From 353244f4fcfab0254b5681109856309bc2e21d7b Mon Sep 17 00:00:00 2001 From: Jiabin Yang Date: Tue, 2 Apr 2019 10:57:07 +0800 Subject: [PATCH] test=develop, add FC and test (#16604) * test=develop, add FC and test * test=develop, refine code --- .../fluid/dygraph/layer_object_helper.py | 24 +++-- python/paddle/fluid/dygraph/nn.py | 97 ++++++++++++------- .../fluid/tests/unittests/test_layers.py | 35 +++++++ 3 files changed, 111 insertions(+), 45 deletions(-) diff --git a/python/paddle/fluid/dygraph/layer_object_helper.py b/python/paddle/fluid/dygraph/layer_object_helper.py index c56652e103c..f0be5ff3bf2 100644 --- a/python/paddle/fluid/dygraph/layer_object_helper.py +++ b/python/paddle/fluid/dygraph/layer_object_helper.py @@ -65,7 +65,7 @@ class LayerObjectHelper(LayerHelperBase): def _input(self, inputs_in): inputs = self._multiple_input(inputs_in) if len(inputs) != 1: - raise "{0} layer only takes one input".format(self.layer_type) + raise "{0} layer only takes one input in".format(self.layer_type) return inputs[0] def _multiple_param_attr(self, length, param_attr_in=None): @@ -74,7 +74,8 @@ class LayerObjectHelper(LayerHelperBase): param_attr = [param_attr] if len(param_attr) != 1 and len(param_attr) != length: - raise ValueError("parameter number mismatch") + raise ValueError("parameter number mismatch in {}".format( + self.name)) elif len(param_attr) == 1 and length != 1: tmp = [None] * length for i in six.moves.range(length): @@ -91,6 +92,10 @@ class LayerObjectHelper(LayerHelperBase): Returns input, param_attr """ + param_attr_in = ParamAttr._to_attr(param_attr_in) + if isinstance(param_attr_in, bool): + raise ValueError('Param_attr should not be False in {}'.format( + self.name)) inputs = inputs_in if (inputs_in is not None) else [] inputs = self._multiple_input(inputs) param_attrs = self._multiple_param_attr(len(inputs), param_attr_in) @@ -112,8 +117,8 @@ class LayerObjectHelper(LayerHelperBase): if dtype is None: dtype = each.dtype elif dtype != each.dtype: - raise ValueError("Data Type mismatch: %d to %d" % - (dtype, each.dtype)) + raise ValueError("Data Type mismatch: %d to %d in %s" % + (dtype, each.dtype, self.name)) return dtype def get_parameter(self, name): @@ -126,7 +131,8 @@ class LayerObjectHelper(LayerHelperBase): """ param = self.main_program.global_block().var(name) if not isinstance(param, Parameter): - raise ValueError("no Parameter name %s found" % name) + raise ValueError("no Parameter name %s found in %s" % + (name, self.name)) return param def append_bias_op(self, @@ -184,7 +190,8 @@ class LayerObjectHelper(LayerHelperBase): if isinstance(act, six.string_types): act = {'type': act} else: - raise TypeError(str(act) + " should be unicode or str") + raise TypeError( + str(act) + " should be unicode or str in %s ", self.name) if (use_cudnn is not None) and use_cudnn: act['use_cudnn'] = use_cudnn @@ -211,5 +218,6 @@ class LayerObjectHelper(LayerHelperBase): """ param = param if not isinstance(param, cls): - raise TypeError("The input {0} parameter of method {1} must be {2}", - param, self.layer_type, cls.__name__) + raise TypeError( + "The input {0} parameter of method {1} must be {2}, in layer {3}", + param, self.layer_type, cls.__name__, self.name) diff --git a/python/paddle/fluid/dygraph/nn.py b/python/paddle/fluid/dygraph/nn.py index 89253811192..04da8561a37 100644 --- a/python/paddle/fluid/dygraph/nn.py +++ b/python/paddle/fluid/dygraph/nn.py @@ -20,7 +20,7 @@ import numpy as np from .. import core from ..layers import utils from . import layers -from ..framework import Variable, OpProtoHolder +from ..framework import Variable, OpProtoHolder, Parameter from ..layers import layer_function_generator from ..param_attr import ParamAttr from ..initializer import Normal, Constant, NumpyArrayInitializer @@ -213,46 +213,69 @@ class FC(layers.Layer): self._param_attr = param_attr self._bias_attr = bias_attr self._act = act + self.