Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3449a34e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3449a34e
编写于
4月 15, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
4月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi]Add multi_dot/maxout/multiplex op yaml (#41550) (#41818)
* add multi_dot,maxout,multiplex yaml * add code converage
上级
6c067e09
变更
15
显示空白变更内容
内联
并排
Showing
15 changed file
with
273 addition
and
28 deletion
+273
-28
paddle/phi/api/lib/api_custom_impl.cc
paddle/phi/api/lib/api_custom_impl.cc
+130
-0
paddle/phi/api/lib/api_custom_impl.h
paddle/phi/api/lib/api_custom_impl.h
+9
-1
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+32
-0
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+8
-0
paddle/phi/kernels/impl/multi_dot_kernel_impl.h
paddle/phi/kernels/impl/multi_dot_kernel_impl.h
+1
-1
paddle/phi/kernels/multi_dot_grad_kernel.h
paddle/phi/kernels/multi_dot_grad_kernel.h
+1
-1
paddle/phi/ops/compat/multi_dot_sig.cc
paddle/phi/ops/compat/multi_dot_sig.cc
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+4
-1
python/paddle/fluid/tests/unittests/test_maxout_op.py
python/paddle/fluid/tests/unittests/test_maxout_op.py
+8
-2
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
+22
-16
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+3
-3
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+3
-1
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+28
-0
python/paddle/utils/code_gen/api_base.py
python/paddle/utils/code_gen/api_base.py
+1
-1
python/paddle/utils/code_gen/backward.yaml
python/paddle/utils/code_gen/backward.yaml
+22
-0
未找到文件。
paddle/phi/api/lib/api_custom_impl.cc
浏览文件 @
3449a34e
...
@@ -1014,5 +1014,135 @@ std::vector<Tensor> meshgrid_grad_impl(
...
@@ -1014,5 +1014,135 @@ std::vector<Tensor> meshgrid_grad_impl(
return
api_output
;
return
api_output
;
}
}
std
::
vector
<
Tensor
>
multi_dot_grad_impl
(
const
std
::
vector
<
Tensor
>&
x
,
const
Tensor
&
out_grad
)
{
Backend
kernel_backend
=
Backend
::
UNDEFINED
;
DataLayout
kernel_layout
=
DataLayout
::
UNDEFINED
;
DataType
kernel_data_type
=
DataType
::
UNDEFINED
;
if
(
kernel_backend
==
Backend
::
UNDEFINED
||
kernel_layout
==
DataLayout
::
UNDEFINED
||
kernel_data_type
==
DataType
::
UNDEFINED
)
{
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
,
out_grad
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
if
(
kernel_backend
==
Backend
::
UNDEFINED
)
{
kernel_backend
=
kernel_key
.
backend
();
}
if
(
kernel_layout
==
DataLayout
::
UNDEFINED
)
{
kernel_layout
=
kernel_key
.
layout
();
}
if
(
kernel_data_type
==
DataType
::
UNDEFINED
)
{
kernel_data_type
=
kernel_key
.
dtype
();
}
}
VLOG
(
6
)
<<
"multi_dot_grad API kernel key: ["
<<
kernel_backend
<<
", "
<<
kernel_layout
<<
", "
<<
kernel_data_type
<<
"]"
;
const
auto
&
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"multi_dot_grad"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
VLOG
(
6
)
<<
"multi_dot_grad API kernel: "
<<
kernel
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_backend
);
auto
input_x_vec
=
PrepareData
(
x
,
kernel
.
InputAt
(
0
),
{});
std
::
vector
<
const
phi
::
DenseTensor
*>
input_x
(
input_x_vec
->
size
());
for
(
size_t
i
=
0
;
i
<
input_x
.
size
();
++
i
)
{
input_x
[
i
]
=
&
input_x_vec
->
at
(
i
);
}
auto
input_out_grad
=
PrepareData
(
out_grad
,
kernel
.
