提交 35e6abd7 编写于 作者: M minqiyang

Change iter_parameters back and port unittests code to Python3

上级 e8493620
...@@ -963,9 +963,9 @@ class Block(object): ...@@ -963,9 +963,9 @@ class Block(object):
raise ValueError("Var {0} is not found recursively".format(name)) raise ValueError("Var {0} is not found recursively".format(name))
def all_parameters(self): def all_parameters(self):
return list(self._iter_parameters()) return list(self.iter_parameters())
def _iter_parameters(self): def iter_parameters(self):
return (item[1] for item in list(self.vars.items()) return (item[1] for item in list(self.vars.items())
if isinstance(item[1], Parameter)) if isinstance(item[1], Parameter))
...@@ -1199,7 +1199,7 @@ class Block(object): ...@@ -1199,7 +1199,7 @@ class Block(object):
if not isinstance(other, Block): if not isinstance(other, Block):
raise TypeError( raise TypeError(
"_copy_param_info_from should be invoked with Block") "_copy_param_info_from should be invoked with Block")
for p in other._iter_parameters(): for p in other.iter_parameters():
assert isinstance(p, Parameter) assert isinstance(p, Parameter)
v = self.vars.get(p.name, None) v = self.vars.get(p.name, None)
if v is None: if v is None:
......
...@@ -155,7 +155,7 @@ def train_main(use_cuda): ...@@ -155,7 +155,7 @@ def train_main(use_cuda):
] ]
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
for pass_id in xrange(1): for pass_id in range(1):
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
outs = exe.run(main_program, outs = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
...@@ -204,8 +204,8 @@ def decode_main(use_cuda): ...@@ -204,8 +204,8 @@ def decode_main(use_cuda):
] ]
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
data = train_reader().next() data = next(train_reader())
feed_dict = feeder.feed(map(lambda x: [x[0]], data)) feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores feed_dict['init_scores'] = init_scores
...@@ -214,7 +214,7 @@ def decode_main(use_cuda): ...@@ -214,7 +214,7 @@ def decode_main(use_cuda):
feed=feed_dict, feed=feed_dict,
fetch_list=[translation_ids, translation_scores], fetch_list=[translation_ids, translation_scores],
return_numpy=False) return_numpy=False)
print result_ids.lod() print(result_ids.lod())
class TestBeamSearchDecoder(unittest.TestCase): class TestBeamSearchDecoder(unittest.TestCase):
......
...@@ -301,7 +301,7 @@ class DistSeResneXt2x2: ...@@ -301,7 +301,7 @@ class DistSeResneXt2x2:
trainer_id=trainer_id) trainer_id=trainer_id)
feed_var_list = [ feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues() var for var in trainer_prog.global_block().vars.values()
if var.is_data if var.is_data
] ]
...@@ -309,7 +309,7 @@ class DistSeResneXt2x2: ...@@ -309,7 +309,7 @@ class DistSeResneXt2x2:
reader_generator = train_reader() reader_generator = train_reader()
first_loss, = exe.run(fetch_list=[avg_cost.name]) first_loss, = exe.run(fetch_list=[avg_cost.name])
print(first_loss) print(first_loss)
for i in xrange(5): for i in range(5):
loss, = exe.run(fetch_list=[avg_cost.name]) loss, = exe.run(fetch_list=[avg_cost.name])
last_loss, = exe.run(fetch_list=[avg_cost.name]) last_loss, = exe.run(fetch_list=[avg_cost.name])
print(last_loss) print(last_loss)
......
...@@ -25,14 +25,16 @@ from paddle.fluid.backward import append_backward ...@@ -25,14 +25,16 @@ from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops from .testsuite import create_op, set_input, append_input_output, append_loss_ops
from functools import reduce
from six.moves import zip
def randomize_probability(batch_size, class_num, dtype='float32'): def randomize_probability(batch_size, class_num, dtype='float32'):
prob = np.random.uniform( prob = np.random.uniform(
0.1, 1.0, size=(batch_size, class_num)).astype(dtype) 0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
prob_sum = prob.sum(axis=1) prob_sum = prob.sum(axis=1)
for i in xrange(len(prob)): for i in range(len(prob)):
prob[i] /= prob_sum[i] prob[i] /= prob_sum[i]
return prob return prob
...@@ -86,7 +88,7 @@ def get_numeric_gradient(place, ...@@ -86,7 +88,7 @@ def get_numeric_gradient(place,
# we only compute gradient of one element each time. # we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element. # we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size): for i in range(tensor_size):
if in_place: if in_place:
set_input(scope, op, inputs, place) set_input(scope, op, inputs, place)
...@@ -139,7 +141,7 @@ class OpTest(unittest.TestCase): ...@@ -139,7 +141,7 @@ class OpTest(unittest.TestCase):
assert isinstance( assert isinstance(
numpy_dict, numpy_dict,
dict), "self.inputs, self.outputs must be numpy_dict" dict), "self.inputs, self.outputs must be numpy_dict"
for var_name, var_value in numpy_dict.iteritems(): for var_name, var_value in numpy_dict.items():
if isinstance(var_value, (np.ndarray, np.generic)): if isinstance(var_value, (np.ndarray, np.generic)):
self.try_call_once(var_value.dtype) self.try_call_once(var_value.dtype)
elif isinstance(var_value, (list, tuple)): elif isinstance(var_value, (list, tuple)):
...@@ -197,7 +199,7 @@ class OpTest(unittest.TestCase): ...@@ -197,7 +199,7 @@ class OpTest(unittest.TestCase):
def _get_io_vars(self, block, numpy_inputs): def _get_io_vars(self, block, numpy_inputs):
inputs = {} inputs = {}
for name, value in numpy_inputs.iteritems(): for name, value in numpy_inputs.items():
if isinstance(value, list): if isinstance(value, list):
var_list = [ var_list = [
block.var(sub_name) for sub_name, sub_value in value block.var(sub_name) for sub_name, sub_value in value
...@@ -240,7 +242,7 @@ class OpTest(unittest.TestCase): ...@@ -240,7 +242,7 @@ class OpTest(unittest.TestCase):
# if the fetch_list is customized by user, we use it directly. # if the fetch_list is customized by user, we use it directly.
# if not, fill the fetch_list by the user configured outputs in test. # if not, fill the fetch_list by the user configured outputs in test.
if len(fetch_list) == 0: if len(fetch_list) == 0:
for var_name, var in outputs.iteritems(): for var_name, var in outputs.items():
if isinstance(var, list): if isinstance(var, list):
for v in var: for v in var:
fetch_list.append(v) fetch_list.append(v)
...@@ -252,7 +254,7 @@ class OpTest(unittest.TestCase): ...@@ -252,7 +254,7 @@ class OpTest(unittest.TestCase):
fetch_list.append(str(out_name)) fetch_list.append(str(out_name))
# fetch_list = map(block.var, fetch_list) # fetch_list = map(block.var, fetch_list)
if not isinstance(fetch_list[0], fluid.framework.Variable): if not isinstance(fetch_list[0], fluid.framework.Variable):
fetch_list = map(block.var, fetch_list) fetch_list = list(map(block.var, fetch_list))
outs = executor.run(program, outs = executor.run(program,
feed=feed_map, feed=feed_map,
fetch_list=fetch_list, fetch_list=fetch_list,
...@@ -334,7 +336,7 @@ class OpTest(unittest.TestCase): ...@@ -334,7 +336,7 @@ class OpTest(unittest.TestCase):
def __assert_is_close(self, numeric_grads, analytic_grads, names, def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix): max_relative_error, msg_prefix):
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names): for a, b, name in zip(numeric_grads, analytic_grads, names):
abs_a = np.abs(a) abs_a = np.abs(a)
abs_a[abs_a < 1e-3] = 1 abs_a[abs_a < 1e-3] = 1
...@@ -460,6 +462,6 @@ class OpTest(unittest.TestCase): ...@@ -460,6 +462,6 @@ class OpTest(unittest.TestCase):
use_cuda=use_cuda, loss_name=loss.name, main_program=program) use_cuda=use_cuda, loss_name=loss.name, main_program=program)
else: else:
executor = Executor(place) executor = Executor(place)
return map(np.array, return list(
executor.run(prog, feed_dict, fetch_list, map(np.array,
return_numpy=False)) executor.run(prog, feed_dict, fetch_list, return_numpy=False)))
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestAccuracyOp(OpTest): class TestAccuracyOp(OpTest):
...@@ -26,7 +26,7 @@ class TestAccuracyOp(OpTest): ...@@ -26,7 +26,7 @@ class TestAccuracyOp(OpTest):
label = np.random.randint(0, 2, (n, 1)) label = np.random.randint(0, 2, (n, 1))
self.inputs = {'Out': infer, 'Indices': indices, "Label": label} self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
num_correct = 0 num_correct = 0
for rowid in xrange(n): for rowid in range(n):
for ele in indices[rowid]: for ele in indices[rowid]:
if ele == label[rowid]: if ele == label[rowid]:
num_correct += 1 num_correct += 1
......
...@@ -15,9 +15,9 @@ ...@@ -15,9 +15,9 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
from scipy.special import expit from scipy.special import expit
from test_activation_op import TestRelu, TestTanh, TestSqrt, TestAbs from .test_activation_op import TestRelu, TestTanh, TestSqrt, TestAbs
class TestMKLDNNReluDim2(TestRelu): class TestMKLDNNReluDim2(TestRelu):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
from scipy.special import expit from scipy.special import expit
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestAdadeltaOp1(OpTest): class TestAdadeltaOp1(OpTest):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
from op_test import OpTest from .op_test import OpTest
import math import math
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
...@@ -273,7 +273,7 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -273,7 +273,7 @@ class TestSparseAdamOp(unittest.TestCase):
self.setup(scope, place) self.setup(scope, place)
op_args = dict() op_args = dict()
for key, np_array in self.dense_inputs.iteritems(): for key, np_array in self.dense_inputs.items():
var = scope.var(key).get_tensor() var = scope.var(key).get_tensor()
var.set(np_array, place) var.set(np_array, place)
op_args[key] = key op_args[key] = key
...@@ -290,7 +290,7 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -290,7 +290,7 @@ class TestSparseAdamOp(unittest.TestCase):
adam_op = Operator("adam", **op_args) adam_op = Operator("adam", **op_args)
adam_op.run(scope, place) adam_op.run(scope, place)
for key, np_array in self.outputs.iteritems(): for key, np_array in self.outputs.items():
out_var = scope.var(key).get_tensor() out_var = scope.var(key).get_tensor()
actual = np.array(out_var) actual = np.array(out_var)
actual = actual.reshape([actual.size]) actual = actual.reshape([actual.size])
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestAdamaxOp1(OpTest): class TestAdamaxOp1(OpTest):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import sys import sys
import math import math
from op_test import OpTest from .op_test import OpTest
def anchor_generator_in_python(input_feat, anchor_sizes, aspect_ratios, def anchor_generator_in_python(input_feat, anchor_sizes, aspect_ratios,
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class BaseTestCase(OpTest): class BaseTestCase(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestArgsortOp(OpTest): class TestArgsortOp(OpTest):
......
...@@ -80,8 +80,9 @@ class TestArrayReadWrite(unittest.TestCase): ...@@ -80,8 +80,9 @@ class TestArrayReadWrite(unittest.TestCase):
append_backward(total_sum_scaled) append_backward(total_sum_scaled)
g_vars = map(default_main_program().global_block().var, g_vars = list(
[each_x.name + "@GRAD" for each_x in x]) map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x]))
g_out = [ g_out = [
item.sum() item.sum()
for item in exe.run( for item in exe.run(
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import op_test from . import op_test
import numpy import numpy
import unittest import unittest
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import op_test from . import op_test
import numpy import numpy
import unittest import unittest
import paddle.fluid.framework as framework import paddle.fluid.framework as framework
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from paddle.fluid import metrics from paddle.fluid import metrics
......