__w = list() - def _build_once(self, input): - input_shape = input.shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) - ] + [self._size] - self._w = self.create_parameter( - attr=self._param_attr, - shape=param_shape, - dtype=self._dtype, - is_bias=False) + @property + def _w(self, i=0): + return self.__w[i] - if self._bias_attr: - size = list([self._size]) - self._b = self.create_parameter( - attr=self._bias_attr, - shape=size, - dtype=self._dtype, - is_bias=True) - else: - self._b = None + @_w.setter + def _w(self, value, i=0): + assert isinstance(value, Parameter) + self.__w[i] = value - def forward(self, input): - tmp = self._helper.create_variable_for_type_inference(self._dtype) - self._helper.append_op( - type="mul", - inputs={"X": input, - "Y": self._w}, - outputs={"Out": tmp}, - attrs={ - "x_num_col_dims": self._num_flatten_dims, - "y_num_col_dims": 1 - }) + def _build_once(self, input): + i = 0 + for inp, param in self._helper.iter_inputs_and_params(input, + self._param_attr): + input_shape = inp.shape + + param_shape = [ + reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], + 1) + ] + [self._size] + self.__w.append( + self.add_parameter( + '_w%d' % i, + self.create_parameter( + attr=param, + shape=param_shape, + dtype=self._dtype, + is_bias=False))) + i += 1 + + size = list([self._size]) + self._b = self.create_parameter( + attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True) - pre_bias = self._helper.create_variable_for_type_inference(self._dtype) - self._helper.append_op( - type="sum", - inputs={"X": [tmp]}, - outputs={"Out": pre_bias}, - attrs={"use_mkldnn": False}) + def forward(self, input): + mul_results = list() + i = 0 + for inp, param in self._helper.iter_inputs_and_params(input, + self._param_attr): + tmp = self._helper.create_variable_for_type_inference(self._dtype) + self._helper.append_op( + type="mul", + inputs={"X": inp, + "Y": self.__w[i]}, + outputs={"Out": tmp}, + attrs={ + "x_num_col_dims": self._num_flatten_dims, + "y_num_col_dims": 1 + }) + i += 1 + mul_results.append(tmp) + + if len(mul_results) == 1: + pre_bias = mul_results[0] + else: + pre_bias = self._helper.create_variable_for_type_inference( + self._dtype) + self._helper.append_op( + type="sum", + inputs={"X": mul_results}, + outputs={"Out": pre_bias}, + attrs={"use_mkldnn": False}) if self._b: pre_activation = self._helper.create_variable_for_type_inference( diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index e92ece7acb4..674965882d7 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -76,6 +76,41 @@ class LayerTest(unittest.TestCase): class TestLayer(LayerTest): + def test_fc(self): + # pdb.set_trace() + inp = np.ones([3, 32, 32], dtype='float32') + with self.static_graph(): + t = layers.data( + name='data', + shape=[3, 32, 32], + dtype='float32', + append_batch_size=False) + ret = layers.fc(t, size=4, bias_attr=False, num_flatten_dims=1) + ret2 = layers.fc(ret, size=4) + static_ret = self.get_static_graph_result( + feed={'data': inp}, fetch_list=[ret2])[0] + with self.static_graph(): + t = layers.data( + name='data', + shape=[3, 32, 32], + dtype='float32', + append_batch_size=False) + fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1) + fc2 = nn.FC('fc2', size=4) + ret = fc1(t) + ret2 = fc2(ret) + static_ret2 = self.get_static_graph_result( + feed={'data': inp}, fetch_list=[ret2])[0] + with self.dynamic_graph(): + t = base.to_variable(inp) + fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1) + fc2 = nn.FC('fc2', size=4) + ret = fc1(t) + dy_ret = fc2(ret) + + self.assertTrue(np.array_equal(static_ret, static_ret2)) + self.assertTrue(np.array_equal(static_ret, dy_ret._numpy())) + def test_layer_norm(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): -- GitLab