InputAt
(
1
),
{});
size_t
out_number
=
input_x
.
size
();
std
::
vector
<
Tensor
>
api_output
;
auto
kernel_out
=
SetKernelOutput
(
out_number
,
kernel_backend
,
&
api_output
);
auto
x_meta_vec
=
MakeMetaTensor
(
input_x
);
std
::
vector
<
phi
::
MetaTensor
*>
x_metas
(
x_meta_vec
.
size
());
for
(
size_t
i
=
0
;
i
<
x_meta_vec
.
size
();
++
i
)
{
x_metas
[
i
]
=
&
x_meta_vec
[
i
];
}
std
::
vector
<
phi
::
MetaTensor
>
meta_outs
;
meta_outs
.
reserve
(
out_number
);
std
::
vector
<
phi
::
MetaTensor
*>
meta_out_ptrs
;
meta_out_ptrs
.
reserve
(
out_number
);
for
(
size_t
i
=
0
;
i
<
out_number
;
++
i
)
{
meta_outs
.
push_back
(
kernel_out
[
i
]);
meta_out_ptrs
.
push_back
(
&
meta_outs
.
back
());
}
phi
::
MultiDotGradInferMeta
(
x_metas
,
MakeMetaTensor
(
*
input_out_grad
),
meta_out_ptrs
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
std
::
vector
<
const
phi
::
DenseTensor
*>&
,
const
phi
::
DenseTensor
&
,
std
::
vector
<
phi
::
DenseTensor
*>&
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
input_x
,
*
input_out_grad
,
kernel_out
);
return
api_output
;
}
std
::
vector
<
Tensor
>
multiplex_grad_impl
(
const
std
::
vector
<
Tensor
>&
inputs
,
const
Tensor
&
ids
,
const
Tensor
&
out_grad
)
{
Backend
kernel_backend
=
Backend
::
UNDEFINED
;
DataLayout
kernel_layout
=
DataLayout
::
UNDEFINED
;
DataType
kernel_data_type
=
DataType
::
UNDEFINED
;
if
(
kernel_backend
==
Backend
::
UNDEFINED
||
kernel_layout
==
DataLayout
::
UNDEFINED
||
kernel_data_type
==
DataType
::
UNDEFINED
)
{
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
out_grad
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
if
(
kernel_backend
==
Backend
::
UNDEFINED
)
{
kernel_backend
=
kernel_key
.
backend
();
}
if
(
kernel_layout
==
DataLayout
::
UNDEFINED
)
{
kernel_layout
=
kernel_key
.
layout
();
}
if
(
kernel_data_type
==
DataType
::
UNDEFINED
)
{
kernel_data_type
=
kernel_key
.
dtype
();
}
}
VLOG
(
6
)
<<
"multiplex_grad API kernel key: ["
<<
kernel_backend
<<
", "
<<
kernel_layout
<<
", "
<<
kernel_data_type
<<
"]"
;
const
auto
&
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"multiplex_grad"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
VLOG
(
6
)
<<
"multiplex_grad API kernel: "
<<
kernel
;
auto
*
dev_ctx
=
GetDeviceContextByBackend
(
kernel_backend
);
auto
input_ids
=
PrepareData
(
ids
,
kernel
.
InputAt
(
0
),
{});
auto
input_out_grad
=
PrepareData
(
out_grad
,
kernel
.
InputAt
(
1
),
{});
auto
out_number
=
inputs
.
size
();
std
::
vector
<
Tensor
>
api_output
;
auto
kernel_out
=
SetKernelOutput
(
out_number
,
kernel_backend
,
&
api_output
);
std
::
vector
<
phi
::
MetaTensor
>
meta_outs
;
meta_outs
.
reserve
(
out_number
);
std
::
vector
<
phi
::
MetaTensor
*>
meta_out_ptrs
;
meta_out_ptrs
.
reserve
(
out_number
);
for
(
size_t
i
=
0
;
i
<
out_number
;
++
i
)
{
meta_outs
.
push_back
(
kernel_out
[
i
]);
meta_out_ptrs
.
push_back
(
&
meta_outs
.
back
());
}
phi
::
MultiplexGradInferMeta
(
MakeMetaTensor
(
*
input_ids
),
MakeMetaTensor
(
*
input_out_grad
),
meta_out_ptrs
);
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
DenseTensor
&
,
const
phi
::
DenseTensor
&
,
std
::
vector
<
phi
::
DenseTensor
*>&
);
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
*
input_ids
,
*
input_out_grad
,
kernel_out
);
return
api_output
;
}
}
// namespace experimental
}
// namespace experimental
}
// namespace paddle
}
// namespace paddle
paddle/phi/api/lib/api_custom_impl.h
浏览文件 @
3449a34e
...
