提交 35e6abd7 编写于 作者: M minqiyang

Change iter_parameters back and port unittests code to Python3

上级 e8493620
......@@ -963,9 +963,9 @@ class Block(object):
raise ValueError("Var {0} is not found recursively".format(name))
def all_parameters(self):
return list(self._iter_parameters())
return list(self.iter_parameters())
def _iter_parameters(self):
def iter_parameters(self):
return (item[1] for item in list(self.vars.items())
if isinstance(item[1], Parameter))
......@@ -1199,7 +1199,7 @@ class Block(object):
if not isinstance(other, Block):
raise TypeError(
"_copy_param_info_from should be invoked with Block")
for p in other._iter_parameters():
for p in other.iter_parameters():
assert isinstance(p, Parameter)
v = self.vars.get(p.name, None)
if v is None:
......
......@@ -155,7 +155,7 @@ def train_main(use_cuda):
]
feeder = fluid.DataFeeder(feed_list, place)
for pass_id in xrange(1):
for pass_id in range(1):
for batch_id, data in enumerate(train_reader()):
outs = exe.run(main_program,
feed=feeder.feed(data),
......@@ -204,8 +204,8 @@ def decode_main(use_cuda):
]
feeder = fluid.DataFeeder(feed_list, place)
data = train_reader().next()
feed_dict = feeder.feed(map(lambda x: [x[0]], data))
data = next(train_reader())
feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores
......@@ -214,7 +214,7 @@ def decode_main(use_cuda):
feed=feed_dict,
fetch_list=[translation_ids, translation_scores],
return_numpy=False)
print result_ids.lod()
print(result_ids.lod())
class TestBeamSearchDecoder(unittest.TestCase):
......
......@@ -301,7 +301,7 @@ class DistSeResneXt2x2:
trainer_id=trainer_id)
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
......@@ -309,7 +309,7 @@ class DistSeResneXt2x2:
reader_generator = train_reader()
first_loss, = exe.run(fetch_list=[avg_cost.name])
print(first_loss)
for i in xrange(5):
for i in range(5):
loss, = exe.run(fetch_list=[avg_cost.name])
last_loss, = exe.run(fetch_list=[avg_cost.name])
print(last_loss)
......
......@@ -25,14 +25,16 @@ from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from .testsuite import create_op, set_input, append_input_output, append_loss_ops
from functools import reduce
from six.moves import zip
def randomize_probability(batch_size, class_num, dtype='float32'):
prob = np.random.uniform(
0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
prob_sum = prob.sum(axis=1)
for i in xrange(len(prob)):
for i in range(len(prob)):
prob[i] /= prob_sum[i]
return prob
......@@ -86,7 +88,7 @@ def get_numeric_gradient(place,
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
for i in range(tensor_size):
if in_place:
set_input(scope, op, inputs, place)
......@@ -139,7 +141,7 @@ class OpTest(unittest.TestCase):
assert isinstance(
numpy_dict,
dict), "self.inputs, self.outputs must be numpy_dict"
for var_name, var_value in numpy_dict.iteritems():
for var_name, var_value in numpy_dict.items():
if isinstance(var_value, (np.ndarray, np.generic)):
self.try_call_once(var_value.dtype)
elif isinstance(var_value, (list, tuple)):
......@@ -197,7 +199,7 @@ class OpTest(unittest.TestCase):
def _get_io_vars(self, block, numpy_inputs):
inputs = {}
for name, value in numpy_inputs.iteritems():
for name, value in numpy_inputs.items():
if isinstance(value, list):
var_list = [
block.var(sub_name) for sub_name, sub_value in value
......@@ -240,7 +242,7 @@ class OpTest(unittest.TestCase):
# if the fetch_list is customized by user, we use it directly.
# if not, fill the fetch_list by the user configured outputs in test.
if len(fetch_list) == 0:
for var_name, var in outputs.iteritems():
for var_name, var in outputs.items():
if isinstance(var, list):
for v in var:
fetch_list.append(v)
......@@ -252,7 +254,7 @@ class OpTest(unittest.TestCase):
fetch_list.append(str(out_name))
# fetch_list = map(block.var, fetch_list)
if not isinstance(fetch_list[0], fluid.framework.Variable):
fetch_list = map(block.var, fetch_list)
fetch_list = list(map(block.var, fetch_list))
outs = executor.run(program,
feed=feed_map,
fetch_list=fetch_list,
......@@ -334,7 +336,7 @@ class OpTest(unittest.TestCase):
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
for a, b, name in zip(numeric_grads, analytic_grads, names):
abs_a = np.abs(a)
abs_a[abs_a < 1e-3] = 1
......@@ -460,6 +462,6 @@ class OpTest(unittest.TestCase):
use_cuda=use_cuda, loss_name=loss.name, main_program=program)
else:
executor = Executor(place)
return map(np.array,
executor.run(prog, feed_dict, fetch_list,
return_numpy=False))
return list(
map(np.array,
executor.run(prog, feed_dict, fetch_list, return_numpy=False)))
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestAccuracyOp(OpTest):
......@@ -26,7 +26,7 @@ class TestAccuracyOp(OpTest):
label = np.random.randint(0, 2, (n, 1))
self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
num_correct = 0
for rowid in xrange(n):
for rowid in range(n):
for ele in indices[rowid]:
if ele == label[rowid]:
num_correct += 1
......
......@@ -15,9 +15,9 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
from scipy.special import expit
from test_activation_op import TestRelu, TestTanh, TestSqrt, TestAbs
from .test_activation_op import TestRelu, TestTanh, TestSqrt, TestAbs
class TestMKLDNNReluDim2(TestRelu):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
from scipy.special import expit
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestAdadeltaOp1(OpTest):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
from .op_test import OpTest
import math
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
......@@ -273,7 +273,7 @@ class TestSparseAdamOp(unittest.TestCase):
self.setup(scope, place)
op_args = dict()
for key, np_array in self.dense_inputs.iteritems():
for key, np_array in self.dense_inputs.items():
var = scope.var(key).get_tensor()
var.set(np_array, place)
op_args[key] = key
......@@ -290,7 +290,7 @@ class TestSparseAdamOp(unittest.TestCase):
adam_op = Operator("adam", **op_args)
adam_op.run(scope, place)
for key, np_array in self.outputs.iteritems():
for key, np_array in self.outputs.items():
out_var = scope.var(key).get_tensor()
actual = np.array(out_var)
actual = actual.reshape([actual.size])
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestAdamaxOp1(OpTest):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import sys
import math
from op_test import OpTest
from .op_test import OpTest
def anchor_generator_in_python(input_feat, anchor_sizes, aspect_ratios,
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class BaseTestCase(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestArgsortOp(OpTest):
......
......@@ -80,8 +80,9 @@ class TestArrayReadWrite(unittest.TestCase):
append_backward(total_sum_scaled)
g_vars = map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x])
g_vars = list(
map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x]))
g_out = [
item.sum()
for item in exe.run(
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import op_test
from . import op_test
import numpy
import unittest
......
......@@ -14,7 +14,7 @@
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import op_test
from . import op_test
import numpy
import unittest
import paddle.fluid.framework as framework
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
from paddle.fluid import metrics
......