...@@ -17,9 +17,9 @@ import numpy as np ...@@ -17,9 +17,9 @@ import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
import paddle.fluid as fluid import paddle.fluid as fluid
from op_test import OpTest from .op_test import OpTest
from paddle.fluid.framework import grad_var_name from paddle.fluid.framework import grad_var_name
from test_batch_norm_op import TestBatchNormOpInference, TestBatchNormOpTraining, _reference_training, _reference_grad from .test_batch_norm_op import TestBatchNormOpInference, TestBatchNormOpTraining, _reference_training, _reference_grad
class TestMKLDNNBatchNormOpTraining(TestBatchNormOpTraining): class TestMKLDNNBatchNormOpTraining(TestBatchNormOpTraining):
......
...@@ -17,7 +17,7 @@ import numpy as np ...@@ -17,7 +17,7 @@ import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
import paddle.fluid as fluid import paddle.fluid as fluid
from op_test import OpTest from .op_test import OpTest
from paddle.fluid.framework import grad_var_name from paddle.fluid.framework import grad_var_name
...@@ -415,7 +415,7 @@ class TestBatchNormOpTraining(unittest.TestCase): ...@@ -415,7 +415,7 @@ class TestBatchNormOpTraining(unittest.TestCase):
self.__assert_close(scale_grad, out[6], "scale_grad") self.__assert_close(scale_grad, out[6], "scale_grad")
self.__assert_close(bias_grad, out[7], "bias_grad") self.__assert_close(bias_grad, out[7], "bias_grad")
print "op test forward passed: ", str(place), data_layout print("op test forward passed: ", str(place), data_layout)
places = [core.CPUPlace()] places = [core.CPUPlace()]
......
...@@ -59,8 +59,7 @@ class BeamSearchOpTester(unittest.TestCase): ...@@ -59,8 +59,7 @@ class BeamSearchOpTester(unittest.TestCase):
np.allclose( np.allclose(
np.array(selected_scores), np.array(selected_scores),
np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis])) np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]))
self.assertEqual(selected_ids.lod(), self.assertEqual(selected_ids.lod(), [[0, 2, 4], [0, 1, 2, 3, 4]])
[[0L, 2L, 4L], [0L, 1L, 2L, 3L, 4L]])
def _create_pre_ids(self): def _create_pre_ids(self):
np_data = np.array([[1, 2, 3, 4]], dtype='int64') np_data = np.array([[1, 2, 3, 4]], dtype='int64')
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestBilinearTensorProductOp(OpTest): class TestBilinearTensorProductOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
#limitations under the License. #limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def bipartite_match(distance, match_indices, match_dist): def bipartite_match(distance, match_indices, match_dist):
...@@ -48,7 +48,7 @@ def bipartite_match(distance, match_indices, match_dist): ...@@ -48,7 +48,7 @@ def bipartite_match(distance, match_indices, match_dist):
def argmax_match(distance, match_indices, match_dist, threshold): def argmax_match(distance, match_indices, match_dist, threshold):
r, c = distance.shape r, c = distance.shape
for j in xrange(c): for j in range(c):
if match_indices[j] != -1: if match_indices[j] != -1:
continue continue
col_dist = distance[:, j] col_dist = distance[:, j]
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import sys import sys
import math import math
from op_test import OpTest from .op_test import OpTest
def box_coder(target_box, prior_box, prior_box_var, output_box, code_type, def box_coder(target_box, prior_box, prior_box_var, output_box, code_type,
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import op_test from . import op_test
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class Segment(object): class Segment(object):
...@@ -63,7 +63,7 @@ class TestChunkEvalOp(OpTest): ...@@ -63,7 +63,7 @@ class TestChunkEvalOp(OpTest):
# generate chunk beginnings # generate chunk beginnings
chunk_begins = sorted( chunk_begins = sorted(
np.random.choice( np.random.choice(
range(starts[-1]), num_chunks, replace=False)) list(range(starts[-1])), num_chunks, replace=False))
seq_chunk_begins = [] seq_chunk_begins = []
begin_idx = 0 begin_idx = 0
# divide chunks into sequences # divide chunks into sequences
...@@ -93,7 +93,7 @@ class TestChunkEvalOp(OpTest): ...@@ -93,7 +93,7 @@ class TestChunkEvalOp(OpTest):
self.num_infer_chunks + self.num_label_chunks self.num_infer_chunks + self.num_label_chunks
- self.num_correct_chunks) - self.num_correct_chunks)
correct_chunks = np.random.choice( correct_chunks = np.random.choice(
range(len(chunks)), self.num_correct_chunks, replace=False) list(range(len(chunks))), self.num_correct_chunks, replace=False)
infer_chunks = np.random.choice( infer_chunks = np.random.choice(
[x for x in range(len(chunks)) if x not in correct_chunks], [x for x in range(len(chunks)) if x not in correct_chunks],
self.num_infer_chunks - self.num_correct_chunks, self.num_infer_chunks - self.num_correct_chunks,
...@@ -138,7 +138,8 @@ class TestChunkEvalOp(OpTest): ...@@ -138,7 +138,8 @@ class TestChunkEvalOp(OpTest):
infer.fill(self.num_chunk_types * self.num_tag_types) infer.fill(self.num_chunk_types * self.num_tag_types)
label = np.copy(infer) label = np.copy(infer)
starts = np.random.choice( starts = np.random.choice(
range(1, self.batch_size), self.num_sequences - 1, list(range(1, self.batch_size)),
self.num_sequences - 1,
replace=False).tolist() replace=False).tolist()
starts.extend([0, self.batch_size]) starts.extend([0, self.batch_size])
starts = sorted(starts) starts = sorted(starts)
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestClipByNormOp(OpTest): class TestClipByNormOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestClipOp(OpTest): class TestClipOp(OpTest):
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import op_test from . import op_test
import unittest import unittest
import numpy import numpy
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestConcatOp(OpTest): class TestConcatOp(OpTest):
......
...@@ -39,7 +39,7 @@ class ConditionalBlockTest(unittest.TestCase): ...@@ -39,7 +39,7 @@ class ConditionalBlockTest(unittest.TestCase):
x = numpy.random.random(size=(10, 1)).astype('float32') x = numpy.random.random(size=(10, 1)).astype('float32')
outs = exe.run(feed={'X': x}, fetch_list=[out])[0] outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
print outs print(outs)
loss = layers.mean(out) loss = layers.mean(out)
append_backward(loss=loss) append_backward(loss=loss)
outs = exe.run( outs = exe.run(
...@@ -47,7 +47,7 @@ class ConditionalBlockTest(unittest.TestCase): ...@@ -47,7 +47,7 @@ class ConditionalBlockTest(unittest.TestCase):
fetch_list=[ fetch_list=[
default_main_program().block(0).var(data.name + "@GRAD") default_main_program().block(0).var(data.name + "@GRAD")
])[0] ])[0]
print outs print(outs)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
from test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride from .test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride
class TestMKLDNN(TestConv2dOp): class TestMKLDNN(TestConv2dOp):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def conv2d_forward_naive(input, filter, group, conv_param): def conv2d_forward_naive(input, filter, group, conv_param):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def conv2dtranspose_forward_naive(input_, filter_, attrs): def conv2dtranspose_forward_naive(input_, filter_, attrs):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def conv3d_forward_naive(input, filter, group, conv_param): def conv3d_forward_naive(input, filter, group, conv_param):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def conv3dtranspose_forward_naive(input_, filter_, attrs): def conv3dtranspose_forward_naive(input_, filter_, attrs):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def conv_shift_forward(x, y): def conv_shift_forward(x, y):
...@@ -22,8 +22,8 @@ def conv_shift_forward(x, y): ...@@ -22,8 +22,8 @@ def conv_shift_forward(x, y):
M = x.shape[1] M = x.shape[1]
N = y.shape[1] N = y.shape[1]
y_half_width = (N - 1) / 2 y_half_width = (N - 1) / 2
for i in xrange(M): for i in range(M):
for j in xrange(N): for j in range(N):
out[:, i] += x[:, (i + j + M - y_half_width) % M] * y[:, j] out[:, i] += x[:, (i + j + M - y_half_width) % M] * y[:, j]
return out return out
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestCosSimOp(OpTest): class TestCosSimOp(OpTest):
......
...@@ -18,7 +18,7 @@ import paddle.fluid.layers as layers ...@@ -18,7 +18,7 @@ import paddle.fluid.layers as layers
class TestDocString(unittest.TestCase): class TestDocString(unittest.TestCase):
def test_layer_doc_string(self): def test_layer_doc_string(self):
print layers.dropout.__doc__ print(layers.dropout.__doc__)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import random import random
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class CRFDecoding(object): class CRFDecoding(object):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def crop(data, offsets, crop_shape): def crop(data, offsets, crop_shape):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest, randomize_probability from .op_test import OpTest, randomize_probability
class TestCrossEntropyOp1(OpTest): class TestCrossEntropyOp1(OpTest):
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
import sys import sys
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from test_softmax_op import stable_softmax from .test_softmax_op import stable_softmax
def CTCAlign(input, lod, blank, merge_repeated): def CTCAlign(input, lod, blank, merge_repeated):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSumOp1(OpTest): class TestSumOp1(OpTest):
......
...@@ -21,7 +21,7 @@ import numpy as np ...@@ -21,7 +21,7 @@ import numpy as np
class TestDataBalance(unittest.TestCase): class TestDataBalance(unittest.TestCase):
def prepare_data(self): def prepare_data(self):
def fake_data_generator(): def fake_data_generator():
for n in xrange(self.total_ins_num): for n in range(self.total_ins_num):
yield np.ones((3, 4)) * n, n yield np.ones((3, 4)) * n, n
# Prepare data # Prepare data
...@@ -41,7 +41,7 @@ class TestDataBalance(unittest.TestCase): ...@@ -41,7 +41,7 @@ class TestDataBalance(unittest.TestCase):
def prepare_lod_data(self): def prepare_lod_data(self):
def fake_data_generator(): def fake_data_generator():
for n in xrange(1, self.total_ins_num + 1): for n in range(1, self.total_ins_num + 1):
d1 = (np.ones((n, 3)) * n).astype('float32') d1 = (np.ones((n, 3)) * n).astype('float32')
d2 = (np.array(n).reshape((1, 1))).astype('int32') d2 = (np.array(n).reshape((1, 1))).astype('int32')
yield d1, d2 yield d1, d2
...@@ -58,9 +58,9 @@ class TestDataBalance(unittest.TestCase): ...@@ -58,9 +58,9 @@ class TestDataBalance(unittest.TestCase):
(0, 1)) (0, 1))
] ]
lod = [0] lod = [0]
for _ in xrange(self.batch_size): for _ in range(self.batch_size):
try: try:
ins = generator.next() ins = next(generator)
except StopIteration: except StopIteration:
eof = True eof = True
break break
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestDecayedAdagradOp1(OpTest): class TestDecayedAdagradOp1(OpTest):
......
...@@ -39,7 +39,7 @@ class TestDefaultScopeFuncs(unittest.TestCase): ...@@ -39,7 +39,7 @@ class TestDefaultScopeFuncs(unittest.TestCase):
self.assertTrue(i.is_int()) self.assertTrue(i.is_int())
self.assertEqual(10, i.get_int()) self.assertEqual(10, i.get_int())
for _ in xrange(10): for _ in range(10):
scoped_function(__new_scope__) scoped_function(__new_scope__)
......