@@ -62,6 +62,8 @@ std::vector<Tensor> split_impl(const Tensor& x,
...
@@ -62,6 +62,8 @@ std::vector<Tensor> split_impl(const Tensor& x,
const
IntArray
&
num_or_sections
,
const
IntArray
&
num_or_sections
,
const
Scalar
&
axis
);
const
Scalar
&
axis
);
std
::
vector
<
Tensor
>
meshgrid_impl
(
const
std
::
vector
<
Tensor
>&
inputs
);
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
>
momentum_impl
(
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
>
momentum_impl
(
const
Tensor
&
param
,
const
Tensor
&
param
,
const
Tensor
&
grad
,
const
Tensor
&
grad
,
...
@@ -109,9 +111,15 @@ Tensor real_grad_impl(const Tensor& x);
...
@@ -109,9 +111,15 @@ Tensor real_grad_impl(const Tensor& x);
std
::
vector
<
Tensor
>
stack_grad_impl
(
const
std
::
vector
<
Tensor
>&
x
,
std
::
vector
<
Tensor
>
stack_grad_impl
(
const
std
::
vector
<
Tensor
>&
x
,
const
Tensor
&
out_grad
,
const
Tensor
&
out_grad
,
int
axis
);
int
axis
);
std
::
vector
<
Tensor
>
meshgrid_impl
(
const
std
::
vector
<
Tensor
>&
inputs
);
std
::
vector
<
Tensor
>
meshgrid_grad_impl
(
const
std
::
vector
<
Tensor
>&
inputs
,
std
::
vector
<
Tensor
>
meshgrid_grad_impl
(
const
std
::
vector
<
Tensor
>&
inputs
,
const
std
::
vector
<
Tensor
>&
outputs_grad
);
const
std
::
vector
<
Tensor
>&
outputs_grad
);
std
::
vector
<
Tensor
>
multi_dot_grad_impl
(
const
std
::
vector
<
Tensor
>&
x
,
const
Tensor
&
out_grad
);
std
::
vector
<
Tensor
>
multiplex_grad_impl
(
const
std
::
vector
<
Tensor
>&
inputs
,
const
Tensor
&
ids
,
const
Tensor
&
out_grad
);
}
// namespace experimental
}
// namespace experimental
}
// namespace paddle
}
// namespace paddle
paddle/phi/infermeta/backward.cc
浏览文件 @
3449a34e
...
@@ -329,6 +329,38 @@ void MeshgridGradInferMeta(const std::vector<MetaTensor*>& inputs,
...
@@ -329,6 +329,38 @@ void MeshgridGradInferMeta(const std::vector<MetaTensor*>& inputs,
}
}
}
}
void
MultiDotGradInferMeta
(
const
std
::
vector
<
MetaTensor
*>&
x
,
const
MetaTensor
&
out_grad
,
std
::
vector
<
MetaTensor
*>
x_grad
)
{
PADDLE_ENFORCE_EQ
(
x
.
size
(),
x_grad
.
size
(),
errors
::
InvalidArgument
(
"Number of Inputs(X) should be equal with Outputs(X@Grad)."
"But received Inputs(X)' size = %d , Outputs(X@Grad)' size = %d."
,
x
.
size
(),
x_grad
.
size
()));
for
(
size_t
i
=
0
;
i
<
x
.
size
();
i
++
)
{
if
(
x_grad
[
i
]
!=
nullptr
)
{
x_grad
[
i
]
->
set_dims
(
x
[
i
]
->
dims
());
x_grad
[
i
]
->
share_lod
(
*
x
[
i
]);
}
}
}
void
MultiplexGradInferMeta
(
const
MetaTensor
&
ids
,
const
MetaTensor
&
out_grad
,
std
::
vector
<
MetaTensor
*>
ins_grad
)
{
PADDLE_ENFORCE_NE
(
ins_grad
.
empty
(),
true
,
errors
::
InvalidArgument
(
"Output(X@Grad) should not be null."
));
auto
dout_dim
=
out_grad
.
dims
();
for
(
auto
in_grad
:
ins_grad
)
{
in_grad
->
set_dims
(
dout_dim
);
}
}
void
NllLossGradInferMeta
(
const
MetaTensor
&
x
,
void
NllLossGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
label
,
const
MetaTensor
&
label
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
3449a34e
...