......@@ -17,9 +17,9 @@ import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest
from .op_test import OpTest
from paddle.fluid.framework import grad_var_name
from test_batch_norm_op import TestBatchNormOpInference, TestBatchNormOpTraining, _reference_training, _reference_grad
from .test_batch_norm_op import TestBatchNormOpInference, TestBatchNormOpTraining, _reference_training, _reference_grad
class TestMKLDNNBatchNormOpTraining(TestBatchNormOpTraining):
......
......@@ -17,7 +17,7 @@ import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest
from .op_test import OpTest
from paddle.fluid.framework import grad_var_name
......@@ -415,7 +415,7 @@ class TestBatchNormOpTraining(unittest.TestCase):
self.__assert_close(scale_grad, out[6], "scale_grad")
self.__assert_close(bias_grad, out[7], "bias_grad")
print "op test forward passed: ", str(place), data_layout
print("op test forward passed: ", str(place), data_layout)
places = [core.CPUPlace()]
......
......@@ -59,8 +59,7 @@ class BeamSearchOpTester(unittest.TestCase):
np.allclose(
np.array(selected_scores),
np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]))
self.assertEqual(selected_ids.lod(),
[[0L, 2L, 4L], [0L, 1L, 2L, 3L, 4L]])
self.assertEqual(selected_ids.lod(), [[0, 2, 4], [0, 1, 2, 3, 4]])
def _create_pre_ids(self):
np_data = np.array([[1, 2, 3, 4]], dtype='int64')
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestBilinearTensorProductOp(OpTest):
......
......@@ -13,7 +13,7 @@
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def bipartite_match(distance, match_indices, match_dist):
......@@ -48,7 +48,7 @@ def bipartite_match(distance, match_indices, match_dist):
def argmax_match(distance, match_indices, match_dist, threshold):
r, c = distance.shape
for j in xrange(c):
for j in range(c):
if match_indices[j] != -1:
continue
col_dist = distance[:, j]
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import sys
import math
from op_test import OpTest
from .op_test import OpTest
def box_coder(target_box, prior_box, prior_box_var, output_box, code_type,
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import op_test
from . import op_test
import unittest
import numpy as np
import paddle.fluid.core as core
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class Segment(object):
......@@ -63,7 +63,7 @@ class TestChunkEvalOp(OpTest):
# generate chunk beginnings
chunk_begins = sorted(
np.random.choice(
range(starts[-1]), num_chunks, replace=False))
list(range(starts[-1])), num_chunks, replace=False))
seq_chunk_begins = []
begin_idx = 0
# divide chunks into sequences
......@@ -93,7 +93,7 @@ class TestChunkEvalOp(OpTest):
self.num_infer_chunks + self.num_label_chunks
- self.num_correct_chunks)
correct_chunks = np.random.choice(
range(len(chunks)), self.num_correct_chunks, replace=False)
list(range(len(chunks))), self.num_correct_chunks, replace=False)
infer_chunks = np.random.choice(
[x for x in range(len(chunks)) if x not in correct_chunks],
self.num_infer_chunks - self.num_correct_chunks,
......@@ -138,7 +138,8 @@ class TestChunkEvalOp(OpTest):
infer.fill(self.num_chunk_types * self.num_tag_types)
label = np.copy(infer)
starts = np.random.choice(
range(1, self.batch_size), self.num_sequences - 1,
list(range(1, self.batch_size)),
self.num_sequences - 1,
replace=False).tolist()
starts.extend([0, self.batch_size])
starts = sorted(starts)
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestClipByNormOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestClipOp(OpTest):
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import op_test
from . import op_test
import unittest
import numpy
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestConcatOp(OpTest):
......
......@@ -39,7 +39,7 @@ class ConditionalBlockTest(unittest.TestCase):
x = numpy.random.random(size=(10, 1)).astype('float32')
outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
print outs
print(outs)
loss = layers.mean(out)
append_backward(loss=loss)
outs = exe.run(
......@@ -47,7 +47,7 @@ class ConditionalBlockTest(unittest.TestCase):
fetch_list=[
default_main_program().block(0).var(data.name + "@GRAD")
])[0]
print outs
print(outs)
if __name__ == '__main__':
......
......@@ -14,7 +14,7 @@
import unittest
from test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride
from .test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride
class TestMKLDNN(TestConv2dOp):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def conv2d_forward_naive(input, filter, group, conv_param):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def conv2dtranspose_forward_naive(input_, filter_, attrs):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def conv3d_forward_naive(input, filter, group, conv_param):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def conv3dtranspose_forward_naive(input_, filter_, attrs):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def conv_shift_forward(x, y):
......@@ -22,8 +22,8 @@ def conv_shift_forward(x, y):
M = x.shape[1]
N = y.shape[1]
y_half_width = (N - 1) / 2
for i in xrange(M):
for j in xrange(N):
for i in range(M):
for j in range(N):
out[:, i] += x[:, (i + j + M - y_half_width) % M] * y[:, j]
return out
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestCosSimOp(OpTest):
......
......@@ -18,7 +18,7 @@ import paddle.fluid.layers as layers
class TestDocString(unittest.TestCase):
def test_layer_doc_string(self):
print layers.dropout.__doc__
print(layers.dropout.__doc__)
if __name__ == '__main__':
......
......@@ -16,7 +16,7 @@ import unittest
import random
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class CRFDecoding(object):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def crop(data, offsets, crop_shape):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest, randomize_probability
from .op_test import OpTest, randomize_probability
class TestCrossEntropyOp1(OpTest):
......
......@@ -15,8 +15,8 @@
import sys
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax
from .op_test import OpTest
from .test_softmax_op import stable_softmax
def CTCAlign(input, lod, blank, merge_repeated):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSumOp1(OpTest):
......
......@@ -21,7 +21,7 @@ import numpy as np
class TestDataBalance(unittest.TestCase):
def prepare_data(self):
def fake_data_generator():
for n in xrange(self.total_ins_num):
for n in range(self.total_ins_num):
yield np.ones((3, 4)) * n, n
# Prepare data
......@@ -41,7 +41,7 @@ class TestDataBalance(unittest.TestCase):
def prepare_lod_data(self):
def fake_data_generator():
for n in xrange(1, self.total_ins_num + 1):
for n in range(1, self.total_ins_num + 1):
d1 = (np.ones((n, 3)) * n).astype('float32')
d2 = (np.array(n).reshape((1, 1))).astype('int32')
yield d1, d2
......@@ -58,9 +58,9 @@ class TestDataBalance(unittest.TestCase):
(0, 1))
]
lod = [0]
for _ in xrange(self.batch_size):
for _ in range(self.batch_size):
try:
ins = generator.next()
ins = next(generator)
except StopIteration:
eof = True
break
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestDecayedAdagradOp1(OpTest):
......
......@@ -39,7 +39,7 @@ class TestDefaultScopeFuncs(unittest.TestCase):
self.assertTrue(i.is_int())
self.assertEqual(10, i.get_int())
for _ in xrange(10):
for _ in range(10):
scoped_function(__new_scope__)
......