...@@ -17,7 +17,7 @@ import numpy as np ...@@ -17,7 +17,7 @@ import numpy as np
import sys import sys
import collections import collections
import math import math
from op_test import OpTest from .op_test import OpTest
class TestDetectionMAPOp(OpTest): class TestDetectionMAPOp(OpTest):
...@@ -176,7 +176,7 @@ class TestDetectionMAPOp(OpTest): ...@@ -176,7 +176,7 @@ class TestDetectionMAPOp(OpTest):
true_pos[label].append([score, tp]) true_pos[label].append([score, tp])
false_pos[label].append([score, fp]) false_pos[label].append([score, fp])
for (label, label_pos_num) in label_count.items(): for (label, label_pos_num) in list(label_count.items()):
if label_pos_num == 0 or label not in true_pos: continue if label_pos_num == 0 or label not in true_pos: continue
label_true_pos = true_pos[label] label_true_pos = true_pos[label]
label_false_pos = false_pos[label] label_false_pos = false_pos[label]
......
...@@ -25,6 +25,7 @@ import unittest ...@@ -25,6 +25,7 @@ import unittest
from multiprocessing import Process from multiprocessing import Process
import os import os
import signal import signal
from functools import reduce
SEED = 1 SEED = 1
DTYPE = "float32" DTYPE = "float32"
...@@ -172,12 +173,12 @@ class TestDistMnist(unittest.TestCase): ...@@ -172,12 +173,12 @@ class TestDistMnist(unittest.TestCase):
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
feed_var_list = [ feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues() var for var in trainer_prog.global_block().vars.values()
if var.is_data if var.is_data
] ]
feeder = fluid.DataFeeder(feed_var_list, place) feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10): for pass_id in range(10):
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
exe.run(trainer_prog, feed=feeder.feed(data)) exe.run(trainer_prog, feed=feeder.feed(data))
......
...@@ -151,7 +151,7 @@ class TestBasicModelWithLargeBlockSize(TranspilerTest): ...@@ -151,7 +151,7 @@ class TestBasicModelWithLargeBlockSize(TranspilerTest):
["fill_constant", "fill_constant", "fill_constant"]) ["fill_constant", "fill_constant", "fill_constant"])
# the variable #fc_w will be split into two blocks # the variable #fc_w will be split into two blocks
fc_w_var = startup2.global_block().var("fc_w") fc_w_var = startup2.global_block().var("fc_w")
self.assertEqual(fc_w_var.shape, (1000L, 1000L)) self.assertEqual(fc_w_var.shape, (1000, 1000))
# all parameters should be optimized on pserver # all parameters should be optimized on pserver
pserver_params = [] pserver_params = []
...@@ -184,9 +184,9 @@ class TestNoSliceVar(TranspilerTest): ...@@ -184,9 +184,9 @@ class TestNoSliceVar(TranspilerTest):
_, startup = self.get_pserver(self.pserver1_ep, config) _, startup = self.get_pserver(self.pserver1_ep, config)
_, startup2 = self.get_pserver(self.pserver2_ep, config) _, startup2 = self.get_pserver(self.pserver2_ep, config)
if startup.global_block().vars.has_key("fc_w"): if "fc_w" in startup.global_block().vars:
fc_w_var = startup.global_block().vars["fc_w"] fc_w_var = startup.global_block().vars["fc_w"]
elif startup2.global_block().vars.has_key("fc_w"): elif "fc_w" in startup2.global_block().vars:
fc_w_var = startup2.global_block().vars["fc_w"] fc_w_var = startup2.global_block().vars["fc_w"]
self.assertEqual(fc_w_var.shape, (1000, 1000)) self.assertEqual(fc_w_var.shape, (1000, 1000))
......
...@@ -183,12 +183,12 @@ class TestDistMnist(unittest.TestCase): ...@@ -183,12 +183,12 @@ class TestDistMnist(unittest.TestCase):
exec_strategy=exec_strategy) exec_strategy=exec_strategy)
feed_var_list = [ feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues() var for var in trainer_prog.global_block().vars.values()
if var.is_data if var.is_data
] ]
feeder = fluid.DataFeeder(feed_var_list, place) feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10): for pass_id in range(10):
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
avg_loss_np = train_exe.run(feed=feeder.feed(data), avg_loss_np = train_exe.run(feed=feeder.feed(data),
fetch_list=[avg_cost.name]) fetch_list=[avg_cost.name])
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
class TestDropoutOp(OpTest): class TestDropoutOp(OpTest):
......
...@@ -135,7 +135,7 @@ class TestDynRNN(unittest.TestCase): ...@@ -135,7 +135,7 @@ class TestDynRNN(unittest.TestCase):
loss_0 = exe.run(main_program, loss_0 = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[loss])[0] fetch_list=[loss])[0]
for _ in xrange(100): for _ in range(100):
val = exe.run(main_program, val = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[loss])[0] fetch_list=[loss])[0]
......
...@@ -17,7 +17,7 @@ import random ...@@ -17,7 +17,7 @@ import random
import collections import collections
import paddle.fluid as fluid import paddle.fluid as fluid
import unittest import unittest
from decorators import * from .decorators import *
class Memory(object): class Memory(object):
...@@ -30,12 +30,12 @@ class Memory(object): ...@@ -30,12 +30,12 @@ class Memory(object):
assert val.dtype == self.ex.dtype assert val.dtype == self.ex.dtype
self.cur = val self.cur = val
def next(self): def __next__(self):
self.ex = self.cur self.ex = self.cur
self.cur = None self.cur = None
def __next__(self): def __next__(self):
self.next() next(self)
def reset(self): def reset(self):
self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype) self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
...@@ -61,13 +61,13 @@ class BaseRNN(object): ...@@ -61,13 +61,13 @@ class BaseRNN(object):
self.num_seq = num_seq self.num_seq = num_seq
self.inputs = collections.defaultdict(list) self.inputs = collections.defaultdict(list)
for _ in xrange(num_seq): for _ in range(num_seq):
seq_len = random.randint(1, max_seq_len - 1) seq_len = random.randint(1, max_seq_len - 1)
for iname in ins: for iname in ins:
ishape = ins[iname].get('shape', None) ishape = ins[iname].get('shape', None)
idtype = ins[iname].get('dtype', 'float32') idtype = ins[iname].get('dtype', 'float32')
lst = [] lst = []
for _ in xrange(seq_len): for _ in range(seq_len):
lst.append(numpy.random.random(size=ishape).astype(idtype)) lst.append(numpy.random.random(size=ishape).astype(idtype))
self.inputs[iname].append(lst) self.inputs[iname].append(lst)
...@@ -96,16 +96,16 @@ class BaseRNN(object): ...@@ -96,16 +96,16 @@ class BaseRNN(object):
for out in self.outputs: for out in self.outputs:
retv[out] = [] retv[out] = []
for seq_id in xrange(self.num_seq): for seq_id in range(self.num_seq):
for mname in self.mems: for mname in self.mems:
self.mems[mname].reset() self.mems[mname].reset()
for out in self.outputs: for out in self.outputs:
self.outputs[out].next_sequence() self.outputs[out].next_sequence()
iname0 = self.inputs.keys()[0] iname0 = list(self.inputs.keys())[0]
seq_len = len(self.inputs[iname0][seq_id]) seq_len = len(self.inputs[iname0][seq_id])
for step_id in xrange(seq_len): for step_id in range(seq_len):
xargs = dict() xargs = dict()
for iname in self.inputs: for iname in self.inputs:
...@@ -138,7 +138,7 @@ class BaseRNN(object): ...@@ -138,7 +138,7 @@ class BaseRNN(object):
for iname in self.inputs: for iname in self.inputs:
lod = [] lod = []
np_flatten = [] np_flatten = []
for seq_id in xrange(len(self.inputs[iname])): for seq_id in range(len(self.inputs[iname])):
seq_len = len(self.inputs[iname][seq_id]) seq_len = len(self.inputs[iname][seq_id])
lod.append(seq_len) lod.append(seq_len)
np_flatten.extend(self.inputs[iname][seq_id]) np_flatten.extend(self.inputs[iname][seq_id])
...@@ -159,8 +159,8 @@ class BaseRNN(object): ...@@ -159,8 +159,8 @@ class BaseRNN(object):
" which is not matrix") " which is not matrix")
g = numpy.zeros(shape=p.shape, dtype=p.dtype) g = numpy.zeros(shape=p.shape, dtype=p.dtype)
for i in xrange(p.shape[0]): for i in range(p.shape[0]):
for j in xrange(p.shape[1]): for j in range(p.shape[1]):
o = p[i][j] o = p[i][j]
p[i][j] += delta p[i][j] += delta
pos = self._exe_mean_out_() pos = self._exe_mean_out_()
...@@ -184,7 +184,7 @@ class BaseRNN(object): ...@@ -184,7 +184,7 @@ class BaseRNN(object):
if len(item.shape) != 1: if len(item.shape) != 1:
raise ValueError("Not support") raise ValueError("Not support")
for i in xrange(len(item)): for i in range(len(item)):
o = item[i] o = item[i]
item[i] += delta item[i] += delta
pos = self._exe_mean_out_() pos = self._exe_mean_out_()
...@@ -198,14 +198,14 @@ class BaseRNN(object): ...@@ -198,14 +198,14 @@ class BaseRNN(object):
if not return_one_tensor: if not return_one_tensor:
return grad return grad
for i in xrange(len(grad)): for i in range(len(grad)):
grad[i] = numpy.concatenate(grad[i]) grad[i] = numpy.concatenate(grad[i])
grad = numpy.concatenate(grad) grad = numpy.concatenate(grad)
return grad return grad
def _exe_mean_out_(self): def _exe_mean_out_(self):
outs = self.exe() outs = self.exe()
return numpy.array([o.mean() for o in outs.itervalues()]).mean() return numpy.array([o.mean() for o in outs.values()]).mean()
class SeedFixedTestCase(unittest.TestCase): class SeedFixedTestCase(unittest.TestCase):
...@@ -274,13 +274,14 @@ class TestSimpleMul(SeedFixedTestCase): ...@@ -274,13 +274,14 @@ class TestSimpleMul(SeedFixedTestCase):
cpu = fluid.CPUPlace() cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu) exe = fluid.Executor(cpu)
out, w_g, i_g = map(numpy.array, out, w_g, i_g = list(
map(numpy.array,
exe.run(feed=py_rnn.to_feed(cpu), exe.run(feed=py_rnn.to_feed(cpu),
fetch_list=[ fetch_list=[
out, self.PARAM_NAME + "@GRAD", out, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
self.DATA_NAME + "@GRAD" "@GRAD"
], ],
return_numpy=False)) return_numpy=False)))
out_by_python = py_rnn.exe()[self.OUT_NAME] out_by_python = py_rnn.exe()[self.OUT_NAME]
self.assertTrue(numpy.allclose(out, out_by_python)) self.assertTrue(numpy.allclose(out, out_by_python))
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
...@@ -351,14 +352,15 @@ class TestSimpleMulWithMemory(SeedFixedTestCase): ...@@ -351,14 +352,15 @@ class TestSimpleMulWithMemory(SeedFixedTestCase):
cpu = fluid.CPUPlace() cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu) exe = fluid.Executor(cpu)
feed = py_rnn.to_feed(cpu) feed = py_rnn.to_feed(cpu)
last_np, w_g, i_g = map(numpy.array, last_np, w_g, i_g = list(
map(numpy.array,
exe.run(feed=feed, exe.run(feed=feed,
fetch_list=[ fetch_list=[
last, self.PARAM_NAME + "@GRAD", last, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
self.DATA_NAME + "@GRAD" "@GRAD"
], ],
return_numpy=False)) return_numpy=False)))
last_by_py, = py_rnn.exe().values() last_by_py, = list(py_rnn.exe().values())
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME) w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
self.assertTrue(numpy.allclose(last_np, last_by_py)) self.assertTrue(numpy.allclose(last_np, last_by_py))
......