@@ -155,6 +155,14 @@ void MeshgridGradInferMeta(const std::vector<MetaTensor*>& inputs,
...
@@ -155,6 +155,14 @@ void MeshgridGradInferMeta(const std::vector<MetaTensor*>& inputs,
const
std
::
vector
<
MetaTensor
*>&
outputs_grad
,
const
std
::
vector
<
MetaTensor
*>&
outputs_grad
,
std
::
vector
<
MetaTensor
*>
inputs_grad
);
std
::
vector
<
MetaTensor
*>
inputs_grad
);
void
MultiDotGradInferMeta
(
const
std
::
vector
<
MetaTensor
*>&
x
,
const
MetaTensor
&
out_grad
,
std
::
vector
<
MetaTensor
*>
x_grad
);
void
MultiplexGradInferMeta
(
const
MetaTensor
&
ids
,
const
MetaTensor
&
out_grad
,
std
::
vector
<
MetaTensor
*>
ins_grad
);
void
NllLossGradInferMeta
(
const
MetaTensor
&
input
,
void
NllLossGradInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
const
MetaTensor
&
label
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
...
...
paddle/phi/kernels/impl/multi_dot_kernel_impl.h
浏览文件 @
3449a34e
...
@@ -339,8 +339,8 @@ void MultiDotGradMatChainOrder(const Context& ctx,
...
@@ -339,8 +339,8 @@ void MultiDotGradMatChainOrder(const Context& ctx,
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
void
MultiDotGradKernel
(
const
Context
&
ctx
,
void
MultiDotGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
DenseTensor
&
out_grad
,
std
::
vector
<
DenseTensor
*>
x_grad
)
{
std
::
vector
<
DenseTensor
*>
x_grad
)
{
auto
ins
=
x
;
auto
ins
=
x
;
auto
dout
=
out_grad
;
auto
dout
=
out_grad
;
...
...
paddle/phi/kernels/multi_dot_grad_kernel.h
浏览文件 @
3449a34e
...
@@ -20,8 +20,8 @@ namespace phi {
...
@@ -20,8 +20,8 @@ namespace phi {
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
void
MultiDotGradKernel
(
const
Context
&
ctx
,
void
MultiDotGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
DenseTensor
&
out_grad
,
std
::
vector
<
DenseTensor
*>
x_grad
);
std
::
vector
<
DenseTensor
*>
x_grad
);
}
// namespace phi
}
// namespace phi
paddle/phi/ops/compat/multi_dot_sig.cc
浏览文件 @
3449a34e
...
@@ -19,7 +19,7 @@ namespace phi {
...
@@ -19,7 +19,7 @@ namespace phi {
KernelSignature
MultiDotGradOpArgumentMapping
(
KernelSignature
MultiDotGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
return
KernelSignature
(
"multi_dot_grad"
,
{
GradVarName
(
"Out"
),
"X"
},
{},
{
GradVarName
(
"X"
)});
"multi_dot_grad"
,
{
"X"
,
GradVarName
(
"Out"
)
},
{},
{
GradVarName
(
"X"
)});
}
}
}
// namespace phi
}
// namespace phi
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
3449a34e
...
@@ -5971,8 +5971,11 @@ def multiplex(inputs, index, name=None):
...
@@ -5971,8 +5971,11 @@ def multiplex(inputs, index, name=None):
print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
"""
"""
if _non_static_mode():
if _in_legacy_dygraph():
return _C_ops.multiplex(index, inputs)
return _C_ops.multiplex(index, inputs)
if in_dygraph_mode():
return _C_ops.final_state_multiplex(inputs, index)
helper = LayerHelper('multiplex', **locals())
helper = LayerHelper('multiplex', **locals())
check_type(inputs, 'inputs', (list), 'multiplex')
check_type(inputs, 'inputs', (list), 'multiplex')
...
...
python/paddle/fluid/tests/unittests/test_maxout_op.py
浏览文件 @
3449a34e
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
F
import
paddle.nn.functional
as
F
from
op_test
import
OpTest
from
op_test
import
OpTest
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
paddle
.
enable_static
()
np
.
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
...
@@ -38,6 +39,7 @@ def maxout_forward_naive(x, groups, channel_axis):
...