......@@ -17,7 +17,7 @@ import numpy as np
import sys
import collections
import math
from op_test import OpTest
from .op_test import OpTest
class TestDetectionMAPOp(OpTest):
......@@ -176,7 +176,7 @@ class TestDetectionMAPOp(OpTest):
true_pos[label].append([score, tp])
false_pos[label].append([score, fp])
for (label, label_pos_num) in label_count.items():
for (label, label_pos_num) in list(label_count.items()):
if label_pos_num == 0 or label not in true_pos: continue
label_true_pos = true_pos[label]
label_false_pos = false_pos[label]
......
......@@ -25,6 +25,7 @@ import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
SEED = 1
DTYPE = "float32"
......@@ -172,12 +173,12 @@ class TestDistMnist(unittest.TestCase):
exe.run(fluid.default_startup_program())
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10):
for pass_id in range(10):
for batch_id, data in enumerate(train_reader()):
exe.run(trainer_prog, feed=feeder.feed(data))
......
......@@ -151,7 +151,7 @@ class TestBasicModelWithLargeBlockSize(TranspilerTest):
["fill_constant", "fill_constant", "fill_constant"])
# the variable #fc_w will be split into two blocks
fc_w_var = startup2.global_block().var("fc_w")
self.assertEqual(fc_w_var.shape, (1000L, 1000L))
self.assertEqual(fc_w_var.shape, (1000, 1000))
# all parameters should be optimized on pserver
pserver_params = []
......@@ -184,9 +184,9 @@ class TestNoSliceVar(TranspilerTest):
_, startup = self.get_pserver(self.pserver1_ep, config)
_, startup2 = self.get_pserver(self.pserver2_ep, config)
if startup.global_block().vars.has_key("fc_w"):
if "fc_w" in startup.global_block().vars:
fc_w_var = startup.global_block().vars["fc_w"]
elif startup2.global_block().vars.has_key("fc_w"):
elif "fc_w" in startup2.global_block().vars:
fc_w_var = startup2.global_block().vars["fc_w"]
self.assertEqual(fc_w_var.shape, (1000, 1000))
......
......@@ -183,12 +183,12 @@ class TestDistMnist(unittest.TestCase):
exec_strategy=exec_strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10):
for pass_id in range(10):
for batch_id, data in enumerate(train_reader()):
avg_loss_np = train_exe.run(feed=feeder.feed(data),
fetch_list=[avg_cost.name])
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
class TestDropoutOp(OpTest):
......
......@@ -135,7 +135,7 @@ class TestDynRNN(unittest.TestCase):
loss_0 = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])[0]
for _ in xrange(100):
for _ in range(100):
val = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])[0]
......
......@@ -17,7 +17,7 @@ import random
import collections
import paddle.fluid as fluid
import unittest
from decorators import *
from .decorators import *
class Memory(object):
......@@ -30,12 +30,12 @@ class Memory(object):
assert val.dtype == self.ex.dtype
self.cur = val
def next(self):
def __next__(self):
self.ex = self.cur
self.cur = None
def __next__(self):
self.next()
next(self)
def reset(self):
self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
......@@ -61,13 +61,13 @@ class BaseRNN(object):
self.num_seq = num_seq
self.inputs = collections.defaultdict(list)
for _ in xrange(num_seq):
for _ in range(num_seq):
seq_len = random.randint(1, max_seq_len - 1)
for iname in ins:
ishape = ins[iname].get('shape', None)
idtype = ins[iname].get('dtype', 'float32')
lst = []
for _ in xrange(seq_len):
for _ in range(seq_len):
lst.append(numpy.random.random(size=ishape).astype(idtype))
self.inputs[iname].append(lst)
......@@ -96,16 +96,16 @@ class BaseRNN(object):
for out in self.outputs:
retv[out] = []
for seq_id in xrange(self.num_seq):
for seq_id in range(self.num_seq):
for mname in self.mems:
self.mems[mname].reset()
for out in self.outputs:
self.outputs[out].next_sequence()
iname0 = self.inputs.keys()[0]
iname0 = list(self.inputs.keys())[0]
seq_len = len(self.inputs[iname0][seq_id])
for step_id in xrange(seq_len):
for step_id in range(seq_len):
xargs = dict()
for iname in self.inputs:
......@@ -138,7 +138,7 @@ class BaseRNN(object):
for iname in self.inputs:
lod = []
np_flatten = []
for seq_id in xrange(len(self.inputs[iname])):
for seq_id in range(len(self.inputs[iname])):
seq_len = len(self.inputs[iname][seq_id])
lod.append(seq_len)
np_flatten.extend(self.inputs[iname][seq_id])
......@@ -159,8 +159,8 @@ class BaseRNN(object):
" which is not matrix")
g = numpy.zeros(shape=p.shape, dtype=p.dtype)
for i in xrange(p.shape[0]):
for j in xrange(p.shape[1]):
for i in range(p.shape[0]):
for j in range(p.shape[1]):
o = p[i][j]
p[i][j] += delta
pos = self._exe_mean_out_()
......@@ -184,7 +184,7 @@ class BaseRNN(object):
if len(item.shape) != 1:
raise ValueError("Not support")
for i in xrange(len(item)):
for i in range(len(item)):
o = item[i]
item[i] += delta
pos = self._exe_mean_out_()
......@@ -198,14 +198,14 @@ class BaseRNN(object):
if not return_one_tensor:
return grad
for i in xrange(len(grad)):
for i in range(len(grad)):
grad[i] = numpy.concatenate(grad[i])
grad = numpy.concatenate(grad)
return grad
def _exe_mean_out_(self):
outs = self.exe()
return numpy.array([o.mean() for o in outs.itervalues()]).mean()
return numpy.array([o.mean() for o in outs.values()]).mean()
class SeedFixedTestCase(unittest.TestCase):
......@@ -274,13 +274,14 @@ class TestSimpleMul(SeedFixedTestCase):
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
out, w_g, i_g = map(numpy.array,
exe.run(feed=py_rnn.to_feed(cpu),
fetch_list=[
out, self.PARAM_NAME + "@GRAD",
self.DATA_NAME + "@GRAD"
],
return_numpy=False))
out, w_g, i_g = list(
map(numpy.array,
exe.run(feed=py_rnn.to_feed(cpu),
fetch_list=[
out, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
"@GRAD"
],
return_numpy=False)))
out_by_python = py_rnn.exe()[self.OUT_NAME]
self.assertTrue(numpy.allclose(out, out_by_python))
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
......@@ -351,14 +352,15 @@ class TestSimpleMulWithMemory(SeedFixedTestCase):
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
feed = py_rnn.to_feed(cpu)
last_np, w_g, i_g = map(numpy.array,
exe.run(feed=feed,
fetch_list=[
last, self.PARAM_NAME + "@GRAD",
self.DATA_NAME + "@GRAD"
],
return_numpy=False))
last_by_py, = py_rnn.exe().values()
last_np, w_g, i_g = list(
map(numpy.array,
exe.run(feed=feed,
fetch_list=[
last, self.PARAM_NAME + "@GRAD", self.DATA_NAME +
"@GRAD"
],
return_numpy=False)))
last_by_py, = list(py_rnn.exe().values())
w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
self.assertTrue(numpy.allclose(last_np, last_by_py))
......
