Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
34bd18ff
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
34bd18ff
编写于
10月 11, 2021
作者:
B
baoachun
提交者:
GitHub
10月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add skip case in trt converter ut (#36287)
* add skip case in trt converter ut * disable group_norm trt plugin
上级
5690666c
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
165 addition
and
53 deletion
+165
-53
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+5
-3
paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
.../fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
+0
-6
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+101
-34
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
...ts/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
+12
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
...sts/unittests/ir/inference/test_trt_convert_group_norm.py
+20
-6
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
...ittests/ir/inference/test_trt_convert_multihead_matmul.py
+27
-4
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
34bd18ff
...
...
@@ -48,9 +48,11 @@ struct SimpleOpTypeSetTeller : public Teller {
int8_teller_set
.
insert
(
"skip_layernorm"
);
int8_teller_set
.
insert
(
"slice"
);
#endif
#if IS_TRT_VERSION_GE(7130)
teller_set
.
insert
(
"group_norm"
);
#endif
// TODO(baoachun) The group_norm trt plugin will check input's dim
// not -1 failed when dynamic shape mode.
// #if IS_TRT_VERSION_GE(7130)
// teller_set.insert("group_norm");
// #endif
#if IS_TRT_VERSION_GE(7000)
teller_set
.
insert
(
"tile"
);
#endif
...
...
paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.cu
浏览文件 @
34bd18ff
...
...
@@ -65,12 +65,6 @@ nvinfer1::Dims ElementWisePlugin::getOutputDimensions(
}
int
ElementWisePlugin
::
initialize
()
TRT_NOEXCEPT
{
PADDLE_ENFORCE_GT
(
dims_y_
.
nbDims
,
0
,
platform
::
errors
::
InvalidArgument
(
"The dimension of input Y of TRT elementwise op plugin "
"should be greater than 0, but got %d."
,
dims_y_
.
nbDims
));
axis_
=
(
axis_
==
-
1
)
?
dims_x_
.
nbDims
-
dims_y_
.
nbDims
:
axis_
;
int
trimed_nb_dims
=
dims_y_
.
nbDims
;
for
(;
trimed_nb_dims
>
0
;
--
trimed_nb_dims
)
{
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
34bd18ff
...
...
@@ -32,8 +32,8 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
64
,
32
],
[
batch
,
8
,
16
,
32
]]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
32
,
32
],
[
batch
,
32
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
len
(
shape
)
-
1
,
-
1
]:
self
.
dims
=
len
(
shape
)
...
...
@@ -68,26 +68,27 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
256
]
"input_data"
:
[
4
,
32
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
16
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
,
4
]
"input_data"
:
[
1
,
32
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
128
,
256
]
"input_data"
:
[
4
,
32
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
,
16
]
...
...
@@ -98,6 +99,11 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
...
...
@@ -106,18 +112,52 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
dims
==
2
and
len
(
self
.
dynamic_shape
.
max_input_shape
)
==
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
teller2
(
program_config
,
predictor_config
):
if
self
.
dims
==
3
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and tensorrt when input dim is 3."
)
def
teller3
(
program_config
,
predictor_config
):
if
self
.
dims
==
4
:
return
True
return
False
self
.
add_skip_case
(
teller3
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and tensorrt when input dim is 4."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
@@ -245,15 +285,26 @@ class TrtConvertElementwiseTest_two_input_without_broadcast(
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
dims
==
2
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_with_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
or
len
(
inputs
[
'input_data2'
]
.
shape
)
==
1
:
if
len
(
inputs
[
'input_data1'
].
shape
)
!=
len
(
inputs
[
'input_data2'
].
shape
):
return
False
return
True
...
...