@@ -38,6 +39,7 @@ def maxout_forward_naive(x, groups, channel_axis):
class
TestMaxOutOp
(
OpTest
):
class
TestMaxOutOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"maxout"
self
.
op_type
=
"maxout"
self
.
python_api
=
paddle
.
nn
.
functional
.
maxout
self
.
dtype
=
'float64'
self
.
dtype
=
'float64'
self
.
shape
=
[
3
,
6
,
2
,
4
]
self
.
shape
=
[
3
,
6
,
2
,
4
]
self
.
groups
=
2
self
.
groups
=
2
...
@@ -55,10 +57,10 @@ class TestMaxOutOp(OpTest):
...
@@ -55,10 +57,10 @@ class TestMaxOutOp(OpTest):
pass
pass
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
class
TestMaxOutOpAxis0
(
TestMaxOutOp
):
class
TestMaxOutOpAxis0
(
TestMaxOutOp
):
...
@@ -144,6 +146,10 @@ class TestMaxoutAPI(unittest.TestCase):
...
@@ -144,6 +146,10 @@ class TestMaxoutAPI(unittest.TestCase):
x_float32
=
paddle
.
fluid
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
x_float32
=
paddle
.
fluid
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
def
test_dygraph_final_state_api
(
self
):
with
_test_eager_guard
():
self
.
test_dygraph_api
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multi_dot_op.py
浏览文件 @
3449a34e
...
@@ -18,6 +18,7 @@ from op_test import OpTest, skip_check_grad_ci
...
@@ -18,6 +18,7 @@ from op_test import OpTest, skip_check_grad_ci
from
numpy.linalg
import
multi_dot
from
numpy.linalg
import
multi_dot
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
paddle
.
enable_static
()
...
@@ -27,6 +28,7 @@ paddle.enable_static()
...
@@ -27,6 +28,7 @@ paddle.enable_static()
class
TestMultiDotOp
(
OpTest
):
class
TestMultiDotOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"multi_dot"
self
.
op_type
=
"multi_dot"
self
.
python_api
=
paddle
.
linalg
.
multi_dot
self
.
dtype
=
self
.
get_dtype
()
self
.
dtype
=
self
.
get_dtype
()
self
.
get_inputs_and_outputs
()
self
.
get_inputs_and_outputs
()
...
@@ -40,11 +42,11 @@ class TestMultiDotOp(OpTest):
...
@@ -40,11 +42,11 @@ class TestMultiDotOp(OpTest):
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
])}
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
])}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
([
'x0'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x1'
],
'Out'
)
self
.
check_grad
([
'x1'
],
'Out'
,
check_eager
=
True
)
#(A*B)*C
#(A*B)*C
...
@@ -57,9 +59,9 @@ class TestMultiDotOp3Mat(TestMultiDotOp):
...
@@ -57,9 +59,9 @@ class TestMultiDotOp3Mat(TestMultiDotOp):
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
([
'x0'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x1'
],
'Out'
)
self
.
check_grad
([
'x1'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x2'
],
'Out'
)
self
.
check_grad
([
'x2'
],
'Out'
,
check_eager
=
True
)
#A*(B*C)
#A*(B*C)
...
@@ -72,9 +74,9 @@ class TestMultiDotOp3Mat2(TestMultiDotOp):
...
@@ -72,9 +74,9 @@ class TestMultiDotOp3Mat2(TestMultiDotOp):
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
([
'x0'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x1'
],
'Out'
)
self
.
check_grad
([
'x1'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x2'
],
'Out'
)
self
.
check_grad
([
'x2'
],
'Out'
,
check_eager
=
True
)
class
TestMultiDotOp4Mat
(
TestMultiDotOp
):
class
TestMultiDotOp4Mat
(
TestMultiDotOp
):
...
@@ -90,10 +92,10 @@ class TestMultiDotOp4Mat(TestMultiDotOp):
...
@@ -90,10 +92,10 @@ class TestMultiDotOp4Mat(TestMultiDotOp):
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
,
self
.
D
])}
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
,
self
.
D
])}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
([
'x0'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x1'
],
'Out'
)
self
.
check_grad
([
'x1'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x2'
],
'Out'
)
self
.
check_grad
([
'x2'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x3'
],
'Out'
)
self
.
check_grad
([
'x3'
],
'Out'
,
check_eager
=
True
)
class
TestMultiDotOpFirst1D
(
TestMultiDotOp
):
class
TestMultiDotOpFirst1D
(
TestMultiDotOp
):
...