......@@ -67,7 +67,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
def _lodtensor_to_ndarray(self, lod_tensor):
dims = lod_tensor.shape()
ndarray = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)):
for i in range(np.product(dims)):
ndarray.ravel()[i] = lod_tensor._get_float_element(i)
return ndarray, lod_tensor.recursive_sequence_lengths()
......@@ -114,7 +114,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
shape=[1], dtype='int64', value=0)
step_idx.stop_gradient = True
for i in xrange(self._max_sequence_len):
for i in range(self._max_sequence_len):
step_out = fluid.layers.array_read(static_input_out_array,
step_idx)
step_out.stop_gradient = True
......@@ -140,27 +140,27 @@ class TestDyRnnStaticInput(unittest.TestCase):
static_lod = self.static_input_tensor.recursive_sequence_lengths()
static_sliced = []
cur_offset = 0
for i in xrange(len(static_lod[0])):
for i in range(len(static_lod[0])):
static_sliced.append(self.static_input_data[cur_offset:(
cur_offset + static_lod[0][i])])
cur_offset += static_lod[0][i]
static_seq_len = static_lod[0]
static_reordered = []
for i in xrange(len(x_sorted_indices)):
for i in range(len(x_sorted_indices)):
static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
static_seq_len_reordered = [
static_seq_len[x_sorted_indices[i]]
for i in xrange(len(x_sorted_indices))
for i in range(len(x_sorted_indices))
]
static_step_outs = []
static_step_lods = []
for i in xrange(self._max_sequence_len):
for i in range(self._max_sequence_len):
end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
lod = []
total_len = 0
for i in xrange(end):
for i in range(end):
lod.append(static_seq_len_reordered[i])
total_len += lod[-1]
static_step_lods.append([lod])
......@@ -174,7 +174,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
static_step_outs = self.build_graph(only_forward=True)
self.exe.run(framework.default_startup_program())
expected_outs, expected_lods = self.get_expected_static_step_outs()
for i in xrange(self._max_sequence_len):
for i in range(self._max_sequence_len):
step_out, lod = self.fetch_value(static_step_outs[i])
self.assertTrue(np.allclose(step_out, expected_outs[i]))
self.assertTrue(np.allclose(lod, expected_lods[i]))
......@@ -189,7 +189,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
# calculate numeric gradients
tensor_size = np.product(static_input_shape)
for i in xrange(tensor_size):
for i in range(tensor_size):
origin = self.static_input_tensor._get_float_element(i)
x_pos = origin + self._delta
self.static_input_tensor._set_float_element(i, x_pos)
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def Levenshtein(hyp, ref):
......
......@@ -14,8 +14,8 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from test_elementwise_add_op import *
from .op_test import OpTest
from .test_elementwise_add_op import *
'''
Some tests differ from the tests defined in test_elementwise_add_op.py
because MKLDNN does not support tensors of number of dimensions 3.
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
class TestElementwiseAddOp(OpTest):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class ElementwiseDivOp(OpTest):
......
......@@ -26,7 +26,7 @@ class TestElementWiseAddOp(unittest.TestCase):
def test_with_place(place):
out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
x_grad = out_grad
sum_axis = range(0, len(self.x.shape))
sum_axis = list(range(0, len(self.x.shape)))
del sum_axis[self.axis]
y_grad = np.sum(out_grad, axis=tuple(sum_axis))
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestElementwiseOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestElementwiseOp(OpTest):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class ElementwiseMulOp(OpTest):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestElementwisePowOp(OpTest):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestElementwiseOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestExpandOpRank1(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import math
from op_test import OpTest
from .op_test import OpTest
def quantize_max_abs(x, num_bits):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestFakeQuantizeOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def fully_connected_naive(input, weights, bias_data=None):
......
......@@ -14,7 +14,7 @@
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import op_test
from . import op_test
import numpy
import unittest
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestFillConstantBatchSizeLikeWhenFirstDimIsBatchSize(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestFillConstantOp1(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestFillZerosLikeOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestFTRLOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestGatherOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestGaussianRandomBatchSizeLike(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
from test_gaussian_random_op import TestGaussianRandomOp
from .test_gaussian_random_op import TestGaussianRandomOp
class TestMKLDNN(TestGaussianRandomOp):
......
......@@ -14,7 +14,7 @@
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import decorators
from . import decorators
import unittest
......
......@@ -15,8 +15,8 @@
import unittest
import numpy as np
import math
from op_test import OpTest
from test_lstm_op import identity, sigmoid, tanh, relu
from .op_test import OpTest
from .test_lstm_op import identity, sigmoid, tanh, relu
class TestGRUOp(OpTest):
......@@ -38,7 +38,7 @@ class TestGRUOp(OpTest):
for i in range(len(seq_lens)):
seq_starts.append(seq_starts[-1] + seq_lens[i])
sorted_seqs = sorted(
range(len(seq_lens)), lambda x, y: seq_lens[y] - seq_lens[x])
list(range(len(seq_lens))), lambda x, y: seq_lens[y] - seq_lens[x])
num_batch = seq_lens[sorted_seqs[0]]
for batch_idx in range(num_batch):
idx_in_seq = []
......@@ -74,15 +74,16 @@ class TestGRUOp(OpTest):
def gru(self):
input, lod = self.inputs['Input']
w = self.inputs['Weight']
b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros(
b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros(
(1, self.frame_size * 3))
batch_gate = self.outputs['BatchGate']
batch_reset_hidden_prev = self.outputs['BatchResetHiddenPrev']
batch_hidden = self.outputs['BatchHidden']
hidden = self.outputs['Hidden']
idx_in_seq_list = self.idx_in_seq_list
h_p = self.inputs['H0'][self.sorted_seqs] if self.inputs.has_key(
'H0') else np.zeros((len(idx_in_seq_list[0]), self.frame_size))
h_p = self.inputs['H0'][
self.sorted_seqs] if 'H0' in self.inputs else np.zeros(
(len(idx_in_seq_list[0]), self.frame_size))
num_batch = len(idx_in_seq_list)
end_idx = 0
for batch_idx in range(num_batch):
......
......@@ -15,7 +15,7 @@
import math
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class GRUActivationType(OpTest):
......@@ -76,7 +76,7 @@ class TestGRUUnitOp(OpTest):
x = self.inputs['Input']
h_p = self.inputs['HiddenPrev']
w = self.inputs['Weight']
b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros(
b = self.inputs['Bias'] if 'Bias' in self.inputs else np.zeros(
(1, frame_size * 3))
g = x + np.tile(b, (batch_size, 1))
w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape(
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestHingeLossOp(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import math
from op_test import OpTest
from .op_test import OpTest
def find_latest_set(num):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def huber_loss_forward(val, delta):
......
......@@ -13,7 +13,7 @@
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def get_output_shape(attrs, in_shape, img_real_size):
......
