Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
340dfb26
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
340dfb26
编写于
12月 28, 2021
作者:
T
Tao Luo
提交者:
GitHub
12月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Amax and Amin API (#38417)
* add amax/amin * support axis is list
上级
0637b9a6
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
531 addition
and
35 deletion
+531
-35
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
+34
-0
paddle/fluid/operators/reduce_ops/reduce_amax_op.cu
paddle/fluid/operators/reduce_ops/reduce_amax_op.cu
+23
-0
paddle/fluid/operators/reduce_ops/reduce_amax_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_amax_op.part.cu
+25
-0
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
+34
-0
paddle/fluid/operators/reduce_ops/reduce_amin_op.cu
paddle/fluid/operators/reduce_ops/reduce_amin_op.cu
+23
-0
paddle/fluid/operators/reduce_ops/reduce_amin_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_amin_op.part.cu
+25
-0
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
+89
-0
python/paddle/__init__.py
python/paddle/__init__.py
+4
-0
python/paddle/fluid/tests/unittests/test_max_min_amax_amin_op.py
...paddle/fluid/tests/unittests/test_max_min_amax_amin_op.py
+43
-13
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+4
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+227
-22
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_amax_op.cc
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
REGISTER_REDUCE_OP
(
reduce_amax
);
REGISTER_OP_CPU_KERNEL
(
reduce_amax
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
MaxFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
MaxFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_amax_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amax_op.cu
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
// reduce_max
REGISTER_OP_CUDA_KERNEL
(
reduce_amax
,
ops
::
ReduceCudaKernel
<
float
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
double
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
int
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
int64_t
,
kps
::
MaxFunctor
,
kps
::
IdentityFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amax_op.part.cu
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
REGISTER_OP_CUDA_KERNEL
(
reduce_amax_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amin_op.cc
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
REGISTER_REDUCE_OP
(
reduce_amin
);
REGISTER_OP_CPU_KERNEL
(
reduce_amin
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
MinFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
MinFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_amin_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amin_op.cu
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
// reduce_min
REGISTER_OP_CUDA_KERNEL
(
reduce_amin
,
ops
::
ReduceCudaKernel
<
float
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
double
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
int
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
,
ops
::
ReduceCudaKernel
<
int64_t
,
kps
::
MinFunctor
,
kps
::
IdentityFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_amin_op.part.cu
0 → 100644
浏览文件 @
340dfb26
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
REGISTER_OP_CUDA_KERNEL
(
reduce_amin_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
,
ops
::
AMaxOrAMinGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
,
ops
::
AMaxOrAMinGradFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_min_max_op.h
浏览文件 @
340dfb26
...
...
@@ -46,5 +46,94 @@ struct MaxOrMinGradFunctor {
}
};
#define HANDLE_AXIS_DIM(BROADCAST_DIM, AXIS_DIM) \
if (broadcast_dim_size == BROADCAST_DIM && rank == AXIS_DIM) { \
AMaxOrAMinAxisIsListGradFunctor<DeviceContext, X, Y, DX, DY, Dim, \
BROADCAST_DIM, AXIS_DIM>( \
place, x, y, dx, dy, dim, axis_dim); \
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
,
int
R
,
int
D
>
void
AMaxOrAMinAxisIsListGradFunctor
(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
const
std
::
vector
<
int
>&
axis_dim
)
{
// R is x->dimensions().size();
// D is axis_dim->dimensions().size();
auto
axis
=
Eigen
::
array
<
int
,
D
>
();
auto
reshape_x
=
Eigen
::
array
<
int
,
R
>
();
auto
reshape_y
=
Eigen
::
array
<
int
,
R
>
();
for
(
int
i
=
0
;
i
<
D
;
i
++
)
axis
[
i
]
=
axis_dim
[
i
];
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
reshape_x
[
i
]
=
x
->
dimensions
()[
i
];
reshape_y
[
i
]
=
y
->
dimensions
()[
i
];
}
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
reshape
(
reshape_x
).
sum
(
axis
).
reshape
(
reshape_y
).
broadcast
(
dim
);
}
struct
AMaxOrAMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
(
*
x
)
==
y
->
broadcast
(
dim
);
auto
ones
=
dx
->
constant
(
1
);
auto
zeros
=
dx
->
constant
(
0
);
auto
mask
=
equals
.
select
(
ones
,
zeros
);
// If there are multiple minimum or maximum elements,
// we evenly distribute gradient between these equal values
size_t
x_numel
=
1
;
for
(
size_t
i
=
0
;
i
<
x
->
dimensions
().