@@ -143,9 +145,9 @@ class TestMultiDotOp3MatLast1D(TestMultiDotOp3Mat):
...
@@ -143,9 +145,9 @@ class TestMultiDotOp3MatLast1D(TestMultiDotOp3Mat):
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
self
.
outputs
=
{
'Out'
:
multi_dot
([
self
.
A
,
self
.
B
,
self
.
C
])}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
self
.
check_grad
([
'x0'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x1'
],
'Out'
)
self
.
check_grad
([
'x1'
],
'Out'
,
check_eager
=
True
)
self
.
check_grad
([
'x2'
],
'Out'
)
self
.
check_grad
([
'x2'
],
'Out'
,
check_eager
=
True
)
class
TestMultiDotOp4MatLast1D
(
TestMultiDotOp4Mat
):
class
TestMultiDotOp4MatLast1D
(
TestMultiDotOp4Mat
):
...
@@ -260,6 +262,10 @@ class APITestMultiDot(unittest.TestCase):
...
@@ -260,6 +262,10 @@ class APITestMultiDot(unittest.TestCase):
expected_result
=
np
.
linalg
.
multi_dot
([
input_array1
,
input_array2
])
expected_result
=
np
.
linalg
.
multi_dot
([
input_array1
,
input_array2
])
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
out
.
numpy
()))
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
out
.
numpy
()))
def
test_dygraph_final_state_api
(
self
):
with
_test_eager_guard
():
self
.
test_dygraph_without_out
()
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/nn/functional/activation.py
浏览文件 @
3449a34e
...
@@ -684,10 +684,10 @@ def maxout(x, groups, axis=1, name=None):
...
@@ -684,10 +684,10 @@ def maxout(x, groups, axis=1, name=None):
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
"""
"""
if
_in_legacy_dygraph
():
if
in_dynamic_mode
():
return
_C_ops
.
maxout
(
x
,
'groups'
,
groups
,
'axis'
,
axis
)
return
_C_ops
.
maxout
(
x
,
'groups'
,
groups
,
'axis'
,
axis
)
if
in_dygraph_mode
():
return
_C_ops
.
final_state_maxout
(
x
,
groups
,
axis
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'maxout'
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'maxout'
)
if
axis
not
in
[
1
,
-
1
,
3
]:
if
axis
not
in
[
1
,
-
1
,
3
]:
raise
ValueError
(
raise
ValueError
(
...
...
python/paddle/tensor/linalg.py
浏览文件 @
3449a34e
...
@@ -2274,8 +2274,10 @@ def multi_dot(x, name=None):
...
@@ -2274,8 +2274,10 @@ def multi_dot(x, name=None):
# [10, 7]
# [10, 7]
"""
"""
if
paddle
.
in_dynamic_mode
():
if
_in_legacy_dygraph
():
return
_C_ops
.
multi_dot
(
x
)
return
_C_ops
.
multi_dot
(
x
)
if
in_dygraph_mode
():
return
_C_ops
.
final_state_multi_dot
(
x
)
check_type
(
x
,
'x'
,
(
list
,
tuple
),
'multi_dot'
)
check_type
(
x
,
'x'
,
(
list
,
tuple
),
'multi_dot'
)
for
id
,
item
in
enumerate
(
x
):
for
id
,
item
in
enumerate
(
x
):
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
3449a34e
...
@@ -1283,6 +1283,15 @@
...
@@ -1283,6 +1283,15 @@
func
:
maximum
func
:
maximum
backward
:
maximum_grad
backward
:
maximum_grad
-
api
:
maxout
args
:
(Tensor x, int groups, int axis)
output
:
Tensor(out)
infer_meta
:
func
:
MaxOutInferMeta
kernel
:
func
:
maxout
backward
:
maxout_grad
-
api
:
mean
-
api
:
mean
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
args
:
(Tensor x, int64_t[] dims={}, bool keep_dim=false)
output
:
Tensor(out)
output
:
Tensor(out)
...
@@ -1359,6 +1368,15 @@
...
