g_o) # 1 x D + else: + _, _, w_oc = np.split(w_c, 3, axis=1) + g_o = act_gate(g_o + w_oc * c) # 1 x D + h = g_o * act_cell(c) + bg = np.concatenate((act_cand(c_tmp), g_i, g_f, g_o), axis=1) + return h, c, bg + + def _reverse(x, lod): + y = np.zeros_like(x) + for i in range(len(lod) - 1): + b, e = lod[i], lod[i + 1] + y[b:e, :] = np.flip(x[b:e, :], 0) + return y + + offset = lod[0] + batch_size = len(offset) - 1 + hidden = [] + cell = [] + gate = [] + input = _reverse(input, offset) if is_reverse else input + if w_b is not None: + input = input + np.tile(w_b, (offset[-1], 1)) + for i in range(batch_size): + # compute one sequence + seq_len = offset[i + 1] - offset[i] + x = input[offset[i]:offset[i + 1], :] + h_pre = h0[i] # 1 x D + c_pre = c0[i] # 1 x D + for j in range(seq_len): + # compute one step + h_pre, c_pre, g_pre = _step(x[j], w_h, w_c, h_pre, c_pre, act_gate, + act_cell, act_cand) + hidden.append(h_pre.flatten()) + cell.append(c_pre.flatten()) + gate.append(g_pre.flatten()) + + hidden = np.array(hidden).astype("float64") + cell = np.array(cell).astype("float64") + gate = np.array(gate).astype("float64") + + hidden = _reverse(hidden, offset) if is_reverse else hidden + cell = _reverse(cell, offset) if is_reverse else cell + + assert gate.shape == input.shape + assert hidden.shape == (input.shape[0], input.shape[1] / 4) + assert cell.shape == (input.shape[0], input.shape[1] / 4) + return hidden, cell, gate + + +class TestLstmOp(OpTest): + def set_data(self): + self.lod = [[0, 2, 6, 9]] + self.D = 64 + self.sort_idx = [2, 6, 0, 3, 7, 1, 4, 8, 5] + + self.act_gate = "sigmoid" + self.act_cell = "tanh" + self.act_cand = "tanh" + + self.is_reverse = False + + def setUp(self): + self.set_data() + self.op_type = "lstm" + + T = self.lod[0][-1] + N = len(self.lod[0]) - 1 + + x = np.random.normal(size=(T, 4 * self.D)).astype("float64") + h0 = np.zeros((N, self.D)).astype("float64") + c0 = np.zeros((N, self.D)).astype("float64") + w = np.random.normal(size=(self.D, 4 * self.D)).astype("float64") + b = np.random.normal(size=(1, 7 * self.D)).astype("float64") + + w_b = b[:, 0:4 * self.D] + w_c = b[:, 4 * self.D:] + h, c, g = lstm(x, self.lod, h0, c0, w, w_b, w_c, self.is_reverse, + ACTVATION[self.act_gate], ACTVATION[self.act_cell], + ACTVATION[self.act_cand]) + + g_sort = np.zeros_like(x) + for i, j in enumerate(self.sort_idx): + g_sort[i, :] = g[j, :] + + self.inputs = { + 'Input': (x, self.lod), + 'H0': h0, + 'C0': c0, + 'Weight': w, + 'Bias': b + } + self.outputs = { + 'Hidden': (h, self.lod), + 'Cell': (c, self.lod), + 'BatchGate': g_sort + } + self.attrs = { + 'usePeepholes': True, + 'isReverse': self.is_reverse, + 'gateActivation': 'sigmoid', + 'cellActivation': 'tanh', + 'candidateActivation': 'tanh' + } + + def test_check_output(self): + self.check_output() + + +class TestLstmOpRerverse(TestLstmOp): + def set_data(self): + self.lod = [[0, 2, 6, 9]] + self.D = 64 + self.sort_idx = [2, 6, 0, 3, 7, 1, 4, 8, 5] + + self.act_gate = "sigmoid" + self.act_cell = "tanh" + self.act_cand = "tanh" + + self.is_reverse = True + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_matmul_op.py b/python/paddle/v2/framework/tests/test_matmul_op.py new file mode 100644 index 0000000000000000000000000000000000000000..d51572c8ab7c44fa0c6e83e50b56f05780530c61 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_matmul_op.py @@ -0,0 +1,119 @@ +import unittest +import numpy as np +from op_test import OpTest + + +def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y): + BATCH_SIZE = 2 + M = 3 + N = 4 + K = 5 + if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y): + K = 1 + if dim_X == 1: + if transpose_X: + shape_X = [M] + else: + shape_X = [K] + if dim_Y == 1: + if transpose_Y: + shape_Y = [N] + else: + shape_Y = [K] + if dim_X >= 2: + if transpose_X: + shape_X = [K, M] + else: + shape_X = [M, K] + if dim_X == 3: + shape_X = [BATCH_SIZE] + shape_X + if dim_Y >= 2: + if transpose_Y: + shape_Y = [N, K] + else: + shape_Y = [K, N] + if dim_Y == 3: + shape_Y = [BATCH_SIZE] + shape_Y + return shape_X, shape_Y + + +def reference_matmul(X, Y, transpose_X=False, transpose_Y=False): + """Reference forward implementation using np.matmul.""" + # np.matmul does not support the transpose flags, so we manually + # transpose X and Y appropriately. + if transpose_X: + if X.ndim == 1: + X = X.reshape((X.size, 1)) + elif X.ndim == 2: + X = X.T + elif X.ndim == 3: + X = np.transpose(X, (0, 2, 1)) + else: + raise ValueError('X must have between 1 and 3 dimensions') + if transpose_Y: + if Y.ndim == 1: + Y = Y.reshape((1, Y.size)) + elif Y.ndim == 2: + Y = Y.T + elif Y.ndim == 3: + Y = np.transpose(Y, (0, 2, 1)) + else: + raise ValueError('Y must have between 1 and 3 dimensions') + Out = np.matmul(X, Y) + if not Out.shape: + # We do not support 0-dimensional Tensors (scalars). So where + # np.matmul outputs a scalar, we must convert to a Tensor of + # shape (1, ) instead. + # Everywhere else, we are compatible with np.matmul. + Out = np.array([Out], dtype="float32") + return Out + + +class Generator(object): + def setUp(self): + self.op_type = "matmul" + X = np.random.random(self.shape_X).astype("float32") + Y = np.random.random(self.shape_Y).astype("float32") + Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y) + self.inputs = {'X': X, 'Y': Y} + self.attrs = { + 'transpose_X': self.transpose_X, + 'transpose_Y': self.transpose_Y + } + self.outputs = {'Out': Out} + + def test_check_output(self): + self.check_output(atol=1e-2) + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + + def test_check_grad_ignore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + + def test_check_grad_ignore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) + + +# Generate test cases for all possibilities +for dim_X in [1, 2, 3]: + for dim_Y in [1, 2, 3]: + for transpose_X in [False, True]: + for transpose_Y in [False, True]: + test_name = ( + 'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format( + dim_X, dim_Y, transpose_X, transpose_Y)) + shape_X, shape_Y = generate_compatible_shapes( + dim_X, dim_Y, transpose_X, transpose_Y) + test_class = type(test_name, (Generator, OpTest), { + 'shape_X': shape_X, + 'shape_Y': shape_Y, + 'transpose_X': transpose_X, + 'transpose_Y': transpose_Y, + }) + globals()[test_name] = test_class + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_momentum_op.py b/python/paddle/v2/framework/tests/test_momentum_op.py new file mode 100644 index 0000000000000000000000000000000000000000..654d31975aab4578055e7e70ade202bd2c3d93cb --- /dev/null +++ b/python/paddle/v2/framework/tests/test_momentum_op.py @@ -0,0 +1,76 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestMomentumOp1(OpTest): + def setUp(self): + self.op_type = "momentum" + + param = np.random.random((123, 321)).