...@@ -67,7 +67,7 @@ class TestDyRnnStaticInput(unittest.TestCase): ...@@ -67,7 +67,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
def _lodtensor_to_ndarray(self, lod_tensor): def _lodtensor_to_ndarray(self, lod_tensor):
dims = lod_tensor.shape() dims = lod_tensor.shape()
ndarray = np.zeros(shape=dims).astype('float32') ndarray = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)): for i in range(np.product(dims)):
ndarray.ravel()[i] = lod_tensor._get_float_element(i) ndarray.ravel()[i] = lod_tensor._get_float_element(i)
return ndarray, lod_tensor.recursive_sequence_lengths() return ndarray, lod_tensor.recursive_sequence_lengths()
...@@ -114,7 +114,7 @@ class TestDyRnnStaticInput(unittest.TestCase): ...@@ -114,7 +114,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
shape=[1], dtype='int64', value=0) shape=[1], dtype='int64', value=0)
step_idx.stop_gradient = True step_idx.stop_gradient = True
for i in xrange(self._max_sequence_len): for i in range(self._max_sequence_len):
step_out = fluid.layers.array_read(static_input_out_array, step_out = fluid.layers.array_read(static_input_out_array,
step_idx) step_idx)
step_out.stop_gradient = True step_out.stop_gradient = True
...@@ -140,27 +140,27 @@ class TestDyRnnStaticInput(unittest.TestCase): ...@@ -140,27 +140,27 @@ class TestDyRnnStaticInput(unittest.TestCase):
static_lod = self.static_input_tensor.recursive_sequence_lengths() static_lod = self.static_input_tensor.recursive_sequence_lengths()
static_sliced = [] static_sliced = []
cur_offset = 0 cur_offset = 0
for i in xrange(len(static_lod[0])): for i in range(len(static_lod[0])):
static_sliced.append(self.static_input_data[cur_offset:( static_sliced.append(self.static_input_data[cur_offset:(
cur_offset + static_lod[0][i])]) cur_offset + static_lod[0][i])])
cur_offset += static_lod[0][i] cur_offset += static_lod[0][i]
static_seq_len = static_lod[0] static_seq_len = static_lod[0]
static_reordered = [] static_reordered = []
for i in xrange(len(x_sorted_indices)): for i in range(len(x_sorted_indices)):
static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist()) static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
static_seq_len_reordered = [ static_seq_len_reordered = [
static_seq_len[x_sorted_indices[i]] static_seq_len[x_sorted_indices[i]]
for i in xrange(len(x_sorted_indices)) for i in range(len(x_sorted_indices))
] ]
static_step_outs = [] static_step_outs = []
static_step_lods = [] static_step_lods = []
for i in xrange(self._max_sequence_len): for i in range(self._max_sequence_len):
end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1) end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
lod = [] lod = []
total_len = 0 total_len = 0
for i in xrange(end): for i in range(end):
lod.append(static_seq_len_reordered[i]) lod.append(static_seq_len_reordered[i])
total_len += lod[-1] total_len += lod[-1]
static_step_lods.append([lod]) static_step_lods.append([lod])
...@@ -174,7 +174,7 @@ class TestDyRnnStaticInput(unittest.TestCase): ...@@ -174,7 +174,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
static_step_outs = self.build_graph(only_forward=True) static_step_outs = self.build_graph(only_forward=True)
self.exe.run(framework.default_startup_program()) self.exe.run(framework.default_startup_program())
expected_outs, expected_lods = self.get_expected_static_step_outs() expected_outs, expected_lods = self.get_expected_static_step_outs()
for i in xrange(self._max_sequence_len): for i in range(self._max_sequence_len):
step_out, lod = self.fetch_value(static_step_outs[i]) step_out, lod = self.fetch_value(static_step_outs[i])
self.assertTrue(np.allclose(step_out, expected_outs[i])) self.assertTrue(np.allclose(step_out, expected_outs[i]))
self.assertTrue(np.allclose(lod, expected_lods[i])) self.assertTrue(np.allclose(lod, expected_lods[i]))
...@@ -189,7 +189,7 @@ class TestDyRnnStaticInput(unittest.TestCase): ...@@ -189,7 +189,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32') numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
# calculate numeric gradients # calculate numeric gradients
tensor_size = np.product(static_input_shape) tensor_size = np.product(static_input_shape)
for i in xrange(tensor_size): for i in range(tensor_size):
origin = self.static_input_tensor._get_float_element(i) origin = self.static_input_tensor._get_float_element(i)
x_pos = origin + self._delta x_pos = origin + self._delta
self.static_input_tensor._set_float_element(i, x_pos) self.static_input_tensor._set_float_element(i, x_pos)
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def Levenshtein(hyp, ref): def Levenshtein(hyp, ref):
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
from test_elementwise_add_op import * from .test_elementwise_add_op import *
''' '''
Some tests differ from the tests defined in test_elementwise_add_op.py Some tests differ from the tests defined in test_elementwise_add_op.py
because MKLDNN does not support tensors of number of dimensions 3. because MKLDNN does not support tensors of number of dimensions 3.
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
class TestElementwiseAddOp(OpTest): class TestElementwiseAddOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class ElementwiseDivOp(OpTest): class ElementwiseDivOp(OpTest):
......
...@@ -26,7 +26,7 @@ class TestElementWiseAddOp(unittest.TestCase): ...@@ -26,7 +26,7 @@ class TestElementWiseAddOp(unittest.TestCase):
def test_with_place(place): def test_with_place(place):
out_grad = np.random.random_sample(self.x.shape).astype(np.float32) out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
x_grad = out_grad x_grad = out_grad
sum_axis = range(0, len(self.x.shape)) sum_axis = list(range(0, len(self.x.shape)))
del sum_axis[self.axis] del sum_axis[self.axis]
y_grad = np.sum(out_grad, axis=tuple(sum_axis)) y_grad = np.sum(out_grad, axis=tuple(sum_axis))
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestElementwiseOp(OpTest): class TestElementwiseOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestElementwiseOp(OpTest): class TestElementwiseOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class ElementwiseMulOp(OpTest): class ElementwiseMulOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestElementwisePowOp(OpTest): class TestElementwisePowOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestElementwiseOp(OpTest): class TestElementwiseOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestExpandOpRank1(OpTest): class TestExpandOpRank1(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import math import math
from op_test import OpTest from .op_test import OpTest
def quantize_max_abs(x, num_bits): def quantize_max_abs(x, num_bits):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestFakeQuantizeOp(OpTest): class TestFakeQuantizeOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def fully_connected_naive(input, weights, bias_data=None): def fully_connected_naive(input, weights, bias_data=None):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import op_test from . import op_test
import numpy import numpy
import unittest import unittest
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestFillConstantBatchSizeLikeWhenFirstDimIsBatchSize(OpTest): class TestFillConstantBatchSizeLikeWhenFirstDimIsBatchSize(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestFillConstantOp1(OpTest): class TestFillConstantOp1(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestFillZerosLikeOp(OpTest): class TestFillZerosLikeOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestFTRLOp(OpTest): class TestFTRLOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestGatherOp(OpTest): class TestGatherOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestGaussianRandomBatchSizeLike(OpTest): class TestGaussianRandomBatchSizeLike(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
from test_gaussian_random_op import TestGaussianRandomOp from .test_gaussian_random_op import TestGaussianRandomOp
class TestMKLDNN(TestGaussianRandomOp): class TestMKLDNN(TestGaussianRandomOp):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places from paddle.fluid.layers.device import get_places
import decorators from . import decorators
import unittest import unittest
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
import unittest import unittest
import numpy as np import numpy as np
import math import math
from op_test import OpTest from .op_test import OpTest
from test_lstm_op import identity, sigmoid, tanh, relu from .test_lstm_op import identity, sigmoid, tanh, relu
class TestGRUOp(OpTest): class TestGRUOp(OpTest):
...@@ -38,7 +38,7 @@ class TestGRUOp(OpTest): ...@@ -38,7 +38,7 @@ class TestGRUOp(OpTest):
for i in range(len(seq_lens)): for i in range(len(seq_lens)):
seq_starts.append(seq_starts[-1] + seq_lens[i]) seq_starts.append(seq_starts[-1] + seq_lens[i])
sorted_seqs = sorted( sorted_seqs = sorted(
range(len(seq_lens)), lambda x, y: seq_lens[y] - seq_lens[x]) list(range(len(seq_lens))), lambda x, y: seq_lens[y] - seq_lens[x])
num_batch = seq_lens[sorted_seqs[0]] num_batch = seq_lens[sorted_seqs[0]]
for batch_idx in range(num_batch): for batch_idx in range(num_batch):
idx_in_seq = [] idx_in_seq = []
...@@ -74,15 +74,16 @@ class TestGRUOp(OpTest): ...@@ -74,15 +74,16 @@ class TestGRUOp(OpTest):
def gru(self): def gru(self):
input, lod = self.inputs['Input'] input, lod = self.inputs['Input']
w = self.inputs['Weight'] w = self.inputs['Weight']
b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros( b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros(
(1, self.frame_size * 3)) (1, self.frame_size * 3))
batch_gate = self.outputs['BatchGate'] batch_gate = self.outputs['BatchGate']
batch_reset_hidden_prev = self.outputs['BatchResetHiddenPrev'] batch_reset_hidden_prev = self.outputs['BatchResetHiddenPrev']
batch_hidden = self.outputs['BatchHidden'] batch_hidden = self.outputs['BatchHidden']
hidden = self.outputs['Hidden'] hidden = self.outputs['Hidden']
idx_in_seq_list = self.idx_in_seq_list idx_in_seq_list = self.idx_in_seq_list
h_p = self.inputs['H0'][self.sorted_seqs] if self.inputs.has_key( h_p = self.inputs['H0'][
'H0') else np.zeros((len(idx_in_seq_list[0]), self.frame_size)) self.sorted_seqs] if 'H0' in self.inputs else np.zeros(
(len(idx_in_seq_list[0]), self.frame_size))
num_batch = len(idx_in_seq_list) num_batch = len(idx_in_seq_list)
end_idx = 0 end_idx = 0
for batch_idx in range(num_batch): for batch_idx in range(num_batch):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import math import math
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class GRUActivationType(OpTest): class GRUActivationType(OpTest):
...@@ -76,7 +76,7 @@ class TestGRUUnitOp(OpTest): ...@@ -76,7 +76,7 @@ class TestGRUUnitOp(OpTest):
x = self.inputs['Input'] x = self.inputs['Input']
h_p = self.inputs['HiddenPrev'] h_p = self.inputs['HiddenPrev']
w = self.inputs['Weight'] w = self.inputs['Weight']
b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros( b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros(
(1, frame_size * 3)) (1, frame_size * 3))
g = x + np.tile(b, (batch_size, 1)) g = x + np.tile(b, (batch_size, 1))
w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape( w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape(
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestHingeLossOp(OpTest): class TestHingeLossOp(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import math import math
from op_test import OpTest from .op_test import OpTest
def find_latest_set(num): def find_latest_set(num):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def huber_loss_forward(val, delta): def huber_loss_forward(val, delta):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
#limitations under the License. #limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def get_output_shape(attrs, in_shape, img_real_size): def get_output_shape(attrs, in_shape, img_real_size):
......