......@@ -43,7 +43,7 @@ class TestLayer(unittest.TestCase):
hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
fluid.layers.batch_norm(input=hidden2)
print str(main_program)
print(str(main_program))
def test_dropout_layer(self):
main_program = Program()
......@@ -53,7 +53,7 @@ class TestLayer(unittest.TestCase):
name='pixel', shape=[3, 48, 48], dtype='float32')
fluid.layers.dropout(x=images, dropout_prob=0.5)
print str(main_program)
print(str(main_program))
def test_img_conv_group(self):
main_program = Program()
......@@ -65,7 +65,7 @@ class TestLayer(unittest.TestCase):
conv1 = conv_block(images, 64, 2, [0.3, 0])
conv_block(conv1, 256, 3, [0.4, 0.4, 0])
print str(main_program)
print(str(main_program))
def test_elementwise_add_with_act(self):
main_program = Program()
......
......@@ -48,7 +48,7 @@ class TestBook(unittest.TestCase):
exe.run(init_program, feed={}, fetch_list=[])
for i in xrange(100):
for i in range(100):
tensor_x = np.array(
[[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
......
......@@ -17,7 +17,7 @@ import numpy as np
import numpy.random as random
import sys
import math
from op_test import OpTest
from .op_test import OpTest
class TestIOUSimilarityOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestEmpty(OpTest):
......
......@@ -14,7 +14,7 @@
import numpy as np
import unittest
from op_test import OpTest
from .op_test import OpTest
class TestL1NormOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestLabelSmoothOp(OpTest):
......
......@@ -17,6 +17,7 @@ import numpy as np
from operator import mul
import paddle.fluid.core as core
import paddle.fluid as fluid
from functools import reduce
np.random.random(123)
......
......@@ -20,7 +20,7 @@ from paddle.fluid.layers.device import get_places
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
import decorators
from . import decorators
class TestBook(unittest.TestCase):
......@@ -279,7 +279,7 @@ class TestBook(unittest.TestCase):
def test_nce(self):
window_size = 5
words = []
for i in xrange(window_size):
for i in range(window_size):
words.append(
layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
......@@ -288,7 +288,7 @@ class TestBook(unittest.TestCase):
label_word = int(window_size / 2) + 1
embs = []
for i in xrange(window_size):
for i in range(window_size):
if i == label_word:
continue
......
......@@ -16,7 +16,7 @@ import unittest
import random
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class LinearChainCrfForward(object):
......
......@@ -20,7 +20,7 @@ import subprocess
import time
import unittest
from multiprocessing import Process
from op_test import OpTest
from .op_test import OpTest
def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
......
......@@ -36,7 +36,7 @@ class TestLoDRankTable(unittest.TestCase):
exe.run(scope=scope, feed={'x': tensor})
var = scope.find_var(rank_table.name)
table = var.get_lod_rank_table()
self.assertEqual([(0, 5), (1, 1), (2, 1)], table.items())
self.assertEqual([(0, 5), (1, 1), (2, 1)], list(table.items()))
if __name__ == '__main__':
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestLodResetOpByAttr(OpTest):
......
......@@ -24,7 +24,7 @@ class TestLoDTensorArray(unittest.TestCase):
tensor_array = arr.get_lod_tensor_array()
self.assertEqual(0, len(tensor_array))
cpu = core.CPUPlace()
for i in xrange(10):
for i in range(10):
t = core.LoDTensor()
t.set(numpy.array([i], dtype='float32'), cpu)
t.set_recursive_sequence_lengths([[1]])
......@@ -32,7 +32,7 @@ class TestLoDTensorArray(unittest.TestCase):
self.assertEqual(10, len(tensor_array))
for i in xrange(10):
for i in range(10):
t = tensor_array[i]
self.assertEqual(numpy.array(t), numpy.array([i], dtype='float32'))
self.assertEqual([[1]], t.recursive_sequence_lengths())
......
......@@ -35,8 +35,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_recursive_sequence_lengths([[3, 6, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
expect = [
numpy.array(x).astype('int32')
for x in [[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]
]
self.main(
tensor=tensor,
expect_array=expect,
......@@ -48,8 +50,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set(
numpy.arange(10).reshape(10, 1).astype('int32'), self.place())
tensor.set_recursive_sequence_lengths([[3, 6, 0, 1]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
expect = [
numpy.array(x).astype('int32')
for x in [[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]]
]
self.main(
tensor=tensor,
expect_array=expect,
......@@ -111,8 +115,8 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
expect = [
numpy.array(
item, dtype='int32')
for item in [[21, 0, 1, 2, 3, 4, 5, 6, 46, 47, 48, 49], range(
22, 39) + range(7, 21), range(39, 46)]
for item in [[21, 0, 1, 2, 3, 4, 5, 6, 46, 47, 48, 49], list(
range(22, 39)) + list(range(7, 21)), list(range(39, 46))]
]
lod = [[[1, 2, 1], [1, 3, 4, 4]], [[4, 3], [1, 4, 4, 8, 4, 6, 4]],
[[2], [6, 1]]]
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestLogLossOp(OpTest):
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import op_test
from . import op_test
import unittest
import numpy as np
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
......@@ -40,7 +40,7 @@ class TestLookupTableOpWithPadding(TestLookupTableOp):
ids = np.squeeze(self.inputs['Ids'])
padding_idx = np.random.choice(ids, 1)[0]
self.outputs['Out'][ids == padding_idx] = np.zeros(31)
self.attrs = {'padding_idx': long(padding_idx)}
self.attrs = {'padding_idx': int(padding_idx)}
self.check_output()
def test_check_grad(self):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
from test_lrn_op import TestLRNOp
from .test_lrn_op import TestLRNOp
class TestLRNMKLDNNOp(TestLRNOp):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestLRNOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def sigmoid_np(x):
......
......@@ -13,7 +13,7 @@
#limitations under the License.
import unittest
import numpy as np
import test_lstm_op as LstmTest
from . import test_lstm_op as LstmTest
ACTIVATION = {
'identity': LstmTest.identity,
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMarginRankLossOp(OpTest):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
import decorators
from . import decorators
import paddle.fluid as fluid
import numpy
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def maxout_forward_naive(input, groups):
......