@@ -264,24 +315,27 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
input1_shape_list
=
[[
4
,
32
],
[
2
,
4
,
32
],
[
4
,
2
,
4
,
32
]]
input2_shape1_list
=
[[
32
],
[
4
,
32
],
[
2
,
4
,
32
]]
input2_shape2_list
=
[[
1
,
32
],
[
1
,
1
,
32
],
[
1
,
1
,
1
,
32
]]
input2_shape3_list
=
[[
1
,
32
],
[
1
,
4
,
32
],
[
4
,
32
]]
input2_shape2_list
=
[[
4
,
1
],
[
2
,
4
,
1
],
[
4
,
2
,
4
,
1
]]
input2_shape3_list
=
[[
32
],
[
2
,
1
,
1
],
[
4
,
2
,
1
,
1
]]
input2_shape4_list
=
[[
32
],
[
4
,
32
],
[
4
,
1
,
1
,
1
]]
input2_shape_list
=
[
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
,
input2_shape4_list
]
axis1_list
=
[[
-
1
],
[
1
,
-
1
],
[
1
,
-
1
]]
axis2_list
=
[[
-
1
],
[
-
1
],
[
-
1
]]
axis3_list
=
[[
-
1
],
[
-
1
],
[
2
,
-
1
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
]
axis2_list
=
[[
-
1
],
[
0
],
[
0
]]
axis3_list
=
[[
-
1
],
[
0
],
[
0
]]
axis4_list
=
[[
-
1
],
[
-
1
],
[
0
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
,
axis4_list
]
for
i
in
range
(
3
):
input1_shape
=
input1_shape_list
[
i
]
for
j
in
range
(
3
):
for
j
in
range
(
4
):
input2_shape
=
input2_shape_list
[
j
][
i
]
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
axis_list
[
j
][
i
]:
self
.
dims1
=
len
(
input1_shape
)
self
.
dims2
=
len
(
input2_shape
)
self
.
shape1
=
input1_shape
self
.
shape2
=
input2_shape
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
...
...
@@ -318,16 +372,16 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
opt_shape
=
[[
32
],
[
32
,
32
],
[
32
,
32
,
32
],
[
32
,
32
,
32
,
32
]]
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
min_shape
[
self
.
dims1
-
1
],
"input_data2"
:
min_shape
[
self
.
dims2
-
1
]
"input_data1"
:
min_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
min_shape
[
len
(
self
.
shape2
)
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
max_shape
[
self
.
dims1
-
1
],
"input_data2"
:
max_shape
[
self
.
dims2
-
1
]
"input_data1"
:
max_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
max_shape
[
len
(
self
.
shape2
)
-
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
opt_shape
[
self
.
dims1
-
1
],
"input_data2"
:
opt_shape
[
self
.
dims2
-
1
]
"input_data1"
:
opt_shape
[
len
(
self
.
shape1
)
-
1
],
"input_data2"
:
opt_shape
[
len
(
self
.
shape2
)
-
1
]
}
def
clear_dynamic_shape
():
...
...
@@ -342,6 +396,7 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
if
self
.
shape1
[
0
]
==
self
.
shape2
[
0
]:
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
...
...
@@ -354,7 +409,19 @@ class TrtConvertElementwiseTest_two_input_with_broadcast(TrtLayerAutoScanTest):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
shape1
)
==
2
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output shape are not equal between gpu and tensorrt when input dim is 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_emb_eltwise_layernorm.py
浏览文件 @
34bd18ff
...
...
@@ -252,7 +252,19 @@ class TrtConvertEmbEltwiseLayernormTest1(TrtLayerAutoScanTest):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt when dynamic fp16 mode."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_group_norm.py
浏览文件 @
34bd18ff
...
...
@@ -114,19 +114,33 @@ class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
attrs
,
False
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
attrs
,
False
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
# self.trt_param.precision = paddle_infer.PrecisionType.Half
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The goup_norm plugin will check dim not -1 failed when dynamic fp16 mode."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
浏览文件 @
34bd18ff
...
...
@@ -38,6 +38,7 @@ class TrtConvertMultiHeadMatmulTest(TrtLayerAutoScanTest):
return
np
.
random
.
randn
(
768
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
self
.
batch
=
batch
for
reshape_shape
in
[[
0
,
0
,
12
,
64
]]:
for
dim1
in
[
128
]:
input2_shapes
=
[[
batch
,
reshape_shape
[
2
],
dim1
,
dim1
],
...
...
@@ -417,18 +418,40 @@ class TrtConvertMultiHeadMatmulTest(TrtLayerAutoScanTest):
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
4
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
4
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
4
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Half
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt in fp16 mode."
)
def
teller2
(
program_config
,
predictor_config
):
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Float32
and
len
(
self
.
dynamic_shape
.
min_input_shape
)
!=
0
and
self
.
batch
>
2
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"The output has diff between gpu and trt when dynamic fp32 mode and batch size > 2."
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录