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + velocity = np.zeros((123, 321)).astype("float32") + learning_rate = np.array([0.001]).astype("float32") + mu = 0.0001 + use_nesterov = False + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Velocity': velocity, + 'LearningRate': learning_rate + } + + self.attrs = {'mu': mu} + + velocity_out = mu * velocity + grad + if use_nesterov: + param_out = param - grad * learning_rate + \ + velocity_out * mu * learning_rate + else: + param_out = param - learning_rate * velocity_out + + self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out} + + def test_check_output(self): + self.check_output() + + +class TestMomentumOp2(OpTest): + '''Test Momentum with defaukt values for attributes + ''' + + def setUp(self): + self.op_type = "momentum" + + param = np.random.random((123, 321)).astype("float32") + grad = np.random.random((123, 321)).astype("float32") + velocity = np.zeros((123, 321)).astype("float32") + learning_rate = np.array([0.001]).astype("float32") + mu = 0.0001 + use_nesterov = True + + self.inputs = { + 'Param': param, + 'Grad': grad, + 'Velocity': velocity, + 'LearningRate': learning_rate + } + + self.attrs = {'mu': mu, 'useNesterov': use_nesterov} + + velocity_out = mu * velocity + grad + if use_nesterov: + param_out = param - grad * learning_rate + \ + velocity_out * mu * learning_rate + else: + param_out = param - learning_rate * velocity_out + + self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out} + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_mul_op.py b/python/paddle/v2/framework/tests/test_mul_op.py index b3d95a56b88e510734da54f36ff21ccd7e1baabb..57d6d7e7e095cab2c3afb60d229fc09da98aed8b 100644 --- a/python/paddle/v2/framework/tests/test_mul_op.py +++ b/python/paddle/v2/framework/tests/test_mul_op.py @@ -35,10 +35,10 @@ class TestMulOp2(OpTest): 'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32") } self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2} - self.outputs = { - 'Out': np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10), - self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9)) - } + result = np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10), + self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9)) + result = result.reshape(15, 4, 8, 2, 9) + self.outputs = {'Out': result} def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/framework/tests/test_op_support_gpu.py b/python/paddle/v2/framework/tests/test_op_support_gpu.py new file mode 100644 index 0000000000000000000000000000000000000000..dd36c666c440a5c378dfceac4502cd8277417412 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_op_support_gpu.py @@ -0,0 +1,11 @@ +import unittest +import paddle.v2.framework.core as core + + +class TestOpSupportGPU(unittest.TestCase): + def test_case(self): + self.assertEqual(core.is_compile_gpu(), core.op_support_gpu("sum")) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_optimizer.py b/python/paddle/v2/framework/tests/test_optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..d1527e70c0785edeee87084b701ca7c7c9f1b395 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_optimizer.py @@ -0,0 +1,200 @@ +import unittest + +import paddle.v2.framework.framework as framework +import paddle.v2.framework.optimizer as optimizer +from paddle.v2.framework.backward import append_backward_ops + + +class TestOptimizer(unittest.TestCase): + def test_sgd_optimizer(self): + program = framework.Program() + block = program.global_block() + mul_x = block.create_parameter( + dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") + mul_y = block.create_var( + dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") + mul_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + block.append_op( + type="mul", + inputs={"X": mul_x, + "Y": mul_y}, + outputs={"Out": mul_out}, + attrs={"x_num_col_dims": 1}) + sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) + opts = sgd_optimizer.minimize(mul_out) + self.assertEqual(len(opts), 1) + sgd_op = opts[0] + self.assertEqual(sgd_op.type, "sgd") + + +class TestMomentumOptimizer(unittest.TestCase): + class MockMomentum(optimizer.MomentumOptimizer): + def get_accumulators(self): + return self._accumulators + + def get_velocity_str(self): + return self._velocity_acc_str + + def test_vanilla_momentum_optimizer(self): + program = framework.Program() + block = program.global_block() + mul_x = block.create_parameter( + dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") + mul_y = block.create_var( + dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") + mul_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + block.append_op( + type="mul", + inputs={"X": mul_x, + "Y": mul_y}, + outputs={"Out": mul_out}, + attrs={"x_num_col_dims": 1}) + momentum_optimizer = self.MockMomentum(learning_rate=0.01, momentum=0.2) + params_grads = append_backward_ops(mul_out) + self.assertEqual(len(params_grads), 1) + self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) + opts = momentum_optimizer.create_optimization_pass(params_grads, + mul_out) + self.assertEqual(len(opts), 1) + sgd_op = opts[0] + self.assertEqual(sgd_op.type, "momentum") + self.assertFalse(sgd_op.attr('useNesterov')) + + # Check accumulators + accumulators = momentum_optimizer.get_accumulators() + self.assertEqual(len(accumulators), 1) + self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) + velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] + self.assertEqual(len(velocity_acc), 1) + self.assertTrue(mul_x.name in velocity_acc) + + def test_nesterov_momentum_optimizer(self): + program = framework.Program() + block = program.global_block() + mul_x = block.create_parameter( + dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") + mul_y = block.create_var( + dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") + mul_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + block.append_op( + type="mul", + inputs={"X": mul_x, + "Y": mul_y}, + outputs={"Out": mul_out}, + attrs={"x_num_col_dims": 1}) + momentum_optimizer = self.MockMomentum( + learning_rate=0.01, momentum=0.2, use_nesterov=True) + params_grads = append_backward_ops(mul_out) + self.assertEqual(len(params_grads), 1) + self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) + opts = momentum_optimizer.create_optimization_pass(params_grads, + mul_out) + self.assertEqual(len(opts), 