...@@ -43,7 +43,7 @@ class TestLayer(unittest.TestCase): ...@@ -43,7 +43,7 @@ class TestLayer(unittest.TestCase):
hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
fluid.layers.batch_norm(input=hidden2) fluid.layers.batch_norm(input=hidden2)
print str(main_program) print(str(main_program))
def test_dropout_layer(self): def test_dropout_layer(self):
main_program = Program() main_program = Program()
...@@ -53,7 +53,7 @@ class TestLayer(unittest.TestCase): ...@@ -53,7 +53,7 @@ class TestLayer(unittest.TestCase):
name='pixel', shape=[3, 48, 48], dtype='float32') name='pixel', shape=[3, 48, 48], dtype='float32')
fluid.layers.dropout(x=images, dropout_prob=0.5) fluid.layers.dropout(x=images, dropout_prob=0.5)
print str(main_program) print(str(main_program))
def test_img_conv_group(self): def test_img_conv_group(self):
main_program = Program() main_program = Program()
...@@ -65,7 +65,7 @@ class TestLayer(unittest.TestCase): ...@@ -65,7 +65,7 @@ class TestLayer(unittest.TestCase):
conv1 = conv_block(images, 64, 2, [0.3, 0]) conv1 = conv_block(images, 64, 2, [0.3, 0])
conv_block(conv1, 256, 3, [0.4, 0.4, 0]) conv_block(conv1, 256, 3, [0.4, 0.4, 0])
print str(main_program) print(str(main_program))
def test_elementwise_add_with_act(self): def test_elementwise_add_with_act(self):
main_program = Program() main_program = Program()
......
...@@ -48,7 +48,7 @@ class TestBook(unittest.TestCase): ...@@ -48,7 +48,7 @@ class TestBook(unittest.TestCase):
exe.run(init_program, feed={}, fetch_list=[]) exe.run(init_program, feed={}, fetch_list=[])
for i in xrange(100): for i in range(100):
tensor_x = np.array( tensor_x = np.array(
[[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32") [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32") tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
......
...@@ -17,7 +17,7 @@ import numpy as np ...@@ -17,7 +17,7 @@ import numpy as np
import numpy.random as random import numpy.random as random
import sys import sys
import math import math
from op_test import OpTest from .op_test import OpTest
class TestIOUSimilarityOp(OpTest): class TestIOUSimilarityOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestEmpty(OpTest): class TestEmpty(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import numpy as np import numpy as np
import unittest import unittest
from op_test import OpTest from .op_test import OpTest
class TestL1NormOp(OpTest): class TestL1NormOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestLabelSmoothOp(OpTest): class TestLabelSmoothOp(OpTest):
......
...@@ -17,6 +17,7 @@ import numpy as np ...@@ -17,6 +17,7 @@ import numpy as np
from operator import mul from operator import mul
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
from functools import reduce
np.random.random(123) np.random.random(123)
......
...@@ -20,7 +20,7 @@ from paddle.fluid.layers.device import get_places ...@@ -20,7 +20,7 @@ from paddle.fluid.layers.device import get_places
import paddle.fluid.nets as nets import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
import decorators from . import decorators
class TestBook(unittest.TestCase): class TestBook(unittest.TestCase):
...@@ -279,7 +279,7 @@ class TestBook(unittest.TestCase): ...@@ -279,7 +279,7 @@ class TestBook(unittest.TestCase):
def test_nce(self): def test_nce(self):
window_size = 5 window_size = 5
words = [] words = []
for i in xrange(window_size): for i in range(window_size):
words.append( words.append(
layers.data( layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64')) name='word_{0}'.format(i), shape=[1], dtype='int64'))
...@@ -288,7 +288,7 @@ class TestBook(unittest.TestCase): ...@@ -288,7 +288,7 @@ class TestBook(unittest.TestCase):
label_word = int(window_size / 2) + 1 label_word = int(window_size / 2) + 1
embs = [] embs = []
for i in xrange(window_size): for i in range(window_size):
if i == label_word: if i == label_word:
continue continue
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import random import random
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class LinearChainCrfForward(object): class LinearChainCrfForward(object):
......
...@@ -20,7 +20,7 @@ import subprocess ...@@ -20,7 +20,7 @@ import subprocess
import time import time
import unittest import unittest
from multiprocessing import Process from multiprocessing import Process
from op_test import OpTest from .op_test import OpTest
def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id): def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
......
...@@ -36,7 +36,7 @@ class TestLoDRankTable(unittest.TestCase): ...@@ -36,7 +36,7 @@ class TestLoDRankTable(unittest.TestCase):
exe.run(scope=scope, feed={'x': tensor}) exe.run(scope=scope, feed={'x': tensor})
var = scope.find_var(rank_table.name) var = scope.find_var(rank_table.name)
table = var.get_lod_rank_table() table = var.get_lod_rank_table()
self.assertEqual([(0, 5), (1, 1), (2, 1)], table.items()) self.assertEqual([(0, 5), (1, 1), (2, 1)], list(table.items()))
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestLodResetOpByAttr(OpTest): class TestLodResetOpByAttr(OpTest):
......
...@@ -24,7 +24,7 @@ class TestLoDTensorArray(unittest.TestCase): ...@@ -24,7 +24,7 @@ class TestLoDTensorArray(unittest.TestCase):
tensor_array = arr.get_lod_tensor_array() tensor_array = arr.get_lod_tensor_array()
self.assertEqual(0, len(tensor_array)) self.assertEqual(0, len(tensor_array))
cpu = core.CPUPlace() cpu = core.CPUPlace()
for i in xrange(10): for i in range(10):
t = core.LoDTensor() t = core.LoDTensor()
t.set(numpy.array([i], dtype='float32'), cpu) t.set(numpy.array([i], dtype='float32'), cpu)
t.set_recursive_sequence_lengths([[1]]) t.set_recursive_sequence_lengths([[1]])
...@@ -32,7 +32,7 @@ class TestLoDTensorArray(unittest.TestCase): ...@@ -32,7 +32,7 @@ class TestLoDTensorArray(unittest.TestCase):
self.assertEqual(10, len(tensor_array)) self.assertEqual(10, len(tensor_array))
for i in xrange(10): for i in range(10):
t = tensor_array[i] t = tensor_array[i]
self.assertEqual(numpy.array(t), numpy.array([i], dtype='float32')) self.assertEqual(numpy.array(t), numpy.array([i], dtype='float32'))
self.assertEqual([[1]], t.recursive_sequence_lengths()) self.assertEqual([[1]], t.recursive_sequence_lengths())
......
...@@ -35,8 +35,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): ...@@ -35,8 +35,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set( tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place()) numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_recursive_sequence_lengths([[3, 6, 1]]) tensor.set_recursive_sequence_lengths([[3, 6, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'), expect = [
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]) numpy.array(x).astype('int32')
for x in [[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]
]
self.main( self.main(
tensor=tensor, tensor=tensor,
expect_array=expect, expect_array=expect,
...@@ -48,8 +50,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): ...@@ -48,8 +50,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set( tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place()) numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_recursive_sequence_lengths([[3, 6, 0, 1]]) tensor.set_recursive_sequence_lengths([[3, 6, 0, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'), expect = [
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]) numpy.array(x).astype('int32')
for x in [[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]
]
self.main( self.main(
tensor=tensor, tensor=tensor,
expect_array=expect, expect_array=expect,
...@@ -111,8 +115,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): ...@@ -111,8 +115,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
expect = [ expect = [
numpy.array( numpy.array(
item, dtype='int32') item, dtype='int32')
for item in [[21, 0, 1, 2, 3, 4, 5, 6, 46, 47, 48, 49], range( for item in [[21, 0, 1, 2, 3, 4, 5, 6, 46, 47, 48, 49], list(
22, 39) + range(7, 21), range(39, 46)] range(22, 39)) + list(range(7, 21)), list(range(39, 46))]
] ]
lod = [[[1, 2, 1], [1, 3, 4, 4]], [[4, 3], [1, 4, 4, 8, 4, 6, 4]], lod = [[[1, 2, 1], [1, 3, 4, 4]], [[4, 3], [1, 4, 4, 8, 4, 6, 4]],
[[2], [6, 1]]] [[2], [6, 1]]]
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestLogLossOp(OpTest): class TestLogLossOp(OpTest):
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import op_test from . import op_test
import unittest import unittest
import numpy as np import numpy as np
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
...@@ -40,7 +40,7 @@ class TestLookupTableOpWithPadding(TestLookupTableOp): ...@@ -40,7 +40,7 @@ class TestLookupTableOpWithPadding(TestLookupTableOp):
ids = np.squeeze(self.inputs['Ids']) ids = np.squeeze(self.inputs['Ids'])
padding_idx = np.random.choice(ids, 1)[0] padding_idx = np.random.choice(ids, 1)[0]
self.outputs['Out'][ids == padding_idx] = np.zeros(31) self.outputs['Out'][ids == padding_idx] = np.zeros(31)
self.attrs = {'padding_idx': long(padding_idx)} self.attrs = {'padding_idx': int(padding_idx)}
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
from test_lrn_op import TestLRNOp from .test_lrn_op import TestLRNOp
class TestLRNMKLDNNOp(TestLRNOp): class TestLRNMKLDNNOp(TestLRNOp):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestLRNOp(OpTest): class TestLRNOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
SIGMOID_THRESHOLD_MIN = -40.0 SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0 SIGMOID_THRESHOLD_MAX = 13.0
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def sigmoid_np(x): def sigmoid_np(x):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
#limitations under the License. #limitations under the License.
import unittest import unittest
import numpy as np import numpy as np
import test_lstm_op as LstmTest from . import test_lstm_op as LstmTest
ACTIVATION = { ACTIVATION = {
'identity': LstmTest.identity, 'identity': LstmTest.identity,
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMarginRankLossOp(OpTest): class TestMarginRankLossOp(OpTest):
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import decorators from . import decorators
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y): def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def maxout_forward_naive(input, groups): def maxout_forward_naive(input, groups):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
from __future__ import division from __future__ import division
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects, def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects,
...@@ -80,7 +80,7 @@ class TestMeanIOUOp(OpTest): ...@@ -80,7 +80,7 @@ class TestMeanIOUOp(OpTest):
'InCorrects': in_corrects, 'InCorrects': in_corrects,
'InMeanIou': in_mean_ious 'InMeanIou': in_mean_ious
} }
self.attrs = {'num_classes': long(self.num_classes)} self.attrs = {'num_classes': int(self.num_classes)}
mean_iou, out_wrong, out_correct = compute_mean_iou( mean_iou, out_wrong, out_correct = compute_mean_iou(
predictions, labels, self.num_classes, in_wrongs, in_corrects, predictions, labels, self.num_classes, in_wrongs, in_corrects,
in_mean_ious) in_mean_ious)
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMeanOp(OpTest): class TestMeanOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMergeIdsOp(OpTest): class TestMergeIdsOp(OpTest):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import sys import sys
import math import math
from op_test import OpTest from .op_test import OpTest
class TestMineHardExamplesOp(OpTest): class TestMineHardExamplesOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMinusOp(OpTest): class TestMinusOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def modified_huber_loss_forward(val): def modified_huber_loss_forward(val):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMomentumOp1(OpTest): class TestMomentumOp1(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
class TestMulOp(OpTest): class TestMulOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
import copy import copy
from op_test import OpTest from .op_test import OpTest
def iou(box_a, box_b): def iou(box_a, box_b):
...@@ -112,7 +112,7 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, ...@@ -112,7 +112,7 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
if keep_top_k > -1 and num_det > keep_top_k: if keep_top_k > -1 and num_det > keep_top_k:
score_index = [] score_index = []
for c, indices in selected_indices.iteritems(): for c, indices in selected_indices.items():
for idx in indices: for idx in indices:
score_index.append((scores[c][idx], c, idx)) score_index.append((scores[c][idx], c, idx))
...@@ -143,7 +143,7 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold, ...@@ -143,7 +143,7 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
lod.append(nmsed_num) lod.append(nmsed_num)
if nmsed_num == 0: continue if nmsed_num == 0: continue
for c, indices in nmsed_outs.iteritems(): for c, indices in nmsed_outs.items():
for idx in indices: for idx in indices:
xmin, ymin, xmax, ymax = boxes[n][idx][:] xmin, ymin, xmax, ymax = boxes[n][idx][:]
det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax]) det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax])
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestMultiplexOp(OpTest): class TestMultiplexOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def nce(input, weight, bias, sample_weight, labels, num_classes, def nce(input, weight, bias, sample_weight, labels, num_classes,
...@@ -66,7 +66,7 @@ class TestNCE(OpTest): ...@@ -66,7 +66,7 @@ class TestNCE(OpTest):
self.attrs = { self.attrs = {
'num_total_classes': num_classes, 'num_total_classes': num_classes,
'num_neg_samples': num_neg_samples, 'num_neg_samples': num_neg_samples,
'custom_neg_classes': range(num_neg_samples) 'custom_neg_classes': list(range(num_neg_samples))
} }
self.inputs = { self.inputs = {
'Input': input, 'Input': input,
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def l2_norm(x, axis, epsilon): def l2_norm(x, axis, epsilon):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import math import math
from op_test import OpTest from .op_test import OpTest
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid.framework as framework import paddle.fluid.framework as framework
...@@ -28,13 +28,13 @@ class TestOneHotOp(OpTest): ...@@ -28,13 +28,13 @@ class TestOneHotOp(OpTest):
depth = 10 depth = 10
dimension = 12 dimension = 12
x_lod = [[4, 1, 3, 3]] x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1]) x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32') depth)).astype('float32')
for i in xrange(np.product(x.shape)): for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0 out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)} self.inputs = {'X': (x, x_lod)}
...@@ -51,13 +51,13 @@ class TestOneHotOp_default_dtype(OpTest): ...@@ -51,13 +51,13 @@ class TestOneHotOp_default_dtype(OpTest):
depth = 10 depth = 10
dimension = 12 dimension = 12
x_lod = [[4, 1, 3, 3]] x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1]) x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32') depth)).astype('float32')
for i in xrange(np.product(x.shape)): for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0 out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)} self.inputs = {'X': (x, x_lod)}
...@@ -76,7 +76,7 @@ class TestOneHotOp_exception(OpTest): ...@@ -76,7 +76,7 @@ class TestOneHotOp_exception(OpTest):
self.dimension = 12 self.dimension = 12
self.x = core.LoDTensor() self.x = core.LoDTensor()
x_lod = [[4, 1, 3, 3]] x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in xrange(sum(x_lod[0]))] data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1]) data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place) self.x.set(data, self.place)
self.x.set_recursive_sequence_lengths(x_lod) self.x.set_recursive_sequence_lengths(x_lod)
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestPadOp(OpTest): class TestPadOp(OpTest):
......