size
();
i
++
)
x_numel
*=
x
->
dimensions
()[
i
];
// reduce_all
if
(
size
==
static_cast
<
int
>
(
x_numel
))
{
auto
equal_number
=
mask
.
sum
()
.
reshape
(
Eigen
::
array
<
int
,
1
>
({
1
}))
.
broadcast
(
Eigen
::
array
<
int
,
1
>
({
size
}));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
equal_number
;
return
;
}
// compute forward reduce axis_dim by dim (which is broadcast_dim)
std
::
vector
<
int
>
axis_dim
;
int
broadcast_dim_size
=
static_cast
<
int
>
(
dim
.
size
());
for
(
int
i
=
0
;
i
<
broadcast_dim_size
;
i
++
)
{
if
(
dim
[
i
]
>
1
)
{
axis_dim
.
push_back
(
i
);
}
}
int
rank
=
static_cast
<
int
>
(
axis_dim
.
size
());
// axis is a int element
if
(
rank
==
1
)
{
auto
axis
=
Eigen
::
array
<
int
,
1
>
({
axis_dim
[
0
]});
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
mask
/
mask
.
sum
(
axis
).
reshape
(
dy
->
dimensions
()).
broadcast
(
dim
);
return
;
}
// axis is list, HANDLE_AXIS_DIM(broadcast_dim_size, rank)
HANDLE_AXIS_DIM
(
3
,
2
);
HANDLE_AXIS_DIM
(
4
,
2
);
HANDLE_AXIS_DIM
(
4
,
3
);
HANDLE_AXIS_DIM
(
5
,
2
);
HANDLE_AXIS_DIM
(
5
,
3
);
HANDLE_AXIS_DIM
(
5
,
4
);
HANDLE_AXIS_DIM
(
6
,
2
);
HANDLE_AXIS_DIM
(
6
,
3
);
HANDLE_AXIS_DIM
(
6
,
4
);
HANDLE_AXIS_DIM
(
6
,
5
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
340dfb26
...
...
@@ -203,8 +203,10 @@ from .tensor.math import tanh_ # noqa: F401
from
.tensor.math
import
add_n
# noqa: F401
from
.tensor.math
import
max
# noqa: F401
from
.tensor.math
import
maximum
# noqa: F401
from
.tensor.math
import
amax
# noqa: F401
from
.tensor.math
import
min
# noqa: F401
from
.tensor.math
import
minimum
# noqa: F401
from
.tensor.math
import
amin
# noqa: F401
from
.tensor.math
import
mm
# noqa: F401
from
.tensor.math
import
divide
# noqa: F401
from
.tensor.math
import
floor_divide
# noqa: F401
...
...
@@ -400,6 +402,7 @@ __all__ = [ # noqa
'mv'
,
'in_dynamic_mode'
,
'min'
,
'amin'
,
'any'
,
'slice'
,
'normal'
,
...
...
@@ -442,6 +445,7 @@ __all__ = [ # noqa
'roll'
,
'batch'
,
'max'
,
'amax'
,
'logical_or'
,
'bitwise_and'
,
'bitwise_or'
,
...
...
python/paddle/fluid/tests/unittests/test_max_min_op.py
→
python/paddle/fluid/tests/unittests/test_max_min_
amax_amin_
op.py
浏览文件 @
340dfb26
...
...
@@ -25,7 +25,7 @@ from op_test import OpTest
paddle
.
enable_static
()
class
TestMaxMinAPI
(
unittest
.
TestCase
):
class
TestMaxMinA
maxAminA
PI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_case
()
self
.
cal_np_out_and_gradient
()
...
...
@@ -36,38 +36,54 @@ class TestMaxMinAPI(unittest.TestCase):
self
.
x_np
=
np
.
array
([[
0.2
,
0.3
,
0.5
,
0.9
],
[
0.1
,
0.2
,
0.6
,
0.7
]])
self
.
shape
=
[
2
,
4
]
self
.
dtype
=
'float64'
self
.
axis
=
None
self
.
axis
=
0
self
.
keepdim
=
False
# If there are multiple minimum or maximum elements, max/min/ is non-derivable,
# If there are multiple minimum or maximum elements, max/min/
amax/amin
is non-derivable,
# its gradient check is not supported by unittest framework,
# thus we calculate the gradient by numpy function.
def
cal_np_out_and_gradient
(
self
):
def
_cal_np_out_and_gradient
(
func
):
if
func
is
'max'
:
if
func
is
'amax'
:
out
=
np
.
amax
(
self
.
x_np
,
axis
=
self
.