1) + sgd_op = opts[0] + self.assertEqual(sgd_op.type, "momentum") + self.assertTrue(sgd_op.attr('useNesterov')) + + # Check accumulators + accumulators = momentum_optimizer.get_accumulators() + self.assertEqual(len(accumulators), 1) + self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) + velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] + self.assertEqual(len(velocity_acc), 1) + self.assertTrue(mul_x.name in velocity_acc) + + +class TestAdagradOptimizer(unittest.TestCase): + class MockAdagrad(optimizer.AdagradOptimizer): + def get_accumulators(self): + return self._accumulators + + def get_moment_str(self): + return self._moment_acc_str + + def test_adagrad_optimizer(self): + program = framework.Program() + block = program.global_block() + mul_x = block.create_parameter( + dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") + mul_y = block.create_var( + dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") + mul_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + block.append_op( + type="mul", + inputs={"X": mul_x, + "Y": mul_y}, + outputs={"Out": mul_out}, + attrs={"x_num_col_dims": 1}) + adagrad_optimizer = self.MockAdagrad(learning_rate=0.01, epsilon=1.0e-6) + params_grads = append_backward_ops(mul_out) + self.assertEqual(len(params_grads), 1) + self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) + opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out) + self.assertEqual(len(opts), 1) + adagrad_op = opts[0] + self.assertEqual(adagrad_op.type, "adagrad") + + # check accumulators + accumulators = adagrad_optimizer.get_accumulators() + self.assertEqual(len(accumulators), 1) + self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators) + moment_acc = accumulators[adagrad_optimizer.get_moment_str()] + self.assertEqual(len(moment_acc), 1) + self.assertTrue(mul_x.name in moment_acc) + + +class TestAdamOptimizer(unittest.TestCase): + class MockAdam(optimizer.AdamOptimizer): + def get_accumulators(self): + return self._accumulators + + def get_moment1_str(self): + return self._moment1_acc_str + + def get_moment2_str(self): + return self._moment2_acc_str + + def test_adam_optimizer(self): + program = framework.Program() + block = program.global_block() + mul_x = block.create_parameter( + dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") + mul_y = block.create_var( + dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") + mul_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") + block.append_op( + type="mul", + inputs={"X": mul_x, + "Y": mul_y}, + outputs={"Out": mul_out}, + attrs={"x_num_col_dims": 1}) + adam_optimizer = self.MockAdam( + learning_rate=0.01, beta1=0.9, beta2=0.999) + params_grads = append_backward_ops(mul_out) + self.assertEqual(len(params_grads), 1) + self.assertEqual(len(adam_optimizer.get_accumulators()), 0) + opts = adam_optimizer.create_optimization_pass(params_grads, mul_out) + self.assertEqual(len(opts), 3) + adam_op = opts[0] + self.assertEqual(adam_op.type, "adam") + + # Check accumulators + accumulators = adam_optimizer.get_accumulators() + self.assertEqual(len(accumulators), 2) + self.assertTrue(adam_optimizer.get_moment1_str() in accumulators) + self.assertTrue(adam_optimizer.get_moment2_str() in accumulators) + moment1_acc = accumulators[adam_optimizer.get_moment1_str()] + moment2_acc = accumulators[adam_optimizer.get_moment2_str()] + self.assertEqual(len(moment1_acc), 1) + self.assertEqual(len(moment2_acc), 1) + self.assertTrue(mul_x.name in moment1_acc) + self.assertTrue(mul_x.name in moment2_acc) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_pad_op.py b/python/paddle/v2/framework/tests/test_pad_op.py index 9052e63b5683801da7c73be4de23013c949add98..55f1774e5755c846f60a2f1df3e705444a81192b 100644 --- a/python/paddle/v2/framework/tests/test_pad_op.py +++ b/python/paddle/v2/framework/tests/test_pad_op.py @@ -27,7 +27,7 @@ class TestPadOp(OpTest): def initTestCase(self): self.shape = (16, 16) self.paddings = [(0, 1), (2, 3)] - self.pad_value = 0 + self.pad_value = 0.0 class TestCase1(TestPadOp): @@ -41,7 +41,7 @@ class TestCase2(TestPadOp): def initTestCase(self): self.shape = (2, 2, 2) self.paddings = [(0, 0), (0, 0), (1, 2)] - self.pad_value = 1 + self.pad_value = 1.0 class TestCase3(TestPadOp): diff --git a/python/paddle/v2/framework/tests/test_program.py b/python/paddle/v2/framework/tests/test_program.py index d06f86c09fe4edf8364e7d124cb7b8b1ae6bcc64..c55dd8de7282d4c941777054ad9d6437c87f0bc6 100644 --- a/python/paddle/v2/framework/tests/test_program.py +++ b/python/paddle/v2/framework/tests/test_program.py @@ -34,49 +34,29 @@ class TestProgram(unittest.TestCase): self.assertEqual(1, b.idx) self.assertEqual(0, b.parent_idx) - def test_desc_append_backward(self): - prog = core.ProgramDesc.__create_program_desc__() - self.assertIsNotNone(prog) - block = prog.block(0) - self.assertIsNotNone(block) - - mul_op_desc = block.append_op() - mul_op_desc.set_type("mul") - mul_op_desc.set_input("X", ["x1"]) - mul_op_desc.set_input("Y", ["y1"]) - mul_op_desc.set_output("Out", ["out1"]) - - sum_op_desc = block.append_op() - sum_op_desc.set_type("elementwise_add") - sum_op_desc.set_input("X", ["out1"]) - sum_op_desc.set_input("Y", ["b1"]) - sum_op_desc.set_output("Out", ["out2"]) - - target = block.var("out2") + def test_program_clone(self): + prog = Program() - expect_ops = [ - "mul", "elementwise_add", "fill_constant", "elementwise_add_grad", - "mul_grad" - ] - - def grad_name(name): - return name + "@GRAD" + x = prog.global_block().create_var( + name='X', shape=[1000, 784], dtype='float32') - actual_ops = [] - param_to_grad = prog.append_backward(target, set()) - for var_name in ("x1", "y1", "out1", "b1"): - self.assertEqual(param_to_grad[var_name][0], grad_name(var_name)) - self.assertEqual(param_to_grad[var_name][1], 0) + y = prog.global_block().create_var( + name='Y', shape=[784, 100], dtype='float32') + out = prog.global_block().create_var(name='Out', dtype='float32') + prog.global_block().append_op( + type="mul", inputs={'X': [x], + 'Y': [y]}, outputs={'Out': [out]}) - for op in block.all_ops(): - actual_ops.append(op.type()) - self.assertEqual(actual_ops, expect_ops) + # FIXME(yuyang18): We manual compare the output string, since the order + # of variable could be changed. + print prog + print prog.clone() def test_append_backward(self): - prog = Program.instance() + prog = Program() block = prog.global_block() - mul_x = block.create_parameter( + mul_x = block.create_var( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") @@ -88,7 +68,35 @@ class TestProgram(unittest.TestCase): "Y": mul_y}, outputs={"Out": [mul_out]}, attrs={"x_num_col_dims": 1}) - param_to_grad = prog.append_backward(mul_out, set()) + + add_y = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="add.y") + add_out = block.create_var( + dtype="float32", shape=[5, 8], lod_level=0, name="add.out") + add_op = block.append_op( + type="elementwise_add", + inputs={"X": mul_out, + "Y": add_y}, + outputs={"Out": add_out}, + attrs={"x_num_col_dims": 1}) + + param_to_grad = prog.append_backward(add_out, set()) + + def grad_name(name): + return name + "@GRAD" + + for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out"): + self.assertEqual(param_to_grad[var_name][0], grad_name(var_name)) + self.assertEqual(param_to_grad[var_name][1], 0) + + expect_ops = [ + "mul", "elementwise_add", "fill_constant", "elementwise_add_grad", + "mul_grad" + ] + actual_ops = [] + for op in block.ops: + actual_ops.append(op.type) + self.assertEqual(actual_ops, expect_ops) if __name__ == '__main__': diff --git a/python/paddle/v2/framework/tests/test_protobuf_descs.py b/python/paddle/v2/framework/tests/test_protobuf_descs.py index c775b1a398dabb096845b4a8730152c682b2f0dd..2fd3d5d165ada5026510e0dc3e2c55b6e0596ff3 100644 --- a/python/paddle/v2/framework/tests/test_protobuf_descs.py +++ b/python/paddle/v2/framework/tests/test_protobuf_descs.py @@ -4,7 +4,7 @@ import paddle.v2.framework.core as core class TestOpDesc(unittest.TestCase): def test_op_desc(self): - prog = core.ProgramDesc.__create_program_desc__() + prog = core.ProgramDesc() self.assertIsNotNone(prog) block = prog.block(0) self.assertIsNotNone(block) @@ -64,16 +64,16 @@ class TestOpDesc(unittest.TestCase): class TestProgramDesc(unittest.TestCase): def test_instance(self): - program_desc = core.ProgramDesc.__create_program_desc__() + program_desc = core.ProgramDesc() self.assertIsNotNone(program_desc) del program_desc - program_desc = core.ProgramDesc.instance() + program_desc = core.ProgramDesc() self.assertIsNotNone(program_desc) self.assertIsNotNone(program_desc.block(0)) del program_desc def test_append_block(self): - prog_desc = core.ProgramDesc.__create_program_desc__() + prog_desc = core.ProgramDesc() self.assertIsNotNone(prog_desc) block_root = prog_desc.block(0) self.assertIsNotNone(block_root) @@ -91,7 +91,7 @@ class TestProgramDesc(unittest.TestCase): class TestVarDesc(unittest.TestCase): def test_shape(self): - program_desc = core.ProgramDesc.__create_program_desc__() + program_desc = core.ProgramDesc() block = program_desc.block(0) var = block.var('my_var') var.set_type(core.VarDesc.VarType.SELECTED_ROWS) @@ -102,7 +102,7 @@ class TestVarDesc(unittest.TestCase): self.assertEqual(core.VarDesc.VarType.SELECTED_ROWS, var.type()) def test_data_type(self): - program_desc = core.ProgramDesc.__create_program_desc__() + program_desc = core.ProgramDesc() block = program_desc.block(0) var = block.var('my_var') var.set_type(core.VarDesc.VarType.LOD_TENSOR) @@ -113,7 +113,7 @@ class TestVarDesc(unittest.TestCase): class TestBlockDesc(unittest.TestCase): def test_add_var(self): - prog = core.ProgramDesc.__create_program_desc__() + prog = core.ProgramDesc() self.assertIsNotNone(prog) block = prog.block(0) self.assertIsNotNone(block) @@ -121,19 +121,21 @@ class TestBlockDesc(unittest.TestCase): var2 = block.var("var2") var3 = block.var("var3") all_vars = block.all_vars() - self.assertEqual(set(all_vars), set([var1, var2, var3])) + self.assertEqual(set(all_vars), {var1, var2, var3}) var2_re = block.find_var("var2") self.assertEqual(var2_re, var2) def test_add_op(self): - prog = core.ProgramDesc.__create_program_desc__() + prog = core.ProgramDesc() self.assertIsNotNone(prog) block = prog.block(0) self.assertIsNotNone(block) op1 = block.append_op() op2 = block.append_op() op0 = block.prepend_op() - all_ops = block.all_ops() + all_ops = [] + for idx in xrange(0, block.op_size()): + all_ops.append(block.op(idx)) self.assertEqual(all_ops, [op0, op1, op2]) diff --git a/python/paddle/v2/framework/tests/test_proximal_gd_op.py b/python/paddle/v2/framework/tests/test_proximal_gd_op.py new file mode 100644 index 0000000000000000000000000000000000000000..9ca79ce6b3b710244e4f65db70b305231a9f3fcf --- /dev/null +++ b/python/paddle/v2/framework/tests/test_proximal_gd_op.py @@ -0,0 +1,33 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestProximalGDOp(OpTest): + def setUp(self): + self.op_type = "proximal_gd" + w = np.random.random((102, 105)).astype("float32") + g = np.random.random((102, 105)).astype("float32") + lr = np.array([0.1]).astype("float32") + l1 = 0.1 + l2 = 0.2 + + self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr} + self.attrs = {'l1': l1, 'l2': l2} + prox_param = w - lr * g + param_out = 0.0 + if l1 > 0.0: + x = np.abs(prox_param) - lr * l1 + x[x < 0] = 0 + param_out = np.sign(prox_param) * (x / (1.0 + lr * l2)) + else: + param_out = prox_param / (1.0 + lr * l2) + + self.outputs = {'ParamOut': param_out} + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_recognize_digits_conv.py b/python/paddle/v2/framework/tests/test_recognize_digits_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..2b305213df424dd097bf4238aa14320a2f7da45d --- /dev/null +++ b/python/paddle/v2/framework/tests/test_recognize_digits_conv.py @@ -0,0 +1,92 @@ +import paddle.v2 as paddle +import paddle.v2.framework.layers as layers +import paddle.v2.framework.nets as nets +import paddle.v2.framework.core as core +import paddle.v2.framework.optimizer as optimizer + +from paddle.v2.framework.framework import Program, g_program +from paddle.v2.framework.executor import Executor + +import numpy as np + +init_program = Program() +program = Program() + +images = layers.data( + name='pixel', + shape=[1, 28, 28], + data_type='float32', + program=program, + init_program=init_program) +label = layers.data( + name='label', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) +conv_pool_1 = nets.simple_img_conv_pool( + input=images, + filter_size=5, + num_filters=20, + pool_size=2, + pool_stride=2, + act="relu", + program=program, + init_program=init_program) +conv_pool_2 = nets.simple_img_conv_pool( + input=conv_pool_1, + filter_size=5, + num_filters=50, + pool_size=2, + pool_stride=2, + act="relu", + program=program, + init_program=init_program) + +predict = layers.fc(input=conv_pool_2, + size=10, + act="softmax", + program=program, + init_program=init_program) +cost = layers.cross_entropy( + input=predict, label=label, program=program, init_program=init_program) +avg_cost = layers.mean(x=cost, program=program) + +sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +opts = sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 50 +PASS_NUM = 1 +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = core.CPUPlace() +exe = Executor(place) + +exe.run(init_program, feed={}, fetch_list=[]) + +for pass_id in range(PASS_NUM): + count = 0 + for data in train_reader(): + img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]), + data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int32") + y_data = y_data.reshape([BATCH_SIZE, 1]) + + tensor_img = core.LoDTensor() + tensor_y = core.LoDTensor() + tensor_img.set(img_data, place) + tensor_y.set(y_data, place) + + outs = exe.run(program, + feed={"pixel": tensor_img, + "label": tensor_y}, + fetch_list=[avg_cost]) + + loss = np.array(outs[0]) + + if loss < 10.0: + exit(0) # if avg cost less than 10.0, we think our code is good. +exit(1) diff --git a/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py b/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py new file mode 100644 index 0000000000000000000000000000000000000000..a985d1f3d38fcaa8372a70edd519b873d47f554a --- /dev/null +++ b/python/paddle/v2/framework/tests/test_recognize_digits_mlp.py @@ -0,0 +1,83 @@ +import paddle.v2 as paddle +import paddle.v2.framework.layers as layers +import paddle.v2.framework.core as core +import paddle.v2.framework.optimizer as optimizer + +from paddle.v2.framework.framework import Program, g_program +from paddle.v2.framework.executor import Executor + +import numpy as np + +init_program = Program() +program = Program() +image = layers.data( + name='x', + shape=[784], + data_type='float32', + program=program, + init_program=init_program) + +hidden1 = layers.fc(input=image, + size=128, + act='relu', + program=program, + init_program=init_program) +hidden2 = layers.fc(input=hidden1, + size=64, + act='relu', + program=program, + init_program=init_program) + +predict = layers.fc(input=hidden2, + size=10, + act='softmax', + program=program, + init_program=init_program) + +label = layers.data( + name='y', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) + +cost = layers.cross_entropy( + input=predict, label=label, program=program, init_program=init_program) +avg_cost = layers.mean(x=cost, program=program, init_program=init_program) + +sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +opts = sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 128 + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=8192), + batch_size=BATCH_SIZE) + +place = core.CPUPlace() +exe = Executor(place) + +exe.run(init_program, feed={}, fetch_list=[]) + +PASS_NUM = 100 +for pass_id in range(PASS_NUM): + for data in train_reader(): + x_data = np.array(map(lambda x: x[0], data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int32") + y_data = np.expand_dims(y_data, axis=1) + + tensor_x = core.LoDTensor() + tensor_x.set(x_data, place) + + tensor_y = core.LoDTensor() + tensor_y.set(y_data, place) + + outs = exe.run(program, + feed={'x': tensor_x, + 'y': tensor_y}, + fetch_list=[avg_cost]) + out = np.array(outs[0]) + if out[0] < 5.0: + exit(0) # if avg cost less than 5.0, we think our code is good. +exit(1) diff --git a/python/paddle/v2/framework/tests/test_recurrent_op.py b/python/paddle/v2/framework/tests/test_recurrent_op.py index 191ce0b0c8d5fb6c4d8037a6c1bfda57c394489e..cc4008c0d8e73a3f7d9a9be2a4aacfd120ecd522 100644 --- a/python/paddle/v2/framework/tests/test_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_recurrent_op.py @@ -132,15 +132,15 @@ class RecurrentOpTest(unittest.TestCase): # create RNNOp self.rnnop = RecurrentOp( # inputs - inlinks=["x"], - boot_memories=["h_boot"], + inputs=["x"], + initial_states=["h_boot"], step_net="stepnet", # outputs - outlinks=["h@mem"], + outputs=["h@mem"], step_scopes="step_scopes", # attributes - pre_memories=["h@pre"], - memories=["h@mem"]) + ex_states=["h@pre"], + states=["h@mem"]) def create_step_net(self): stepnet = core.Net.create() @@ -169,15 +169,15 @@ class RecurrentGradientOpTest(unittest.TestCase): def create_forward_op(self): self.forward_op = RecurrentOp( # inputs - inlinks=["x"], - boot_memories=["h_boot"], + inputs=["x"], + initial_states=["h_boot"], step_net="stepnet", # outputs - outlinks=["h"], + outputs=["h"], step_scopes="step_scopes", # attributes - pre_memories=["h@pre"], - memories=["h@alias"]) + ex_states=["h@pre"], + states=["h@alias"]) # create a stepnet for RNN stepnet = core.Net.create() diff --git a/python/paddle/v2/framework/tests/test_rmsprop_op.py b/python/paddle/v2/framework/tests/test_rmsprop_op.py index 3e5ff733e9b55fe8c9727e9721e25083a494be15..237bcfccceee89f62fc05e4c6c972a76d1875367 100644 --- a/python/paddle/v2/framework/tests/test_rmsprop_op.py +++ b/python/paddle/v2/framework/tests/test_rmsprop_op.py @@ -46,7 +46,7 @@ class TestRmspropOp1(OpTest): class TestRmspropOp2(OpTest): - '''Test RMSProp with defaukt values for attributes + '''Test RMSProp with default values for attributes ''' def setUp(self): diff --git a/python/paddle/v2/framework/tests/test_rnn_helpers.py b/python/paddle/v2/framework/tests/test_rnn_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..be0ecfb129aa181229bc42d8d6818ad860991965 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_rnn_helpers.py @@ -0,0 +1,38 @@ +import unittest +from paddle.v2.framework.layers import * +from paddle.v2.framework.framework import g_program + + +class TestRNN(unittest.TestCase): + def test_rnn(self): + img = data( + shape=[ + 80, # sequence length + 22, # image height + 22 + ], # image width + data_type='float32', + name='image') + hidden = fc(input=img, size=100, act='sigmoid', num_flatten_dims=2) + self.assertEqual((-1, 80, 100), hidden.shape) + hidden = fc(input=hidden, size=100, act='sigmoid', num_flatten_dims=2) + self.assertEqual((-1, 80, 100), hidden.shape) + + rnn = StaticRNN() + with rnn.step(): + hidden = rnn.step_input(hidden) + self.assertEqual((-1, 100), hidden.shape) + memory = rnn.memory(shape=(-1, 32), dtype='float32', init_value=0.0) + + rnn_out = fc(input=[hidden, memory], size=32, act='sigmoid') + self.assertEqual((-1, 32), rnn_out.shape) + rnn.update_memory(memory, rnn_out) + rnn.output(rnn_out) + + out = rnn() + self.assertEqual((-1, 80, 32), out.shape) + print g_program + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_save_restore_op.py b/python/paddle/v2/framework/tests/test_save_restore_op.py new file mode 100644 index 0000000000000000000000000000000000000000..3a36d03f62a7ad50f656e5c3fdb8c87548a120e8 