From 3563f1da3531d7d110c12878074834f4fe1211d4 Mon Sep 17 00:00:00 2001 From: Mimee Date: Thu, 21 Sep 2017 11:22:41 -0700 Subject: [PATCH] First half translation of operator definition. --- doc/howto/dev/new_op_en.md | 142 +++++++++++++++++++++++++++++++++++++ 1 file changed, 142 insertions(+) create mode 100644 doc/howto/dev/new_op_en.md diff --git a/doc/howto/dev/new_op_en.md b/doc/howto/dev/new_op_en.md new file mode 100644 index 00000000000..56b31157f59 --- /dev/null +++ b/doc/howto/dev/new_op_en.md @@ -0,0 +1,142 @@ +# How to write a new operator + + - [Background](#Background) + - [Implementing C++ Types](#Implementing_C++_Types) + - [Defining ProtoMaker](#Defining_ProtoMaker) + - [Defining Operator](#Defining_Operator) + + +## Background + +Here are the base types needed. For details, please refer to the design docs. + +- `framework::OperatorBase`: Operator (Op)base class. +- `framework::OpKernel`: Base class for Op computation. +- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation. +- `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API. + +An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information: + + + Information | Where is it defined +-------------- | :---------------------- +OpProtoMake definition | `.cc`files, Backward Op does not need an OpProtoMake interface. +Op definition | `.cc` files +Kernel implementation | The kernel methods shared between CPU and GPU are defined in `.h` files. CPU-specific kernels live in `.cc` files, while GPU-specific kernels are implemented in `.cu`files. +Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the GPU implementation. + + +New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. ** + + +Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel. + + +## Implementing C++ Types + + +### 1. Defining Class ProtoMaker + +Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output. + +First, define `ProtoMaker` to describe the Operator's input, output, and additional comments: + +```cpp +class MulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(Tensor), 2D tensor of size (M x K)"); + AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); + AddOutput("Out", "(Tensor), 2D tensor of size (M x N)"); + AddComment(R"DOC( +Two Element Mul Operator. +The equation is: Out = X * Y +)DOC"); + } +}; +``` + +[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)is inherited from`framework::OpProtoAndCheckerMaker`, consisting of 2 variables in the constructor: + + - `framework::OpProto` stores Operator input and variable attribute, used for generating Python API interfaces. + - `framework::OpAttrChecker` is used to validate variable attributes. + +The constructor utilizes `AddInput`, `AddOutput`, and `AddComment`, so that the corresponding information will be added to `OpProto`. + +The code above adds two inputs `X` and `Y` to `MulOp`, an output `Out`, and their corresponding descriptions, in accordance to Paddle's [naming convention](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). + + +An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37) is implemented as follows: + +```cpp +template +class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of scale operator.").NotInGradient(); + AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddComment(R"DOC(Scale operator +The equation is: Out = scale*X +)DOC"); + AddAttr("scale", "scale of scale operator.").SetDefault(1.0); + } +}; +``` + +There are two changes in this example: + +- `AddInput("X","...").NotInGradient()` expresses that input `X` is not involved in `ScaleOp`'s corresponding computation. If an input to an operator is not participating in back-propagation, please explicitly set `.NotInGradient()`. + +- `AddAttr("scale", "...").SetDefault(1.0);` adds `scale`constant as an attribute, and sets the default value to 1.0. + + +### 2. Defining Operator + +The following code defines the interface for MulOp: + +```cpp +class MulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto dim0 = ctx.Input("X")->dims(); + auto dim1 = ctx.Input("Y")->dims(); + PADDLE_ENFORCE_EQ(dim0.size(), 2, + "input X(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("X")); + PADDLE_ENFORCE_EQ(dim1.size(), 2, + "input Y(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("Y")); + PADDLE_ENFORCE_EQ( + dim0[1], dim1[0], + "First matrix's width must be equal with second matrix's height."); + ctx.Output("Out")->Resize({dim0[0], dim1[1]}); + } +}; +``` + +[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22) is inherited from `OperatorWithKernel`. Its `public` member + +```cpp +using framework::OperatorWithKernel::OperatorWithKernel; +``` + +expresses an operator constructor using base class `OperatorWithKernel`, alternatively written as + +```cpp +MulOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} +``` + +`InferShape` interface needs to be re-written.`InferShape` is a constant method and cannot modify Op's member variables, its constant member `const framework::InferShapeContext &ctx` can be used to extract input, output, and attributes. It functions to + + - 1). validate and error out early: it checks input data dimensions and types. + - 2). configures the tensor shape in the output. + +Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later. -- GitLab