axis
,
keepdims
=
self
.
keepdim
)
elif
func
is
'amin'
:
out
=
np
.
amin
(
self
.
x_np
,
axis
=
self
.
axis
,
keepdims
=
self
.
keepdim
)
elif
func
is
'max'
:
out
=
np
.
max
(
self
.
x_np
,
axis
=
self
.
axis
,
keepdims
=
self
.
keepdim
)
elif
func
is
'min'
:
out
=
np
.
min
(
self
.
x_np
,
axis
=
self
.
axis
,
keepdims
=
self
.
keepdim
)
else
:
print
(
'This unittest only test max/min, but now is'
,
func
)
print
(
'This unittest only test amax/amin/max/min, but now is'
,
func
)
self
.
np_out
[
func
]
=
out
grad
=
np
.
zeros
(
self
.
shape
)
out_b
=
np
.
broadcast_to
(
out
,
self
.
shape
)
out_b
=
np
.
broadcast_to
(
out
.
view
()
,
self
.
shape
)
grad
[
self
.
x_np
==
out_b
]
=
1
if
func
in
[
'amax'
,
'amin'
]:
grad_sum
=
grad
.
sum
(
self
.
axis
).
reshape
(
out
.
shape
)
grad_b
=
np
.
broadcast_to
(
grad_sum
,
self
.
shape
)
grad
/=
grad_sum
self
.
np_grad
[
func
]
=
grad
self
.
np_out
=
dict
()
self
.
np_grad
=
dict
()
_cal_np_out_and_gradient
(
'amax'
)
_cal_np_out_and_gradient
(
'amin'
)
_cal_np_out_and_gradient
(
'max'
)
_cal_np_out_and_gradient
(
'min'
)
def
_choose_paddle_func
(
self
,
func
,
x
):
if
func
is
'max'
:
if
func
is
'amax'
:
out
=
paddle
.
amax
(
x
,
self
.
axis
,
self
.
keepdim
)
elif
func
is
'amin'
:
out
=
paddle
.
amin
(
x
,
self
.
axis
,
self
.
keepdim
)
elif
func
is
'max'
:
out
=
paddle
.
max
(
x
,
self
.
axis
,
self
.
keepdim
)
elif
func
is
'min'
:
out
=
paddle
.
min
(
x
,
self
.
axis
,
self
.
keepdim
)
else
:
print
(
'This unittest only test max/min, but now is'
,
func
)
print
(
'This unittest only test
amax/amin/
max/min, but now is'
,
func
)
return
out
# We check the output between paddle API and numpy in static graph.
...
...
@@ -86,6 +102,8 @@ class TestMaxMinAPI(unittest.TestCase):
fetch_list
=
[
out
])
self
.
assertTrue
((
np
.
array
(
res
[
0
])
==
self
.
np_out
[
func
]).
all
())
_test_static_graph
(
'amax'
)
_test_static_graph
(
'amin'
)
_test_static_graph
(
'max'
)
_test_static_graph
(
'min'
)
...
...
@@ -104,12 +122,14 @@ class TestMaxMinAPI(unittest.TestCase):
self
.
assertEqual
(
np
.
allclose
(
self
.
np_grad
[
func
],
x
.
grad
),
True
)
paddle
.
enable_static
()
_test_dygraph
(
'amax'
)
_test_dygraph
(
'amin'
)
_test_dygraph
(
'max'
)
_test_dygraph
(
'min'
)
# test multiple
minimum or maximum elements
class
TestMaxMinA
PI2
(
TestMaxM
inAPI
):
# test two
minimum or maximum elements
class
TestMaxMinA
maxAminAPI2
(
TestMaxMinAmaxAm
inAPI
):
def
init_case
(
self
):
self
.
x_np
=
np
.
array
([[
0.2
,
0.3
,
0.9
,
0.9
],
[
0.1
,
0.1
,
0.6
,
0.7
]])
self
.
shape
=
[
2
,
4
]
...
...
@@ -119,7 +139,7 @@ class TestMaxMinAPI2(TestMaxMinAPI):
# test different axis
class
TestMaxMinA
PI3
(
TestMaxM
inAPI
):
class
TestMaxMinA
maxAminAPI3
(
TestMaxMinAmaxAm
inAPI
):
def
init_case
(
self
):
self
.
x_np
=
np
.
array
([[
0.2
,
0.3
,
0.9
,
0.9
],
[
0.1
,
0.1
,
0.6
,
0.7
]])
self
.
shape
=
[
2
,
4
]
...
...