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_save_restore_op.py @@ -0,0 +1,71 @@ +import paddle.v2.framework.core as core +import paddle.v2.framework.framework as framework +import paddle.v2.framework.executor as executor + +import numpy as np +import unittest +import os +import sys +import shutil + +FOLDER_PATH = "./tmp_test_dir" + + +class TestSaveRestoreOp(unittest.TestCase): + def test_save_restore_op(self): + tensor_1_val = np.random.rand(3, 9).astype("float32") + tensor_2_val = np.random.randint(0, 20, size=(4, 2)).astype("int32") + place = core.CPUPlace() + + program = framework.Program() + block = program.global_block() + v_a = block.create_var( + dtype="float32", shape=[3, 9], lod_level=0, name="tensor_1") + v_b = block.create_var( + dtype="int32", shape=[4, 2], lod_level=0, name="tensor_2") + + t_1 = core.LoDTensor() + t_1.set(tensor_1_val, place) + t_2 = core.LoDTensor() + t_2.set(tensor_2_val, place) + block.append_op( + type="save", + inputs={"X": [v_a, v_b]}, + attrs={"folderPath": FOLDER_PATH}) + block.append_op( + type="fill_constant", + outputs={"Out": [v_a]}, + attrs={"shape": [2, 2], + "value": 0.0}) + block.append_op( + type="fill_constant", + outputs={"Out": [v_b]}, + attrs={"shape": [2, 2], + "value": 0.0}) + block.append_op( + type="restore", + outputs={"Out": [v_a, v_b]}, + attrs={"folderPath": FOLDER_PATH}) + + if os.path.exists(FOLDER_PATH): + shutil.rmtree(FOLDER_PATH) + os.makedirs(FOLDER_PATH) + + exe = executor.Executor(place) + out = exe.run(program, + feed={"tensor_1": t_1, + "tensor_2": t_2}, + fetch_list=[v_a, v_b]) + + self.assertTrue(os.path.isdir(FOLDER_PATH)) + self.assertTrue(os.path.isfile(FOLDER_PATH + "/__tensor_1__")) + self.assertTrue(os.path.isfile(FOLDER_PATH + "/__tensor_2__")) + + self.assertTrue(np.array_equal(np.array(out[0]), tensor_1_val)) + self.assertTrue(np.array_equal(np.array(out[1]), tensor_2_val)) + + shutil.rmtree(FOLDER_PATH) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_selected_rows.py b/python/paddle/v2/framework/tests/test_selected_rows.py index 661e81817951f5605ba3ca7fb0cc667074b1e37c..e8a930cb08c42b48f678bdd7bdb7698923535d4f 100644 --- a/python/paddle/v2/framework/tests/test_selected_rows.py +++ b/python/paddle/v2/framework/tests/test_selected_rows.py @@ -8,29 +8,30 @@ class TestSelectedRows(unittest.TestCase): place = core.CPUPlace() height = 10 rows = [0, 4, 7] - row_numel = 10 - selcted_rows = core.SelectedRows(rows, row_numel) - np_array = np.ones((len(rows), height)).astype("float32") + row_numel = 12 + selected_rows = core.SelectedRows(rows, height) + np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 - tensor = selcted_rows.get_tensor() + tensor = selected_rows.get_tensor() tensor.set(np_array, place) # compare rows - self.assertEqual(0, selcted_rows.rows()[0]) - self.assertEqual(4, selcted_rows.rows()[1]) - self.assertEqual(7, selcted_rows.rows()[2]) + self.assertEqual(0, selected_rows.rows()[0]) + self.assertEqual(4, selected_rows.rows()[1]) + self.assertEqual(7, selected_rows.rows()[2]) # compare height - self.assertEqual(10, selcted_rows.height()) + self.assertEqual(10, selected_rows.height()) # compare tensor self.assertAlmostEqual(2.0, - selcted_rows.get_tensor().get_float_element(0)) + selected_rows.get_tensor().get_float_element(0)) self.assertAlmostEqual(1.0, - selcted_rows.get_tensor().get_float_element(1)) + selected_rows.get_tensor().get_float_element(1)) self.assertAlmostEqual( - 4.0, selcted_rows.get_tensor().get_float_element(2 * row_numel + 8)) + 4.0, + selected_rows.get_tensor().get_float_element(2 * row_numel + 8)) if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_sgd_op.py b/python/paddle/v2/framework/tests/test_sgd_op.py index 2dd881e5e107249277a91bd8e3a72567269e1cd4..01262bba4d43adaed179baef88ccab6e69b0884b 100644 --- a/python/paddle/v2/framework/tests/test_sgd_op.py +++ b/python/paddle/v2/framework/tests/test_sgd_op.py @@ -1,5 +1,7 @@ import unittest import numpy as np +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator from op_test import OpTest @@ -17,5 +19,70 @@ class TestSGDOp(OpTest): self.check_output() +class TestSparseSGDOp(unittest.TestCase): + def check_with_place(self, place): + scope = core.Scope() + + # create and initialize Grad Variable + height = 10 + rows = [0, 4, 7] + row_numel = 12 + + grad_selected_rows = scope.var('Grad').get_selected_rows() + grad_selected_rows.set_height(height) + grad_selected_rows.set_rows(rows) + np_array = np.ones((len(rows), row_numel)).astype("float32") + np_array[0, 0] = 2.0 + np_array[2, 8] = 4.0 + + grad_tensor = grad_selected_rows.get_tensor() + grad_tensor.set(np_array, place) + + # create and initialize Param Variable + param = scope.var('Param').get_tensor() + param_array = np.full((height, row_numel), 5.0).astype("float32") + param.set(param_array, place) + + # create and initialize LeraningRate Variable + lr = scope.var('LearningRate').get_tensor() + lr_array = np.full((1), 2.0).astype("float32") + lr.set(lr_array, place) + + # create and run sgd operator + sgd_op = Operator( + "sgd", + Param='Param', + Grad='Grad', + ParamOut='Param', + LearningRate='LearningRate') + ctx = core.DeviceContext.create(place) + sgd_op.run(scope, ctx) + + # get and compare result + result_array = np.array(param) + + # rows[0] = 0, 5.0 - 2.0 * 2.0 + self.assertAlmostEqual(1.0, result_array[rows[0], 0]) + # rows[0] = 0, 5.0 - 2.0 * 1.0 + self.assertAlmostEqual(3.0, result_array[rows[0], 2]) + # 5.0 - 2.0 * 0.0 + self.assertAlmostEqual(5.0, result_array[1, 0]) + # rows[1] = 4, 5.0 - 2.0 * 1.0 + self.assertAlmostEqual(3.0, result_array[rows[1], 10]) + # 5.0 - 2.0 * 0.0 + self.assertAlmostEqual(5.0, result_array[5, 8]) + # rows[2] = 7, 5.0 - 2.0 * 1.0 + self.assertAlmostEqual(3.0, result_array[rows[2], 1]) + # rows[2] = 7, 5.0 - 2.0 * 4.0 + self.assertAlmostEqual(-3.0, result_array[rows[2], 8]) + + def test_sparse_sgd(self): + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.GPUPlace(0)) + for place in places: + self.check_with_place(place) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_uniform_random_op.py b/python/paddle/v2/framework/tests/test_uniform_random_op.py index a2d28a65a67b03a6c74348b19ba99cffc55738e9..ded777105e0fc64eb82bf4013bfba7ba9d0ddefa 100644 --- a/python/paddle/v2/framework/tests/test_uniform_random_op.py +++ b/python/paddle/v2/framework/tests/test_uniform_random_op.py @@ -19,7 +19,7 @@ class TestUniformRandomOp(unittest.TestCase): op = Operator( "uniform_random", Out='X', - dims=[1000, 784], + shape=[1000, 784], min=-5.0, max=10.0, seed=10) diff --git a/python/paddle/v2/framework/tests/test_variable.py