...@@ -167,10 +167,10 @@ class TestCRFModel(unittest.TestCase): ...@@ -167,10 +167,10 @@ class TestCRFModel(unittest.TestCase):
place=fluid.CPUPlace()) place=fluid.CPUPlace())
data = train_data() data = train_data()
for i in xrange(10): for i in range(10):
cur_batch = next(data) cur_batch = next(data)
print pe.run(feed=feeder.feed(cur_batch), print(pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name])[0] fetch_list=[avg_cost.name])[0])
@unittest.skip(reason="CI hangs") @unittest.skip(reason="CI hangs")
def test_update_sparse_parameter_all_reduce(self): def test_update_sparse_parameter_all_reduce(self):
......
...@@ -71,7 +71,7 @@ class TestFetchOp(unittest.TestCase): ...@@ -71,7 +71,7 @@ class TestFetchOp(unittest.TestCase):
fetch_list = [] fetch_list = []
all_vars = main.global_block().vars all_vars = main.global_block().vars
for k, v in all_vars.iteritems(): for k, v in all_vars.items():
if 'tmp' not in k and k[0] is not '_' or v.persistable: if 'tmp' not in k and k[0] is not '_' or v.persistable:
fetch_list.append(k) fetch_list.append(k)
...@@ -90,7 +90,7 @@ class TestFetchOp(unittest.TestCase): ...@@ -90,7 +90,7 @@ class TestFetchOp(unittest.TestCase):
iters = 3 iters = 3
train_inputs = [] train_inputs = []
for i in range(iters): for i in range(iters):
train_inputs.append(tst_reader_iter.next()) train_inputs.append(next(tst_reader_iter))
os.environ['CPU_NUM'] = str(4) os.environ['CPU_NUM'] = str(4)
if core.is_compiled_with_cuda(): if core.is_compiled_with_cuda():
...@@ -133,7 +133,7 @@ class TestFeedParallel(unittest.TestCase): ...@@ -133,7 +133,7 @@ class TestFeedParallel(unittest.TestCase):
for batch_id, data in enumerate(reader()): for batch_id, data in enumerate(reader()):
loss_np = pe.run(feed=data, fetch_list=[loss.name])[0] loss_np = pe.run(feed=data, fetch_list=[loss.name])[0]
print batch_id, loss_np print(batch_id, loss_np)
if batch_id == 2: if batch_id == 2:
break break
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from parallel_executor_test_base import TestParallelExecutorBase from .parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import numpy as np import numpy as np
...@@ -37,7 +37,7 @@ def simple_fc_net(use_feed): ...@@ -37,7 +37,7 @@ def simple_fc_net(use_feed):
reader = fluid.layers.io.double_buffer(reader) reader = fluid.layers.io.double_buffer(reader)
img, label = fluid.layers.read_file(reader) img, label = fluid.layers.read_file(reader)
hidden = img hidden = img
for _ in xrange(4): for _ in range(4):
hidden = fluid.layers.fc( hidden = fluid.layers.fc(
hidden, hidden,
size=200, size=200,
...@@ -64,7 +64,7 @@ def fc_with_batchnorm(use_feed): ...@@ -64,7 +64,7 @@ def fc_with_batchnorm(use_feed):
img, label = fluid.layers.read_file(reader) img, label = fluid.layers.read_file(reader)
hidden = img hidden = img
for _ in xrange(1): for _ in range(1):
hidden = fluid.layers.fc( hidden = fluid.layers.fc(
hidden, hidden,
size=200, size=200,
...@@ -131,9 +131,9 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -131,9 +131,9 @@ class TestMNIST(TestParallelExecutorBase):
use_reduce=True) use_reduce=True)
for loss in zip(all_reduce_first_loss, reduce_first_loss): for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, reduce_last_loss): for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-4) self.assertAlmostEqual(loss[0], loss[1], delta=1e-4)
# simple_fc # simple_fc
def check_simple_fc_convergence(self, use_cuda, use_reduce=False): def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
...@@ -184,9 +184,9 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -184,9 +184,9 @@ class TestMNIST(TestParallelExecutorBase):
use_parallel_executor=True) use_parallel_executor=True)
for p_f in parallel_first_loss: for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6) self.assertAlmostEqual(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss: for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6) self.assertAlmostEqual(p_l, single_last_loss[0], delta=1e-6)
def test_simple_fc_parallel_accuracy(self): def test_simple_fc_parallel_accuracy(self):
self.check_simple_fc_parallel_accuracy(True) self.check_simple_fc_parallel_accuracy(True)
......
...@@ -17,7 +17,7 @@ import paddle.fluid.layers.ops as ops ...@@ -17,7 +17,7 @@ import paddle.fluid.layers.ops as ops
from paddle.fluid.initializer import init_on_cpu from paddle.fluid.initializer import init_on_cpu
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.core as core import paddle.fluid.core as core
from parallel_executor_test_base import TestParallelExecutorBase from .parallel_executor_test_base import TestParallelExecutorBase
import unittest import unittest
import math import math
import os import os
...@@ -191,9 +191,9 @@ class TestResnet(TestParallelExecutorBase): ...@@ -191,9 +191,9 @@ class TestResnet(TestParallelExecutorBase):
optimizer=_optimizer) optimizer=_optimizer)
for p_f in parallel_first_loss: for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6) self.assertAlmostEqual(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss: for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6) self.assertAlmostEqual(p_l, single_last_loss[0], delta=1e-6)
def test_seresnext_with_learning_rate_decay(self): def test_seresnext_with_learning_rate_decay(self):
self.check_resnet_convergence_with_learning_rate_decay(True, False) self.check_resnet_convergence_with_learning_rate_decay(True, False)
......
...@@ -25,7 +25,7 @@ def simple_fc_net(): ...@@ -25,7 +25,7 @@ def simple_fc_net():
img = fluid.layers.data(name='image', shape=[784], dtype='float32') img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img hidden = img
for _ in xrange(4): for _ in range(4):
hidden = fluid.layers.fc( hidden = fluid.layers.fc(
hidden, hidden,
size=200, size=200,
...@@ -71,7 +71,7 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -71,7 +71,7 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
share_vars_from=train_exe, share_vars_from=train_exe,
build_strategy=build_strategy) build_strategy=build_strategy)
for i in xrange(5): for i in range(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
......
...@@ -13,9 +13,9 @@ ...@@ -13,9 +13,9 @@
# limitations under the License. # limitations under the License.
import paddle.fluid as fluid import paddle.fluid as fluid
import transformer_model from . import transformer_model
import numpy as np import numpy as np
from parallel_executor_test_base import TestParallelExecutorBase from .parallel_executor_test_base import TestParallelExecutorBase
import unittest import unittest
import paddle import paddle
import paddle.dataset.wmt16 as wmt16 import paddle.dataset.wmt16 as wmt16
......
...@@ -102,7 +102,7 @@ class BaseParallelForTest(unittest.TestCase): ...@@ -102,7 +102,7 @@ class BaseParallelForTest(unittest.TestCase):
Fetched numpy arrays. Fetched numpy arrays.