@@ -129,7 +149,7 @@ class TestMaxMinAPI3(TestMaxMinAPI):
# test keepdim = True
class
TestMaxMinA
PI4
(
TestMaxM
inAPI
):
class
TestMaxMinA
maxAminAPI4
(
TestMaxMinAmaxAm
inAPI
):
def
init_case
(
self
):
self
.
x_np
=
np
.
array
([[
0.2
,
0.3
,
0.9
,
0.9
],
[
0.1
,
0.1
,
0.6
,
0.7
]])
self
.
shape
=
[
2
,
4
]
...
...
@@ -139,7 +159,7 @@ class TestMaxMinAPI4(TestMaxMinAPI):
# test axis is tuple
class
TestMaxMinA
PI5
(
TestMaxM
inAPI
):
class
TestMaxMinA
maxAminAPI5
(
TestMaxMinAmaxAm
inAPI
):
def
init_case
(
self
):
self
.
x_np
=
np
.
array
(
[[[
1
,
2
],
[
3
,
4
]],
[[
5
,
6
],
[
7
,
8
]]]).
astype
(
np
.
int32
)
...
...
@@ -147,3 +167,13 @@ class TestMaxMinAPI5(TestMaxMinAPI):
self
.
dtype
=
'int32'
self
.
axis
=
(
0
,
1
)
self
.
keepdim
=
False
# test multiple minimum or maximum elements
class
TestMaxMinAmaxAminAPI6
(
TestMaxMinAmaxAminAPI
):
def
init_case
(
self
):
self
.
x_np
=
np
.
array
([[
0.2
,
0.9
,
0.9
,
0.9
],
[
0.9
,
0.9
,
0.2
,
0.2
]])
self
.
shape
=
[
2
,
4
]
self
.
dtype
=
'float64'
self
.
axis
=
None
self
.
keepdim
=
False
python/paddle/tensor/__init__.py
浏览文件 @
340dfb26
...
...
@@ -162,8 +162,10 @@ from .math import tanh # noqa: F401
from
.math
import
tanh_
# noqa: F401
from
.math
import
add_n
# noqa: F401
from
.math
import
max
# noqa: F401
from
.math
import
amax
# noqa: F401
from
.math
import
maximum
# noqa: F401
from
.math
import
min
# noqa: F401
from
.math
import
amin
# noqa: F401
from
.math
import
minimum
# noqa: F401
from
.math
import
mm
# noqa: F401
from
.math
import
divide
# noqa: F401
...
...
@@ -321,8 +323,10 @@ tensor_method_func = [ #noqa
'tanh_'
,
'add_n'
,
'max'
,
'amax'
,
'maximum'
,
'min'
,
'amin'
,
'minimum'
,
'fmax'
,
'fmin'
,
...
...
python/paddle/tensor/math.py
浏览文件 @
340dfb26
...
...
@@ -1546,12 +1546,35 @@ def inverse(x, name=None):
type
=
'inverse'
,
inputs
=
{
'Input'
:
[
x
]
},
outputs
=
{
'Output'
:
[
out
]})
return
out
def
_get_reduce_all_value
(
axis
):
"""
Internal function for max, min, amax and amin.
It computes the attribute reduce_all value based on axis.
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
tuple
):
axis
=
list
(
axis
)
elif
isinstance
(
axis
,
int
):
axis
=
[
axis
]
else
:
raise
TypeError
(
"The type of axis must be int, list or tuple, but received {}"
.
format
(
type
(
axis
)))
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
return
reduce_all
,
axis
def
max
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
"""
Computes the maximum of tensor elements over the given axis.
Note:
The difference between max and amax is: If there are multiple maximum elements,
amax evenly distributes gradient between these equal values,
while max propagates gradient to all of them.
Args:
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(int|list|tuple, optional): The axis along which the maximum is computed.
...
...
@@ -1620,17 +1643,7 @@ def max(x, axis=None, keepdim=False, name=None):
#[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
tuple
):
axis
=
list
(
axis
)
elif
isinstance
(
axis
,
int
):
axis
=
[
axis
]
else
:
raise
TypeError
(
"The type of axis must be int, list or tuple, but received {}"
.
format
(
type
(
axis
)))
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
in_dygraph_mode
():
return
_C_ops
.
reduce_max
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
...
...
@@ -1657,6 +1670,11 @@ def min(x, axis=None, keepdim=False, name=None):
Computes the minimum of tensor elements over the given axis
Note:
The difference between min and amin is: If there are multiple minimum elements,
amin evenly distributes gradient between these equal values,
while min propagates gradient to all of them.
Args:
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(int|list|tuple, optional): The axis along which the minimum is computed.