b/python/paddle/v2/framework/tests/test_variable.py index 6fb934c743a6271c352a74495cc543b62ac2b9d9..c670ca19afbd778747303cb002666aa2a5e62c37 100644 --- a/python/paddle/v2/framework/tests/test_variable.py +++ b/python/paddle/v2/framework/tests/test_variable.py @@ -1,5 +1,5 @@ import unittest -from paddle.v2.framework.framework import Variable, g_program +from paddle.v2.framework.framework import Variable, g_program, Program import paddle.v2.framework.core as core import numpy as np @@ -36,6 +36,13 @@ class TestVariable(unittest.TestCase): self.assertRaises(ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))) + def test_step_scopes(self): + prog = Program() + b = prog.current_block() + var = b.create_var( + name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES) + self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_word2vec.py b/python/paddle/v2/framework/tests/test_word2vec.py new file mode 100644 index 0000000000000000000000000000000000000000..b5d98035156c425ab97d2bf75f8f09c71884368f --- /dev/null +++ b/python/paddle/v2/framework/tests/test_word2vec.py @@ -0,0 +1,165 @@ +import paddle.v2 as paddle +import paddle.v2.framework.layers as layers +import paddle.v2.framework.core as core +import paddle.v2.framework.optimizer as optimizer + +from paddle.v2.framework.framework import Program, g_program +from paddle.v2.framework.executor import Executor + +import numpy as np + +init_program = Program() +program = Program() + +embed_size = 32 +hidden_size = 256 +N = 5 +batch_size = 32 + +word_dict = paddle.dataset.imikolov.build_dict() +dict_size = len(word_dict) + +first_word = layers.data( + name='firstw', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) +second_word = layers.data( + name='secondw', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) +third_word = layers.data( + name='thirdw', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) +forth_word = layers.data( + name='forthw', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) +next_word = layers.data( + name='nextw', + shape=[1], + data_type='int32', + program=program, + init_program=init_program) + +embed_param_attr_1 = { + 'name': 'shared_w', + 'init_attr': { + 'max': 1.0, + 'type': 'uniform_random', + 'min': -1.0 + } +} +embed_param_attr_2 = {'name': 'shared_w'} + +embed_first = layers.embedding( + input=first_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_1, + program=program, + init_program=init_program) +embed_second = layers.embedding( + input=second_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program, + init_program=init_program) + +embed_third = layers.embedding( + input=third_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program, + init_program=init_program) +embed_forth = layers.embedding( + input=forth_word, + size=[dict_size, embed_size], + data_type='float32', + param_attr=embed_param_attr_2, + program=program, + init_program=init_program) + +concat_embed = layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], + axis=1, + program=program, + init_program=init_program) + +hidden1 = layers.fc(input=concat_embed, + size=hidden_size, + act='sigmoid', + program=program, + init_program=init_program) +predict_word = layers.fc(input=hidden1, + size=dict_size, + act='softmax', + program=program, + init_program=init_program) +cost = layers.cross_entropy( + input=predict_word, + label=next_word, + program=program, + init_program=init_program) +avg_cost = layers.mean(x=cost, program=program, init_program=init_program) + +sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) +opts = sgd_optimizer.minimize(avg_cost) + +train_reader = paddle.batch( + paddle.dataset.imikolov.train(word_dict, N), batch_size) + +place = core.CPUPlace() +exe = Executor(place) + +exe.run(init_program, feed={}, fetch_list=[]) +PASS_NUM = 100 +for pass_id in range(PASS_NUM): + for data in train_reader(): + input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)] + input_data = map(lambda x: np.array(x).astype("int32"), input_data) + input_data = map(lambda x: np.expand_dims(x, axis=1), input_data) + + first_data = input_data[0] + first_tensor = core.LoDTensor() + first_tensor.set(first_data, place) + + second_data = input_data[0] + second_tensor = core.LoDTensor() + second_tensor.set(second_data, place) + + third_data = input_data[0] + third_tensor = core.LoDTensor() + third_tensor.set(third_data, place) + + forth_data = input_data[0] + forth_tensor = core.LoDTensor() + forth_tensor.set(forth_data, place) + + next_data = input_data[0] + next_tensor = core.LoDTensor() + next_tensor.set(next_data, place) + + outs = exe.run(program, + feed={ + 'firstw': first_tensor, + 'secondw': second_tensor, + 'thirdw': third_tensor, + 'forthw': forth_tensor, + 'nextw': next_tensor + }, + fetch_list=[avg_cost]) + out = np.array(outs[0]) + if out[0] < 10.0: + exit(0) # if avg cost less than 10.0, we think our code is good. +exit(1) diff --git a/python/paddle/v2/model.py b/python/paddle/v2/model.py index 20c3282098785aaa5df86196c7c68f43d8c5d275..4634db55a919584db91e456e61d393b9e15129ac 100644 --- a/python/paddle/v2/model.py +++ b/python/paddle/v2/model.py @@ -49,7 +49,7 @@ def save_model(parameters, path): ' in environment variable.') etcd_ip = os.environ.get(etcd_name) - client = master.client("http://" + etcd_ip + ":2379", 5, 0) + client = paddle.v2.master.client("http://" + etcd_ip + ":2379", 5, 0) r = client.request_save_model(trainer_id, 5000) if r == 0: # do not need to save diff --git a/python/paddle/v2/parameters.py b/python/paddle/v2/parameters.py index 4cfd91882e2d5f0098d27b8897359152ddd94dda..bd97dc1199fedc8ac91c1c6086957e8cce88bdc4 100644 --- a/python/paddle/v2/parameters.py +++ b/python/paddle/v2/parameters.py @@ -101,6 +101,10 @@ class Parameters(object): self.__param_conf__[param_conf.name] = param_conf + def update_param_conf(self, model_config): + for p in model_config.parameters: + self.