""" """
if isinstance(fetch, basestring): if isinstance(fetch, str):
fetch = [fetch] fetch = [fetch]
main = fluid.Program() main = fluid.Program()
startup = fluid.Program() startup = fluid.Program()
...@@ -124,7 +124,7 @@ class BaseParallelForTest(unittest.TestCase): ...@@ -124,7 +124,7 @@ class BaseParallelForTest(unittest.TestCase):
data = [data] data = [data]
with pd.do(): with pd.do():
ins = map(pd.read_input, data) ins = list(map(pd.read_input, data))
if len(ins) == 1: if len(ins) == 1:
ins = ins[0] ins = ins[0]
loss = generator.send(ins) # patch input loss = generator.send(ins) # patch input
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def PolygonBoxRestore(input): def PolygonBoxRestore(input):
...@@ -23,9 +23,9 @@ def PolygonBoxRestore(input): ...@@ -23,9 +23,9 @@ def PolygonBoxRestore(input):
geo_channels = shape[1] geo_channels = shape[1]
h = shape[2] h = shape[2]
w = shape[3] w = shape[3]
h_indexes = np.array(range(h) * w).reshape( h_indexes = np.array(list(range(h)) * w).reshape(
[w, h]).transpose()[np.newaxis, :] # [1, h, w] [w, h]).transpose()[np.newaxis, :] # [1, h, w]
w_indexes = np.array(range(w) * h).reshape( w_indexes = np.array(list(range(w)) * h).reshape(
[h, w])[np.newaxis, :] # [1, h, w] [h, w])[np.newaxis, :] # [1, h, w]
indexes = np.concatenate( indexes = np.concatenate(
(w_indexes, h_indexes))[np.newaxis, :] # [1, 2, h, w] (w_indexes, h_indexes))[np.newaxis, :] # [1, 2, h, w]
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
from test_pool2d_op import TestPool2d_Op, TestCase1, TestCase2, TestCase3, TestCase4, TestCase5 from .test_pool2d_op import TestPool2d_Op, TestCase1, TestCase2, TestCase3, TestCase4, TestCase5
class TestMKLDNNCase1(TestPool2d_Op): class TestMKLDNNCase1(TestPool2d_Op):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def max_pool2D_forward_naive(x, def max_pool2D_forward_naive(x,
...@@ -35,8 +35,8 @@ def max_pool2D_forward_naive(x, ...@@ -35,8 +35,8 @@ def max_pool2D_forward_naive(x,
) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 * ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
paddings[1]) / strides[1] + 1 paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out)) out = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out): for i in range(H_out):
for j in xrange(W_out): for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0)) r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0)) c_start = np.max((j * strides[1] - paddings[1], 0))
...@@ -63,8 +63,8 @@ def avg_pool2D_forward_naive(x, ...@@ -63,8 +63,8 @@ def avg_pool2D_forward_naive(x,
) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 * ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
paddings[1]) / strides[1] + 1 paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out)) out = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out): for i in range(H_out):
for j in xrange(W_out): for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0)) r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0)) c_start = np.max((j * strides[1] - paddings[1], 0))
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def max_pool3D_forward_naive(x, def max_pool3D_forward_naive(x,
...@@ -38,13 +38,13 @@ def max_pool3D_forward_naive(x, ...@@ -38,13 +38,13 @@ def max_pool3D_forward_naive(x,
) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 * ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
paddings[2]) / strides[2] + 1 paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out)) out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out): for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0)) d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D)) d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out): for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0)) h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out): for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0)) w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end] x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
...@@ -72,13 +72,13 @@ def avg_pool3D_forward_naive(x, ...@@ -72,13 +72,13 @@ def avg_pool3D_forward_naive(x,
) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 * ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
paddings[2]) / strides[2] + 1 paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out)) out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out): for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0)) d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D)) d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out): for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0)) h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out): for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0)) w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end] x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False): def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
...@@ -29,21 +29,21 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False): ...@@ -29,21 +29,21 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1 W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out)) out = np.zeros((N, C, D_out, H_out, W_out))
mask = np.zeros((N, C, D_out, H_out, W_out)) mask = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out): for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0)) d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D)) d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out): for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0)) h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out): for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0)) w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end] x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4)) out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
for n in xrange(N): for n in range(N):
for c in xrange(C): for c in range(C):
arr = x_masked[n, c, :, :, :] arr = x_masked[n, c, :, :, :]
index = np.where(arr == np.max(arr)) index = np.where(arr == np.max(arr))
sub_deep = index[0][0] sub_deep = index[0][0]
...@@ -67,8 +67,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False): ...@@ -67,8 +67,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1 W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out)) out = np.zeros((N, C, H_out, W_out))
mask = np.zeros((N, C, H_out, W_out)) mask = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out): for i in range(H_out):
for j in xrange(W_out): for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0)) r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0)) c_start = np.max((j * strides[1] - paddings[1], 0))
...@@ -77,8 +77,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False): ...@@ -77,8 +77,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
for n in xrange(N): for n in range(N):
for c in xrange(C): for c in range(C):
arr = x_masked[n, c, :, :] arr = x_masked[n, c, :, :]
index = np.where(arr == np.max(arr)) index = np.where(arr == np.max(arr))
sub_row = index[0][0] sub_row = index[0][0]
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import itertools import itertools
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def py_pnpair_op(score, label, query, column=-1, weight=None): def py_pnpair_op(score, label, query, column=-1, weight=None):
...@@ -32,7 +32,7 @@ def py_pnpair_op(score, label, query, column=-1, weight=None): ...@@ -32,7 +32,7 @@ def py_pnpair_op(score, label, query, column=-1, weight=None):
# accumulate statistics # accumulate statistics
pos, neg, neu = 0, 0, 0 pos, neg, neu = 0, 0, 0
for _, ranks in predictions.items(): for _, ranks in list(predictions.items()):
for e1, e2 in itertools.combinations(ranks, 2): for e1, e2 in itertools.combinations(ranks, 2):
s1, s2, l1, l2, w1, w2 = e1[0], e2[0], e1[1], e2[1], e1[2], e2[2] s1, s2, l1, l2, w1, w2 = e1[0], e2[0], e1[1], e2[1], e1[2], e2[2]
w = (w1 + w2) * 0.5 w = (w1 + w2) * 0.5
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def calc_precision(tp_count, fp_count): def calc_precision(tp_count, fp_count):
...@@ -39,19 +39,19 @@ def get_states(idxs, labels, cls_num, weights=None): ...@@ -39,19 +39,19 @@ def get_states(idxs, labels, cls_num, weights=None):
ins_num = idxs.shape[0] ins_num = idxs.shape[0]
# TP FP TN FN # TP FP TN FN
states = np.zeros((cls_num, 4)).astype('float32') states = np.zeros((cls_num, 4)).astype('float32')
for i in xrange(ins_num): for i in range(ins_num):
w = weights[i] if weights is not None else 1.0 w = weights[i] if weights is not None else 1.0
idx = idxs[i][0] idx = idxs[i][0]
label = labels[i][0] label = labels[i][0]
if idx == label: if idx == label:
states[idx][0] += w states[idx][0] += w
for j in xrange(cls_num): for j in range(cls_num):
states[j][2] += w states[j][2] += w
states[idx][2] -= w states[idx][2] -= w
else: else:
states[label][3] += w states[label][3] += w
states[idx][1] += w states[idx][1] += w
for j in xrange(cls_num): for j in range(cls_num):
states[j][2] += w states[j][2] += w
states[label][2] -= w states[label][2] -= w
states[idx][2] -= w states[idx][2] -= w
...@@ -64,7 +64,7 @@ def compute_metrics(states, cls_num): ...@@ -64,7 +64,7 @@ def compute_metrics(states, cls_num):
total_fn_count = 0.0 total_fn_count = 0.0
macro_avg_precision = 0.0 macro_avg_precision = 0.0
macro_avg_recall = 0.0 macro_avg_recall = 0.0
for i in xrange(cls_num): for i in range(cls_num):
total_tp_count += states[i][0] total_tp_count += states[i][0]
total_fp_count += states[i][1] total_fp_count += states[i][1]
total_fn_count += states[i][3] total_fn_count += states[i][3]
...@@ -90,9 +90,9 @@ class TestPrecisionRecallOp_0(OpTest): ...@@ -90,9 +90,9 @@ class TestPrecisionRecallOp_0(OpTest):
ins_num = 64 ins_num = 64
cls_num = 10 cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape( idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape( labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num) states = get_states(idxs, labels, cls_num)
metrics = compute_metrics(states, cls_num) metrics = compute_metrics(states, cls_num)
...@@ -117,10 +117,10 @@ class TestPrecisionRecallOp_1(OpTest): ...@@ -117,10 +117,10 @@ class TestPrecisionRecallOp_1(OpTest):
ins_num = 64 ins_num = 64
cls_num = 10 cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape( idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape( labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num, weights) states = get_states(idxs, labels, cls_num, weights)
...@@ -151,10 +151,10 @@ class TestPrecisionRecallOp_2(OpTest): ...@@ -151,10 +151,10 @@ class TestPrecisionRecallOp_2(OpTest):
ins_num = 64 ins_num = 64
cls_num = 10 cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape( idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape( labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32') (ins_num, 1)).astype('int32')
states = np.random.randint(0, 30, (cls_num, 4)).astype('float32') states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class PReluTest(OpTest): class PReluTest(OpTest):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import sys import sys
import math import math
from op_test import OpTest from .op_test import OpTest
class TestPriorBoxOp(OpTest): class TestPriorBoxOp(OpTest):
......
...@@ -183,7 +183,7 @@ class TestBlockDesc(unittest.TestCase): ...@@ -183,7 +183,7 @@ class TestBlockDesc(unittest.TestCase):
op2 = block.append_op() op2 = block.append_op()
op0 = block._prepend_op() op0 = block._prepend_op()
all_ops = [] all_ops = []
for idx in xrange(0, block.op_size()): for idx in range(0, block.op_size()):
all_ops.append(block.op(idx)) all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op1, op2]) self.assertEqual(all_ops, [op0, op1, op2])
...@@ -205,7 +205,7 @@ class TestBlockDesc(unittest.TestCase): ...@@ -205,7 +205,7 @@ class TestBlockDesc(unittest.TestCase):
program._sync_with_cpp() program._sync_with_cpp()
all_ops = [] all_ops = []
for idx in xrange(0, block.op_size()): for idx in range(0, block.op_size()):
all_ops.append(block.op(idx)) all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op2]) self.assertEqual(all_ops, [op0, op2])
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestProximalAdagradOp(OpTest): class TestProximalAdagradOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestProximalGDOp(OpTest): class TestProximalGDOp(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
class TestRandomCropOp(OpTest): class TestRandomCropOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestRankLossOp(OpTest): class TestRankLossOp(OpTest):
......
...@@ -21,7 +21,7 @@ import unittest ...@@ -21,7 +21,7 @@ import unittest
class TestReaderReset(unittest.TestCase): class TestReaderReset(unittest.TestCase):
def prepare_data(self): def prepare_data(self):
def fake_data_generator(): def fake_data_generator():
for n in xrange(self.total_ins_num): for n in range(self.total_ins_num):
yield np.ones(self.ins_shape) * n, n yield np.ones(self.ins_shape) * n, n
# Prepare data # Prepare data
......
...@@ -203,12 +203,12 @@ class RecurrentOpTest1(unittest.TestCase): ...@@ -203,12 +203,12 @@ class RecurrentOpTest1(unittest.TestCase):
num_grad[idx], ana_grad[idx], rtol=0.1).all()) num_grad[idx], ana_grad[idx], rtol=0.1).all())
def check_forward(self): def check_forward(self):
print 'test recurrent op forward' print('test recurrent op forward')
pd_output = self.forward() pd_output = self.forward()
py_output = self.py_rnn.forward() py_output = self.py_rnn.forward()
print 'pd_output', pd_output print('pd_output', pd_output)
print print
print 'py_output', py_output print('py_output', py_output)
self.assertEqual(pd_output.shape, py_output.shape) self.assertEqual(pd_output.shape, py_output.shape)
self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all()) self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
...@@ -445,7 +445,7 @@ class RecurrentOpNoMemBootTest(RecurrentOpTest1): ...@@ -445,7 +445,7 @@ class RecurrentOpNoMemBootTest(RecurrentOpTest1):
self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape, self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
self.output_shape) self.output_shape)
self.output = layers.mean(self.create_rnn_op(), **self.p_info) self.output = layers.mean(self.create_rnn_op(), **self.p_info)
print self.main_program print(self.main_program)
def create_rnn_op(self): def create_rnn_op(self):
x = layers.data( x = layers.data(
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSumOp(OpTest): class TestSumOp(OpTest):
......