......@@ -15,7 +15,7 @@
from __future__ import division
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def compute_mean_iou(predictions, labels, num_classes, in_wrongs, in_corrects,
......@@ -80,7 +80,7 @@ class TestMeanIOUOp(OpTest):
'InCorrects': in_corrects,
'InMeanIou': in_mean_ious
}
self.attrs = {'num_classes': long(self.num_classes)}
self.attrs = {'num_classes': int(self.num_classes)}
mean_iou, out_wrong, out_correct = compute_mean_iou(
predictions, labels, self.num_classes, in_wrongs, in_corrects,
in_mean_ious)
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMeanOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMergeIdsOp(OpTest):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import sys
import math
from op_test import OpTest
from .op_test import OpTest
class TestMineHardExamplesOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMinusOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def modified_huber_loss_forward(val):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMomentumOp1(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
class TestMulOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
import copy
from op_test import OpTest
from .op_test import OpTest
def iou(box_a, box_b):
......@@ -112,7 +112,7 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
if keep_top_k > -1 and num_det > keep_top_k:
score_index = []
for c, indices in selected_indices.iteritems():
for c, indices in selected_indices.items():
for idx in indices:
score_index.append((scores[c][idx], c, idx))
......@@ -143,7 +143,7 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
lod.append(nmsed_num)
if nmsed_num == 0: continue
for c, indices in nmsed_outs.iteritems():
for c, indices in nmsed_outs.items():
for idx in indices:
xmin, ymin, xmax, ymax = boxes[n][idx][:]
det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax])
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestMultiplexOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def nce(input, weight, bias, sample_weight, labels, num_classes,
......@@ -66,7 +66,7 @@ class TestNCE(OpTest):
self.attrs = {
'num_total_classes': num_classes,
'num_neg_samples': num_neg_samples,
'custom_neg_classes': range(num_neg_samples)
'custom_neg_classes': list(range(num_neg_samples))
}
self.inputs = {
'Input': input,
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def l2_norm(x, axis, epsilon):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import math
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
......@@ -28,13 +28,13 @@ class TestOneHotOp(OpTest):
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in xrange(np.product(x.shape)):
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
......@@ -51,13 +51,13 @@ class TestOneHotOp_default_dtype(OpTest):
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in xrange(sum(x_lod[0]))]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in xrange(np.product(x.shape)):
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
......@@ -76,7 +76,7 @@ class TestOneHotOp_exception(OpTest):
self.dimension = 12
self.x = core.LoDTensor()
x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in xrange(sum(x_lod[0]))]
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place)
self.x.set_recursive_sequence_lengths(x_lod)
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestPadOp(OpTest):
......
......@@ -167,10 +167,10 @@ class TestCRFModel(unittest.TestCase):
place=fluid.CPUPlace())
data = train_data()
for i in xrange(10):
for i in range(10):
cur_batch = next(data)
print pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name])[0]
print(pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name])[0])
@unittest.skip(reason="CI hangs")
def test_update_sparse_parameter_all_reduce(self):
......
......@@ -71,7 +71,7 @@ class TestFetchOp(unittest.TestCase):
fetch_list = []
all_vars = main.global_block().vars
for k, v in all_vars.iteritems():
for k, v in all_vars.items():
if 'tmp' not in k and k[0] is not '_' or v.persistable:
fetch_list.append(k)
......@@ -90,7 +90,7 @@ class TestFetchOp(unittest.TestCase):
iters = 3
train_inputs = []
for i in range(iters):
train_inputs.append(tst_reader_iter.next())
train_inputs.append(next(tst_reader_iter))
os.environ['CPU_NUM'] = str(4)
if core.is_compiled_with_cuda():
......@@ -133,7 +133,7 @@ class TestFeedParallel(unittest.TestCase):
for batch_id, data in enumerate(reader()):
loss_np = pe.run(feed=data, fetch_list=[loss.name])[0]
print batch_id, loss_np
print(batch_id, loss_np)
if batch_id == 2:
break
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from parallel_executor_test_base import TestParallelExecutorBase
from .parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
......@@ -37,7 +37,7 @@ def simple_fc_net(use_feed):
reader = fluid.layers.io.double_buffer(reader)
img, label = fluid.layers.read_file(reader)
hidden = img
for _ in xrange(4):
for _ in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
......@@ -64,7 +64,7 @@ def fc_with_batchnorm(use_feed):
img, label = fluid.layers.read_file(reader)
hidden = img
for _ in xrange(1):
for _ in range(1):
hidden = fluid.layers.fc(
hidden,
size=200,
......@@ -131,9 +131,9 @@ class TestMNIST(TestParallelExecutorBase):
use_reduce=True)
for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-4)
self.assertAlmostEqual(loss[0], loss[1], delta=1e-4)
# simple_fc
def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
......@@ -184,9 +184,9 @@ class TestMNIST(TestParallelExecutorBase):
use_parallel_executor=True)
for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
self.assertAlmostEqual(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
self.assertAlmostEqual(p_l, single_last_loss[0], delta=1e-6)
def test_simple_fc_parallel_accuracy(self):
self.check_simple_fc_parallel_accuracy(True)
......
......@@ -17,7 +17,7 @@ import paddle.fluid.layers.ops as ops
from paddle.fluid.initializer import init_on_cpu
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.core as core
from parallel_executor_test_base import TestParallelExecutorBase
from .parallel_executor_test_base import TestParallelExecutorBase
import unittest
import math
import os
......@@ -191,9 +191,9 @@ class TestResnet(TestParallelExecutorBase):
optimizer=_optimizer)
for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
self.assertAlmostEqual(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
self.assertAlmostEqual(p_l, single_last_loss[0], delta=1e-6)
def test_seresnext_with_learning_rate_decay(self):
self.check_resnet_convergence_with_learning_rate_decay(True, False)
......
......@@ -25,7 +25,7 @@ def simple_fc_net():
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = img
for _ in xrange(4):
for _ in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
......@@ -71,7 +71,7 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
share_vars_from=train_exe,
build_strategy=build_strategy)
for i in xrange(5):
for i in range(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
......
......@@ -13,9 +13,9 @@
# limitations under the License.
import paddle.fluid as fluid
import transformer_model
from . import transformer_model
import numpy as np
from parallel_executor_test_base import TestParallelExecutorBase
from .parallel_executor_test_base import TestParallelExecutorBase
import unittest
import paddle
import paddle.dataset.wmt16 as wmt16
......
......@@ -102,7 +102,7 @@ class BaseParallelForTest(unittest.TestCase):
Fetched numpy arrays.
"""
if isinstance(fetch, basestring):
if isinstance(fetch, str):
fetch = [fetch]
main = fluid.Program()
startup = fluid.Program()
......@@ -124,7 +124,7 @@ class BaseParallelForTest(unittest.TestCase):
data = [data]
with pd.do():
ins = map(pd.read_input, data)
ins = list(map(pd.read_input, data))
if len(ins) == 1:
ins = ins[0]
loss = generator.send(ins) # patch input
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def PolygonBoxRestore(input):
......@@ -23,9 +23,9 @@ def PolygonBoxRestore(input):
geo_channels = shape[1]
h = shape[2]
w = shape[3]
h_indexes = np.array(range(h) * w).reshape(
h_indexes = np.array(list(range(h)) * w).reshape(
[w, h]).transpose()[np.newaxis, :] # [1, h, w]
w_indexes = np.array(range(w) * h).reshape(
w_indexes = np.array(list(range(w)) * h).reshape(
[h, w])[np.newaxis, :] # [1, h, w]
indexes = np.concatenate(
(w_indexes, h_indexes))[np.newaxis, :] # [1, 2, h, w]
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import unittest
from test_pool2d_op import TestPool2d_Op, TestCase1, TestCase2, TestCase3, TestCase4, TestCase5
from .test_pool2d_op import TestPool2d_Op, TestCase1, TestCase2, TestCase3, TestCase4, TestCase5
class TestMKLDNNCase1(TestPool2d_Op):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def max_pool2D_forward_naive(x,
......@@ -35,8 +35,8 @@ def max_pool2D_forward_naive(x,
) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out):
for j in xrange(W_out):
for i in range(H_out):
for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0))
......@@ -63,8 +63,8 @@ def avg_pool2D_forward_naive(x,
) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out):
for j in xrange(W_out):
for i in range(H_out):
for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0))
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def max_pool3D_forward_naive(x,
......@@ -38,13 +38,13 @@ def max_pool3D_forward_naive(x,
) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out):
for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out):
for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out):
for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
......@@ -72,13 +72,13 @@ def avg_pool3D_forward_naive(x,
) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out):
for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out):
for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out):
for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
......@@ -29,21 +29,21 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
mask = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out):
for k in range(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out):
for i in range(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out):
for j in range(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
for n in xrange(N):
for c in xrange(C):
for n in range(N):
for c in range(C):
arr = x_masked[n, c, :, :, :]
index = np.where(arr == np.max(arr))
sub_deep = index[0][0]
......@@ -67,8 +67,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
out = np.zeros((N, C, H_out, W_out))
mask = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out):
for j in xrange(W_out):
for i in range(H_out):
for j in range(W_out):
r_start = np.max((i * strides[0] - paddings[0], 0))
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
c_start = np.max((j * strides[1] - paddings[1], 0))
......@@ -77,8 +77,8 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
for n in xrange(N):
for c in xrange(C):
for n in range(N):
for c in range(C):
arr = x_masked[n, c, :, :]
index = np.where(arr == np.max(arr))
sub_row = index[0][0]
......