@@ -1359,6 +1368,15 @@
invoke
:
momentum_impl(param, grad, velocity, learning_rate, master_param, mu, use_nesterov, regularization_method, regularization_coeff, multi_precision, rescale_grad)
invoke
:
momentum_impl(param, grad, velocity, learning_rate, master_param, mu, use_nesterov, regularization_method, regularization_coeff, multi_precision, rescale_grad)
optional
:
master_param
optional
:
master_param
-
api
:
multi_dot
args
:
(Tensor[] x)
output
:
Tensor
infer_meta
:
func
:
MultiDotInferMeta
kernel
:
func
:
multi_dot
backward
:
multi_dot_grad
# multinomial
# multinomial
-
api
:
multinomial
-
api
:
multinomial
args
:
(Tensor x, int num_samples, bool replacement)
args
:
(Tensor x, int num_samples, bool replacement)
...
@@ -1368,6 +1386,16 @@
...
@@ -1368,6 +1386,16 @@
kernel
:
kernel
:
func
:
multinomial
func
:
multinomial
-
api
:
multiplex
args
:
(Tensor[] ins, Tensor ids)
output
:
Tensor
infer_meta
:
func
:
MultiplexInferMeta
kernel
:
func
:
multiplex
data_type
:
ins
backward
:
multiplex_grad
-
api
:
multiply
-
api
:
multiply
args
:
(Tensor x, Tensor y)
args
:
(Tensor x, Tensor y)
output
:
Tensor
output
:
Tensor
...
...
python/paddle/utils/code_gen/api_base.py
浏览文件 @
3449a34e
...
@@ -600,7 +600,7 @@ PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name() + '_'}({self
...
@@ -600,7 +600,7 @@ PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name() + '_'}({self
if
self
.
inputs
[
'input_info'
][
param
]
==
"const Tensor&"
:
if
self
.
inputs
[
'input_info'
][
param
]
==
"const Tensor&"
:
kernel_args
=
kernel_args
+
"*"
+
PREFIX_TENSOR_NAME
+
param
+
", "
kernel_args
=
kernel_args
+
"*"
+
PREFIX_TENSOR_NAME
+
param
+
", "
elif
self
.
inputs
[
'input_info'
][
elif
self
.
inputs
[
'input_info'
][
input_name
]
==
"const std::vector<Tensor>&"
:
param
]
==
"const std::vector<Tensor>&"
:
kernel_args
=
kernel_args
+
PREFIX_TENSOR_NAME
+
param
+
", "
kernel_args
=
kernel_args
+
PREFIX_TENSOR_NAME
+
param
+
", "
else
:
else
:
# do nothing
# do nothing
...
...
python/paddle/utils/code_gen/backward.yaml
浏览文件 @
3449a34e
...
@@ -920,6 +920,16 @@
...
@@ -920,6 +920,16 @@
kernel
:
kernel
:
func
:
maximum_grad
func
:
maximum_grad
-
backward_api
:
maxout_grad
forward
:
maxout(Tensor x, int groups, int axis) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
output
:
Tensor(x_grad)
infer_meta
:
func
:
GeneralUnaryGradInferMeta
param
:
[
x
]
kernel
:
func
:
maxout_grad
-
backward_api
:
mean_all_grad
-
backward_api
:
mean_all_grad
forward
:
mean_all(Tensor x) -> Tensor(out)
forward
:
mean_all(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
args
:
(Tensor x, Tensor out_grad)
...
@@ -998,6 +1008,18 @@
...
@@ -998,6 +1008,18 @@
func
:
modulo_grad
func
:
modulo_grad
no_need_buffer
:
x, y
no_need_buffer
:
x, y
-
backward_api
:
multi_dot_grad
forward
:
multi_dot (Tensor[] x) -> Tensor(out)
args
:
(Tensor[] x, Tensor out_grad)
output
:
Tensor[](x_grad)
invoke
:
multi_dot_grad_impl(x, out_grad)
-
backward_api
:
multiplex_grad
forward
:
multiplex (Tensor[] ins, Tensor ids) -> Tensor(out)
args
:
(Tensor[] ins, Tensor ids, Tensor out_grad)
output
:
Tensor[](ins_grad)
invoke
:
multiplex_grad_impl(ins, ids, out_grad)
-
backward_api
:
multiply_grad
-
backward_api
:
multiply_grad
forward
:
multiply (Tensor x, Tensor y) -> Tensor(out)
forward
:
multiply (Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis = -1)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis = -1)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录