...@@ -15,7 +15,7 @@ import unittest ...@@ -15,7 +15,7 @@ import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
import decorators from . import decorators
class TestRegistry(unittest.TestCase): class TestRegistry(unittest.TestCase):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestReshapeOp(OpTest): class TestReshapeOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestReverseOp(OpTest): class TestReverseOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestRmspropOp1(OpTest): class TestRmspropOp1(OpTest):
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import math import math
import sys import sys
from op_test import OpTest from .op_test import OpTest
class TestROIPoolOp(OpTest): class TestROIPoolOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def row_conv_forward(x, lod, wt): def row_conv_forward(x, lod, wt):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from .op_test import OpTest
def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap, def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestScaleOp(OpTest): class TestScaleOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestScatterOp(OpTest): class TestScatterOp(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import sys import sys
from op_test import OpTest from .op_test import OpTest
def to_abs_offset_lod(lod): def to_abs_offset_lod(lod):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import random import random
from op_test import OpTest from .op_test import OpTest
class TestSeqProject(OpTest): class TestSeqProject(OpTest):
...@@ -26,9 +26,9 @@ class TestSeqProject(OpTest): ...@@ -26,9 +26,9 @@ class TestSeqProject(OpTest):
if self.context_length == 1 \ if self.context_length == 1 \
and self.context_start == 0 \ and self.context_start == 0 \
and self.padding_trainable: and self.padding_trainable:
print "If context_start is 0 " \ print("If context_start is 0 " \
"and context_length is 1," \ "and context_length is 1," \
" padding_trainable should be false." " padding_trainable should be false.")
return return
# one level, batch size # one level, batch size
...@@ -212,7 +212,7 @@ class TestSeqProjectCase2(TestSeqProject): ...@@ -212,7 +212,7 @@ class TestSeqProjectCase2(TestSeqProject):
self.context_stride = 1 self.context_stride = 1
self.input_size = [self.input_row, 23] self.input_size = [self.input_row, 23]
idx = range(self.input_size[0]) idx = list(range(self.input_size[0]))
del idx[0] del idx[0]
offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() + offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
[self.input_size[0]]] [self.input_size[0]]]
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSeqAvgPool(OpTest): class TestSeqAvgPool(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def sequence_erase(in_seq, lod0, tokens): def sequence_erase(in_seq, lod0, tokens):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSequenceExpand(OpTest): class TestSequenceExpand(OpTest):
...@@ -44,7 +44,7 @@ class TestSequenceExpand(OpTest): ...@@ -44,7 +44,7 @@ class TestSequenceExpand(OpTest):
out_lod = [[]] out_lod = [[]]
offset = 0 offset = 0
for i in xrange(len(y_lod[ref_level])): for i in range(len(y_lod[ref_level])):
repeat_num = y_lod[ref_level][i] repeat_num = y_lod[ref_level][i]
x_len = x_idx[i] x_len = x_idx[i]
...@@ -55,7 +55,7 @@ class TestSequenceExpand(OpTest): ...@@ -55,7 +55,7 @@ class TestSequenceExpand(OpTest):
stacked_x_sub = np.vstack((stacked_x_sub, x_sub)) stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
out = np.vstack((out, stacked_x_sub)) out = np.vstack((out, stacked_x_sub))
if x_lod is not None: if x_lod is not None:
for j in xrange(repeat_num): for j in range(repeat_num):
out_lod[0].append(x_len) out_lod[0].append(x_len)
offset += x_len offset += x_len
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import math import math
from op_test import OpTest from .op_test import OpTest
class TestSequenceReshape(OpTest): class TestSequenceReshape(OpTest):
...@@ -35,7 +35,7 @@ class TestSequenceReshape(OpTest): ...@@ -35,7 +35,7 @@ class TestSequenceReshape(OpTest):
def compute_output(self, x, x_lod, dimension): def compute_output(self, x, x_lod, dimension):
x_width = x.shape[1] x_width = x.shape[1]
out_lod = [[]] out_lod = [[]]
for i in xrange(len(x_lod[0])): for i in range(len(x_lod[0])):
seq_len = x_lod[0][i] seq_len = x_lod[0][i]
offset = (seq_len * x_width) / dimension offset = (seq_len * x_width) / dimension
assert int(offset) * dimension == seq_len * x_width assert int(offset) * dimension == seq_len * x_width
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import sys import sys
from op_test import OpTest from .op_test import OpTest
class TestSequenceSliceOp(OpTest): class TestSequenceSliceOp(OpTest):
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from test_softmax_op import stable_softmax from .test_softmax_op import stable_softmax
import paddle.fluid.core as core import paddle.fluid.core as core
......
...@@ -16,7 +16,7 @@ import unittest ...@@ -16,7 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
from op_test import OpTest from .op_test import OpTest
class TestSGDOp(OpTest): class TestSGDOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestShapeOp(OpTest): class TestShapeOp(OpTest):
......
...@@ -48,7 +48,7 @@ class TestShrinkRNNMemoryBase(unittest.TestCase): ...@@ -48,7 +48,7 @@ class TestShrinkRNNMemoryBase(unittest.TestCase):
def sum_lodtensor(self, tensor): def sum_lodtensor(self, tensor):
sum_res = 0.0 sum_res = 0.0
for i in xrange(np.product(tensor.shape())): for i in range(np.product(tensor.shape())):
sum_res += tensor._get_float_element(i) sum_res += tensor._get_float_element(i)
return sum_res return sum_res
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from scipy.special import logit from scipy.special import logit
from scipy.special import expit from scipy.special import expit
import unittest import unittest
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSignOp(OpTest): class TestSignOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSliceOp(OpTest): class TestSliceOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def smooth_l1_loss_forward(val, sigma2): def smooth_l1_loss_forward(val, sigma2):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from test_softmax_op import stable_softmax from .test_softmax_op import stable_softmax
class TestSoftmaxWithCrossEntropyOp(OpTest): class TestSoftmaxWithCrossEntropyOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSplitIdsOp(OpTest): class TestSplitIdsOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSplitOp(OpTest): class TestSplitOp(OpTest):
...@@ -26,7 +26,7 @@ class TestSplitOp(OpTest): ...@@ -26,7 +26,7 @@ class TestSplitOp(OpTest):
self.inputs = {'X': x} self.inputs = {'X': x}
self.attrs = {'axis': axis, 'sections': [2, 1, 2]} self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
self.outputs = {'Out': [('out%d' % i, out[i]) \ self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in xrange(len(out))]} for i in range(len(out))]}
def _set_op_type(self): def _set_op_type(self):
self.op_type = "split" self.op_type = "split"
......
...@@ -53,7 +53,7 @@ class TestSpliteSelectedRows(unittest.TestCase): ...@@ -53,7 +53,7 @@ class TestSpliteSelectedRows(unittest.TestCase):
height_sections = [5, 5, 5, 5, 3] height_sections = [5, 5, 5, 5, 3]
# initialize output variables [out0, out1] # initialize output variables [out0, out1]
outs_name = ["out%d" % i for i in xrange(len(height_sections))] outs_name = ["out%d" % i for i in range(len(height_sections))]
outs = [ outs = [
scope.var(var_name).get_selected_rows() for var_name in outs_name scope.var(var_name).get_selected_rows() for var_name in outs_name
] ]
......
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from test_pool2d_op import max_pool2D_forward_naive from .test_pool2d_op import max_pool2D_forward_naive
from test_pool2d_op import avg_pool2D_forward_naive from .test_pool2d_op import avg_pool2D_forward_naive
class TestSppOp(OpTest): class TestSppOp(OpTest):
...@@ -26,7 +26,7 @@ class TestSppOp(OpTest): ...@@ -26,7 +26,7 @@ class TestSppOp(OpTest):
input = np.random.random(self.shape).astype("float32") input = np.random.random(self.shape).astype("float32")
nsize, csize, hsize, wsize = input.shape nsize, csize, hsize, wsize = input.shape
out_level_flatten = [] out_level_flatten = []
for i in xrange(self.pyramid_height): for i in range(self.pyramid_height):
bins = np.power(2, i) bins = np.power(2, i)
kernel_size = [0, 0] kernel_size = [0, 0]
padding = [0, 0] padding = [0, 0]
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSquaredL2DistanceOp_f0(OpTest): class TestSquaredL2DistanceOp_f0(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import numpy as np import numpy as np
import unittest import unittest
from numpy import linalg as LA from numpy import linalg as LA
from op_test import OpTest from .op_test import OpTest
class TestL2LossOp(OpTest): class TestL2LossOp(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
# Correct: General. # Correct: General.
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
from test_sum_op import TestSumOp from .test_sum_op import TestSumOp
class TestMKLDNN(TestSumOp): class TestMKLDNN(TestSumOp):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestSumOp(OpTest): class TestSumOp(OpTest):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
import random import random
from op_test import OpTest from .op_test import OpTest
def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod): def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestTopkOp(OpTest): class TestTopkOp(OpTest):
...@@ -28,7 +28,7 @@ class TestTopkOp(OpTest): ...@@ -28,7 +28,7 @@ class TestTopkOp(OpTest):
self.inputs = {'X': input} self.inputs = {'X': input}
self.attrs = {'k': k} self.attrs = {'k': k}
for rowid in xrange(32): for rowid in range(32):
row = input[rowid] row = input[rowid]
output[rowid] = np.sort(row)[-k:] output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:] indices[rowid] = row.argsort()[-k:]
...@@ -52,7 +52,7 @@ class TestTopkOp3d(OpTest): ...@@ -52,7 +52,7 @@ class TestTopkOp3d(OpTest):
self.inputs = {'X': input_flat_2d} self.inputs = {'X': input_flat_2d}
self.attrs = {'k': k} self.attrs = {'k': k}
for rowid in xrange(64): for rowid in range(64):
row = input_flat_2d[rowid] row = input_flat_2d[rowid]
output[rowid] = np.sort(row)[-k:] output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:] indices[rowid] = row.argsort()[-k:]
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestTransposeOp(OpTest): class TestTransposeOp(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
class TestUniformRandomBatchSizeLike(OpTest): class TestUniformRandomBatchSizeLike(OpTest):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings): def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
...@@ -22,10 +22,10 @@ def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings): ...@@ -22,10 +22,10 @@ def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
out_hsize = (s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0] out_hsize = (s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0]
out_wsize = (s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1] out_wsize = (s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1]
out = np.zeros((s0, s1, out_hsize, out_wsize)) out = np.zeros((s0, s1, out_hsize, out_wsize))
for nidx in xrange(s0): for nidx in range(s0):
for cidx in xrange(s1): for cidx in range(s1):
for h in xrange(s2): for h in range(s2):
for w in xrange(s3): for w in range(s3):
index = indices[nidx, cidx, h, w] index = indices[nidx, cidx, h, w]
hidx = (index - index % out_wsize) / out_wsize hidx = (index - index % out_wsize) / out_wsize
widx = index % out_wsize widx = index % out_wsize
...@@ -47,16 +47,16 @@ class TestUnpoolOp(OpTest): ...@@ -47,16 +47,16 @@ class TestUnpoolOp(OpTest):
self.strides[1] + 1 self.strides[1] + 1
input = np.zeros((nsize, csize, hsize_out, wsize_out)) input = np.zeros((nsize, csize, hsize_out, wsize_out))
indices = np.zeros((nsize, csize, hsize_out, wsize_out)) indices = np.zeros((nsize, csize, hsize_out, wsize_out))
for i in xrange(hsize_out): for i in range(hsize_out):
for j in xrange(wsize_out): for j in range(wsize_out):
r_start = np.max((i * self.strides[0] - self.paddings[0], 0)) r_start = np.max((i * self.strides[0] - self.paddings[0], 0))
r_end = np.min((i * self.strides[0] + self.ksize[0] - \ r_end = np.min((i * self.strides[0] + self.ksize[0] - \
self.paddings[0], hsize)) self.paddings[0], hsize))
c_start = np.max((j * self.strides[1] - self.paddings[1], 0)) c_start = np.max((j * self.strides[1] - self.paddings[1], 0))
c_end = np.min((j * self.strides[1] + self.ksize[1] - \ c_end = np.min((j * self.strides[1] + self.ksize[1] - \
self.paddings[1], wsize)) self.paddings[1], wsize))
for nidx in xrange(nsize): for nidx in range(nsize):
for cidx in xrange(csize): for cidx in range(csize):
x_masked = pre_input[nidx, cidx, r_start:r_end, \ x_masked = pre_input[nidx, cidx, r_start:r_end, \
c_start:c_end] c_start:c_end]
input[nidx, cidx, i, j] = x_masked.max() input[nidx, cidx, i, j] = x_masked.max()
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
# Correct: General. # Correct: General.
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
import sys import sys
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from .op_test import OpTest
from test_softmax_op import stable_softmax from .test_softmax_op import stable_softmax
CUDA_BLOCK_SIZE = 512 CUDA_BLOCK_SIZE = 512
......
...@@ -66,7 +66,7 @@ class TestWhileOp(unittest.TestCase): ...@@ -66,7 +66,7 @@ class TestWhileOp(unittest.TestCase):
exe = Executor(cpu) exe = Executor(cpu)
d = [] d = []
for i in xrange(3): for i in range(3):
d.append(numpy.random.random(size=[10]).astype('float32')) d.append(numpy.random.random(size=[10]).astype('float32'))
outs = exe.run(feed={'d0': d[0], outs = exe.run(feed={'d0': d[0],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册