......@@ -15,7 +15,7 @@
import unittest
import itertools
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def py_pnpair_op(score, label, query, column=-1, weight=None):
......@@ -32,7 +32,7 @@ def py_pnpair_op(score, label, query, column=-1, weight=None):
# accumulate statistics
pos, neg, neu = 0, 0, 0
for _, ranks in predictions.items():
for _, ranks in list(predictions.items()):
for e1, e2 in itertools.combinations(ranks, 2):
s1, s2, l1, l2, w1, w2 = e1[0], e2[0], e1[1], e2[1], e1[2], e2[2]
w = (w1 + w2) * 0.5
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def calc_precision(tp_count, fp_count):
......@@ -39,19 +39,19 @@ def get_states(idxs, labels, cls_num, weights=None):
ins_num = idxs.shape[0]
# TP FP TN FN
states = np.zeros((cls_num, 4)).astype('float32')
for i in xrange(ins_num):
for i in range(ins_num):
w = weights[i] if weights is not None else 1.0
idx = idxs[i][0]
label = labels[i][0]
if idx == label:
states[idx][0] += w
for j in xrange(cls_num):
for j in range(cls_num):
states[j][2] += w
states[idx][2] -= w
else:
states[label][3] += w
states[idx][1] += w
for j in xrange(cls_num):
for j in range(cls_num):
states[j][2] += w
states[label][2] -= w
states[idx][2] -= w
......@@ -64,7 +64,7 @@ def compute_metrics(states, cls_num):
total_fn_count = 0.0
macro_avg_precision = 0.0
macro_avg_recall = 0.0
for i in xrange(cls_num):
for i in range(cls_num):
total_tp_count += states[i][0]
total_fp_count += states[i][1]
total_fn_count += states[i][3]
......@@ -90,9 +90,9 @@ class TestPrecisionRecallOp_0(OpTest):
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num)
metrics = compute_metrics(states, cls_num)
......@@ -117,10 +117,10 @@ class TestPrecisionRecallOp_1(OpTest):
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = get_states(idxs, labels, cls_num, weights)
......@@ -151,10 +151,10 @@ class TestPrecisionRecallOp_2(OpTest):
ins_num = 64
cls_num = 10
max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
idxs = np.random.choice(xrange(cls_num), ins_num).reshape(
idxs = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32')
labels = np.random.choice(xrange(cls_num), ins_num).reshape(
labels = np.random.choice(range(cls_num), ins_num).reshape(
(ins_num, 1)).astype('int32')
states = np.random.randint(0, 30, (cls_num, 4)).astype('float32')
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class PReluTest(OpTest):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import sys
import math
from op_test import OpTest
from .op_test import OpTest
class TestPriorBoxOp(OpTest):
......
......@@ -183,7 +183,7 @@ class TestBlockDesc(unittest.TestCase):
op2 = block.append_op()
op0 = block._prepend_op()
all_ops = []
for idx in xrange(0, block.op_size()):
for idx in range(0, block.op_size()):
all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op1, op2])
......@@ -205,7 +205,7 @@ class TestBlockDesc(unittest.TestCase):
program._sync_with_cpp()
all_ops = []
for idx in xrange(0, block.op_size()):
for idx in range(0, block.op_size()):
all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op2])
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestProximalAdagradOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestProximalGDOp(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
class TestRandomCropOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestRankLossOp(OpTest):
......
......@@ -21,7 +21,7 @@ import unittest
class TestReaderReset(unittest.TestCase):
def prepare_data(self):
def fake_data_generator():
for n in xrange(self.total_ins_num):
for n in range(self.total_ins_num):
yield np.ones(self.ins_shape) * n, n
# Prepare data
......
......@@ -203,12 +203,12 @@ class RecurrentOpTest1(unittest.TestCase):
num_grad[idx], ana_grad[idx], rtol=0.1).all())
def check_forward(self):
print 'test recurrent op forward'
print('test recurrent op forward')
pd_output = self.forward()
py_output = self.py_rnn.forward()
print 'pd_output', pd_output
print('pd_output', pd_output)
print
print 'py_output', py_output
print('py_output', py_output)
self.assertEqual(pd_output.shape, py_output.shape)
self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
......@@ -445,7 +445,7 @@ class RecurrentOpNoMemBootTest(RecurrentOpTest1):
self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
self.output_shape)
self.output = layers.mean(self.create_rnn_op(), **self.p_info)
print self.main_program
print(self.main_program)
def create_rnn_op(self):
x = layers.data(
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSumOp(OpTest):
......
......@@ -15,7 +15,7 @@ import unittest
import paddle.fluid as fluid
import numpy as np
import decorators
from . import decorators
class TestRegistry(unittest.TestCase):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestReshapeOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestReverseOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestRmspropOp1(OpTest):
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import math
import sys
from op_test import OpTest
from .op_test import OpTest
class TestROIPoolOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def row_conv_forward(x, lod, wt):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from .op_test import OpTest
def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestScaleOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestScatterOp(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import sys
from op_test import OpTest
from .op_test import OpTest
def to_abs_offset_lod(lod):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import random
from op_test import OpTest
from .op_test import OpTest
class TestSeqProject(OpTest):
......@@ -26,9 +26,9 @@ class TestSeqProject(OpTest):
if self.context_length == 1 \
and self.context_start == 0 \
and self.padding_trainable:
print "If context_start is 0 " \
print("If context_start is 0 " \
"and context_length is 1," \
" padding_trainable should be false."