...
...
@@ -1725,17 +1743,7 @@ def min(x, axis=None, keepdim=False, name=None):
#[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
"""
if
axis
is
not
None
and
not
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
tuple
):
axis
=
list
(
axis
)
elif
isinstance
(
axis
,
int
):
axis
=
[
axis
]
else
:
raise
TypeError
(
"The type of axis must be int, list or tuple, but received {}"
.
format
(
type
(
axis
)))
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
in_dygraph_mode
():
return
_C_ops
.
reduce_min
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
...
...
@@ -1757,6 +1765,203 @@ def min(x, axis=None, keepdim=False, name=None):
})
return
out
def
amax
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
"""
Computes the maximum of tensor elements over the given axis.
Note:
The difference between max and amax is: If there are multiple maximum elements,
amax evenly distributes gradient between these equal values,
while max propagates gradient to all of them.
Args:
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(int|list|tuple, optional): The axis along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
`x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
keepdim(bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the `x` unless :attr:`keepdim` is true, default
value is False.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor, results of maximum on the specified axis of input tensor,
it's data type is the same as `x`.
Examples:
.. code-block:: python
import paddle
# data_x is a Tensor with shape [2, 4] with multiple maximum elements
# the axis is a int element
x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
[0.9, 0.9, 0.6, 0.7]],
dtype='float64', stop_gradient=False)
result1 = paddle.amax(x)
result1.backward()
print(result1, x.grad)
#[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
x.clear_grad()
result2 = paddle.amax(x, axis=0)
result2.backward()
print(result2, x.grad)
#[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]
x.clear_grad()
result3 = paddle.amax(x, axis=-1)
result3.backward()
print(result3, x.grad)
#[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]
x.clear_grad()
result4 = paddle.amax(x, axis=1, keepdim=True)
result4.backward()
print(result4, x.grad)
#[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]
# data_y is a Tensor with shape [2, 2, 2]
# the axis is list
y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
[[0.9, 0.9], [0.6, 0.7]]],
dtype='float64', stop_gradient=False)
result5 = paddle.amax(y, axis=[1, 2])
result5.backward()
print(result5, y.grad)
#[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]
y.clear_grad()
result6 = paddle.amax(y, axis=[0, 1])
result6.backward()
print(result6, y.grad)
#[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
in_dygraph_mode
():
return
_C_ops
.
reduce_amax
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amax'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'amax'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'reduce_amax'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
})
return
out
def
amin
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
"""
Computes the minimum of tensor elements over the given axis
Note:
The difference between min and amin is: If there are multiple minimum elements,
amin evenly distributes gradient between these equal values,
while min propagates gradient to all of them.
Args:
x(Tensor): A tensor, the data type is float32, float64, int32, int64.
axis(int|list|tuple, optional): The axis along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
`x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
keepdim(bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the `x` unless :attr:`keepdim` is true, default
value is False.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor, results of minimum on the specified axis of input tensor,
it's data type is the same as input's Tensor.
Examples:
.. code-block:: python
import paddle
# data_x is a Tensor with shape [2, 4] with multiple minimum elements
# the axis is a int element
x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
[0.1, 0.1, 0.6, 0.7]],
dtype='float64', stop_gradient=False)
result1 = paddle.amin(x)
result1.backward()
print(result1, x.grad)
#[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
x.clear_grad()
result2 = paddle.amin(x, axis=0)
result2.backward()
print(result2, x.grad)
#[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]
x.clear_grad()
result3 = paddle.amin(x, axis=-1)
result3.backward()
print(result3, x.grad)
#[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]
x.clear_grad()
result4 = paddle.amin(x, axis=1, keepdim=True)
result4.backward()
print(result4, x.grad)
#[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]
# data_y is a Tensor with shape [2, 2, 2]
# the axis is list
y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
[[0.1, 0.1], [0.6, 0.7]]],
dtype='float64', stop_gradient=False)
result5 = paddle.amin(y, axis=[1, 2])
result5.backward()
print(result5, y.grad)
#[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]
y.clear_grad()
result6 = paddle.amin(y, axis=[0, 1])
result6.backward()
print(result6, y.grad)
#[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
"""
reduce_all
,
axis
=
_get_reduce_all_value
(
axis
)
if
in_dygraph_mode
():
return
_C_ops
.
reduce_amin
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
helper
=
LayerHelper
(
'amin'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'amin'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'reduce_amin'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
})
return
out
def
log1p
(
x
,
name
=
None
):
r
"""
Calculates the natural log of the given input tensor, element-wise.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录