__param_conf__[p.name] = p + def keys(self): """ keys are the names of each parameter. @@ -322,6 +326,17 @@ class Parameters(object): self.set(name, arr.reshape(self.get_shape(name))) def to_tar(self, f): + """ + Save parameters to a tar file. + + WARNING: You should use `paddle.v2.trainer.SGD.save_parameter_to_tar(f)` + to save parameters most of the time. Otherwise, some settings such + as model average will not take effect. + + :param f: + :type f: file + :return: + """ tar = tarfile.TarFile(fileobj=f, mode='w') for nm in self.names(): buf = cStringIO.StringIO() diff --git a/python/paddle/v2/tests/CMakeLists.txt b/python/paddle/v2/tests/CMakeLists.txt index b7791559594321a85f41b508b69efeb077d69595..b4333ed530ce464095ec38d72706949cc464fbe4 100644 --- a/python/paddle/v2/tests/CMakeLists.txt +++ b/python/paddle/v2/tests/CMakeLists.txt @@ -5,3 +5,4 @@ py_test(test_topology SRCS test_topology.py) py_test(test_rnn_layer SRCS test_rnn_layer.py) py_test(test_parameters SRCS test_parameters.py) py_test(test_data_feeder SRCS test_data_feeder.py) +py_test(test_paramconf_order SRCS test_paramconf_order.py) diff --git a/python/paddle/v2/tests/test_data_feeder.py b/python/paddle/v2/tests/test_data_feeder.py index 83da678da387ed1c86868847f140c6c09fbec3b5..63905c04cf737d0f1d226a4a5a27777351dbf5a3 100644 --- a/python/paddle/v2/tests/test_data_feeder.py +++ b/python/paddle/v2/tests/test_data_feeder.py @@ -97,7 +97,7 @@ class DataFeederTest(unittest.TestCase): each_sample.append(zip(a, b)) data.append(each_sample) - feeder = DataFeeder([('input', data_type.sparse_vector(dim))], + feeder = DataFeeder([('input', data_type.sparse_float_vector(dim))], {'input': 0}) arg = feeder(data) output = arg.getSlotValue(0) diff --git a/python/paddle/v2/tests/test_paramconf_order.py b/python/paddle/v2/tests/test_paramconf_order.py new file mode 100644 index 0000000000000000000000000000000000000000..41fea64122b81948d57cce07f00d764e4889da66 --- /dev/null +++ b/python/paddle/v2/tests/test_paramconf_order.py @@ -0,0 +1,85 @@ +# Copyright PaddlePaddle contributors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import unittest +import math +import paddle.v2 as paddle + + +def wordemb(inlayer): + wordemb = paddle.layer.table_projection( + input=inlayer, + size=5, + param_attr=paddle.attr.Param( + name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)) + return wordemb + + +def train(): + word_dict = paddle.dataset.imikolov.build_dict() + dict_size = len(word_dict) + # Every layer takes integer value of range [0, dict_size) + firstword = paddle.layer.data( + name="firstw", type=paddle.data_type.integer_value(dict_size)) + secondword = paddle.layer.data( + name="secondw", type=paddle.data_type.integer_value(dict_size)) + thirdword = paddle.layer.data( + name="thirdw", type=paddle.data_type.integer_value(dict_size)) + fourthword = paddle.layer.data( + name="fourthw", type=paddle.data_type.integer_value(dict_size)) + nextword = paddle.layer.data( + name="fifthw", type=paddle.data_type.integer_value(dict_size)) + + Efirst = wordemb(firstword) + Esecond = wordemb(secondword) + Ethird = wordemb(thirdword) + Efourth = wordemb(fourthword) + + contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth]) + hidden1 = paddle.layer.fc(name="fc1", + input=contextemb, + size=128, + act=paddle.activation.Sigmoid(), + layer_attr=paddle.attr.Extra(drop_rate=0.5), + bias_attr=paddle.attr.Param(learning_rate=2), + param_attr=paddle.attr.Param( + initial_std=1. / math.sqrt(5 * 8), + learning_rate=1, + l2_rate=6e-4)) + predictword = paddle.layer.fc(input=hidden1, + size=dict_size, + bias_attr=paddle.attr.Param(learning_rate=2), + act=paddle.activation.Softmax()) + + return paddle.layer.classification_cost(input=predictword, label=nextword) + + +class TestParamConfOrder(unittest.TestCase): + def test_param_conf_order(self): + paddle.init() + cost = train() + parameters = paddle.parameters.create(cost) + adagrad = paddle.optimizer.AdaGrad( + learning_rate=3e-3, + regularization=paddle.optimizer.L2Regularization(rate=8e-4)) + + trainer = paddle.trainer.SGD(cost, parameters, adagrad) + for p in trainer.get_topology_proto().parameters: + if p.name == "_fc1.w0": + self.assertEqual(p.decay_rate, 6e-4) + else: + self.assertEqual(p.decay_rate, 8e-4) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/topology.py b/python/paddle/v2/topology.py index 2db66be2505dde38a501edf45984e1f36beb351d..923ccecb0bf1236b4a3768fdc07dc3027e2863b7 100644 --- a/python/paddle/v2/topology.py +++ b/python/paddle/v2/topology.py @@ -19,6 +19,7 @@ import paddle.trainer_config_helpers as conf_helps import layer as v2_layer import config_base import cPickle +from paddle.trainer import config_parser as cp __all__ = ['Topology'] @@ -50,6 +51,35 @@ class Topology(object): assert isinstance(self.__model_config__, ModelConfig) + def update_from_default(self): + # HACK(typhoonzero): update ParameterConfig(proto) in case of + # optimizers are defined after layers, or between layers. + # Must be called from trainer.__init__() + for parameter in self.__model_config__.parameters: + if parameter.momentum == 0.0 and cp.g_default_momentum: + parameter.momentum = cp.g_default_momentum + if parameter.decay_rate == 0.0 and cp.g_default_decay_rate: + parameter.decay_rate = cp.g_default_decay_rate + if parameter.initial_mean == 0.0: + parameter.initial_mean = cp.g_default_initial_mean + if parameter.initial_std == 0.01: + parameter.initial_std = cp.g_default_initial_std + if parameter.initial_strategy == 0: + parameter.initial_strategy = cp.g_default_initial_strategy + if parameter.initial_smart == False: + parameter.initial_smart = cp.g_default_initial_smart + if parameter.num_batches_regularization == 1 and \ + cp.g_default_num_batches_regularization: + parameter.num_batches_regularization = \ + cp.g_default_num_batches_regularization + if parameter.gradient_clipping_threshold == 0.0 and \ + cp.g_default_gradient_clipping_threshold: + parameter.gradient_clipping_threshold = \ + cp.g_default_gradient_clipping_threshold + if parameter.device == -1 and cp.g_default_device: + parameter.device = cp.g_default_device + # FIXME(typhoonzero): ignored: update_hooks, g_default_compact_func + def use_sparse_updater(self): """ check if any parameter require to use sparse_update diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index 076e75593991415bc3fbcbd36a108c8c7de66932..b68fd0d5a97a7993ddd0a1d947304fa5428c01b8 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -64,6 +64,11 @@ class SGD(object): "paddle.v2.optimizer.Optimizer") import py_paddle.swig_paddle as api topology = Topology(cost, extra_layers=extra_layers) + # HACK(typhoonzero): update ParameterConfig(proto) in case of optimizers + # are defined after layers, or between layers. + topology.update_from_default() + parameters.update_param_conf(topology.proto()) + self.__optimizer__ = update_equation self.__topology__ = topology self.__parameters__ = parameters @@ -91,6 +96,9 @@ class SGD(object): self.__parameters__.append_gradient_machine(gm) self.__parameter_updater__ = None + def get_topology_proto(self): + return self.__topology_in_proto__ + def __use_remote_sparse_updater__(self): return self.__use_sparse_updater__ and not self.__is_local__