" padding_trainable should be false.")
return
# one level, batch size
......@@ -212,7 +212,7 @@ class TestSeqProjectCase2(TestSeqProject):
self.context_stride = 1
self.input_size = [self.input_row, 23]
idx = range(self.input_size[0])
idx = list(range(self.input_size[0]))
del idx[0]
offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
[self.input_size[0]]]
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSeqAvgPool(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def sequence_erase(in_seq, lod0, tokens):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSequenceExpand(OpTest):
......@@ -44,7 +44,7 @@ class TestSequenceExpand(OpTest):
out_lod = [[]]
offset = 0
for i in xrange(len(y_lod[ref_level])):
for i in range(len(y_lod[ref_level])):
repeat_num = y_lod[ref_level][i]
x_len = x_idx[i]
......@@ -55,7 +55,7 @@ class TestSequenceExpand(OpTest):
stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
out = np.vstack((out, stacked_x_sub))
if x_lod is not None:
for j in xrange(repeat_num):
for j in range(repeat_num):
out_lod[0].append(x_len)
offset += x_len
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import math
from op_test import OpTest
from .op_test import OpTest
class TestSequenceReshape(OpTest):
......@@ -35,7 +35,7 @@ class TestSequenceReshape(OpTest):
def compute_output(self, x, x_lod, dimension):
x_width = x.shape[1]
out_lod = [[]]
for i in xrange(len(x_lod[0])):
for i in range(len(x_lod[0])):
seq_len = x_lod[0][i]
offset = (seq_len * x_width) / dimension
assert int(offset) * dimension == seq_len * x_width
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import sys
from op_test import OpTest
from .op_test import OpTest
class TestSequenceSliceOp(OpTest):
......
......@@ -14,8 +14,8 @@
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax
from .op_test import OpTest
from .test_softmax_op import stable_softmax
import paddle.fluid.core as core
......
......@@ -16,7 +16,7 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
from .op_test import OpTest
class TestSGDOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestShapeOp(OpTest):
......
......@@ -48,7 +48,7 @@ class TestShrinkRNNMemoryBase(unittest.TestCase):
def sum_lodtensor(self, tensor):
sum_res = 0.0
for i in xrange(np.product(tensor.shape())):
for i in range(np.product(tensor.shape())):
sum_res += tensor._get_float_element(i)
return sum_res
......
......@@ -13,7 +13,7 @@
# limitations under the License.
import numpy as np
from op_test import OpTest
from .op_test import OpTest
from scipy.special import logit
from scipy.special import expit
import unittest
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSignOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSliceOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def smooth_l1_loss_forward(val, sigma2):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
......
......@@ -15,8 +15,8 @@
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax
from .op_test import OpTest
from .test_softmax_op import stable_softmax
class TestSoftmaxWithCrossEntropyOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSplitIdsOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSplitOp(OpTest):
......@@ -26,7 +26,7 @@ class TestSplitOp(OpTest):
self.inputs = {'X': x}
self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in xrange(len(out))]}
for i in range(len(out))]}
def _set_op_type(self):
self.op_type = "split"
......
......@@ -53,7 +53,7 @@ class TestSpliteSelectedRows(unittest.TestCase):
height_sections = [5, 5, 5, 5, 3]
# initialize output variables [out0, out1]
outs_name = ["out%d" % i for i in xrange(len(height_sections))]
outs_name = ["out%d" % i for i in range(len(height_sections))]
outs = [
scope.var(var_name).get_selected_rows() for var_name in outs_name
]
......
......@@ -14,9 +14,9 @@
import unittest
import numpy as np
from op_test import OpTest
from test_pool2d_op import max_pool2D_forward_naive
from test_pool2d_op import avg_pool2D_forward_naive
from .op_test import OpTest
from .test_pool2d_op import max_pool2D_forward_naive
from .test_pool2d_op import avg_pool2D_forward_naive
class TestSppOp(OpTest):
......@@ -26,7 +26,7 @@ class TestSppOp(OpTest):
input = np.random.random(self.shape).astype("float32")
nsize, csize, hsize, wsize = input.shape
out_level_flatten = []
for i in xrange(self.pyramid_height):
for i in range(self.pyramid_height):
bins = np.power(2, i)
kernel_size = [0, 0]
padding = [0, 0]
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSquaredL2DistanceOp_f0(OpTest):
......
......@@ -15,7 +15,7 @@
import numpy as np
import unittest
from numpy import linalg as LA
from op_test import OpTest
from .op_test import OpTest
class TestL2LossOp(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
# Correct: General.
......
......@@ -14,7 +14,7 @@
import unittest
from test_sum_op import TestSumOp
from .test_sum_op import TestSumOp
class TestMKLDNN(TestSumOp):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestSumOp(OpTest):
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
import random
from op_test import OpTest
from .op_test import OpTest
def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestTopkOp(OpTest):
......@@ -28,7 +28,7 @@ class TestTopkOp(OpTest):
self.inputs = {'X': input}
self.attrs = {'k': k}
for rowid in xrange(32):
for rowid in range(32):
row = input[rowid]
output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:]
......@@ -52,7 +52,7 @@ class TestTopkOp3d(OpTest):
self.inputs = {'X': input_flat_2d}
self.attrs = {'k': k}
for rowid in xrange(64):
for rowid in range(64):
row = input_flat_2d[rowid]
output[rowid] = np.sort(row)[-k:]
indices[rowid] = row.argsort()[-k:]
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestTransposeOp(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
class TestUniformRandomBatchSizeLike(OpTest):
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
......
......@@ -14,7 +14,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
......@@ -22,10 +22,10 @@ def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
out_hsize = (s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0]
out_wsize = (s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1]
out = np.zeros((s0, s1, out_hsize, out_wsize))
for nidx in xrange(s0):
for cidx in xrange(s1):
for h in xrange(s2):
for w in xrange(s3):
for nidx in range(s0):
for cidx in range(s1):
for h in range(s2):
for w in range(s3):
index = indices[nidx, cidx, h, w]
hidx = (index - index % out_wsize) / out_wsize
widx = index % out_wsize
......@@ -47,16 +47,16 @@ class TestUnpoolOp(OpTest):
self.strides[1] + 1
input = np.zeros((nsize, csize, hsize_out, wsize_out))
indices = np.zeros((nsize, csize, hsize_out, wsize_out))
for i in xrange(hsize_out):
for j in xrange(wsize_out):
for i in range(hsize_out):
for j in range(wsize_out):
r_start = np.max((i * self.strides[0] - self.paddings[0], 0))
r_end = np.min((i * self.strides[0] + self.ksize[0] - \
self.paddings[0], hsize))
c_start = np.max((j * self.strides[1] - self.paddings[1], 0))
c_end = np.min((j * self.strides[1] + self.ksize[1] - \
self.paddings[1], wsize))
for nidx in xrange(nsize):
for cidx in xrange(csize):
for nidx in range(nsize):
for cidx in range(csize):
x_masked = pre_input[nidx, cidx, r_start:r_end, \
c_start:c_end]
input[nidx, cidx, i, j] = x_masked.max()
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from .op_test import OpTest
# Correct: General.
......
......@@ -15,8 +15,8 @@
import sys
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax
from .op_test import OpTest
from .test_softmax_op import stable_softmax
CUDA_BLOCK_SIZE = 512
......
......@@ -66,7 +66,7 @@ class TestWhileOp(unittest.TestCase):
exe = Executor(cpu)
d = []
for i in xrange(3):
for i in range(3):
d.append(numpy.random.random(size=[10]).astype('float32'))
outs = exe.run(feed={'d0': d[0],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册