Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
33b49635
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
33b49635
编写于
11月 29, 2018
作者:
Z
ZhenWang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unify the normal and small dam model.
上级
8f2e556e
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
52 addition
and
33 deletion
+52
-33
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+6
-3
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+46
-30
未找到文件。
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
33b49635
...
@@ -48,10 +48,13 @@ inference_analysis_api_test(test_analyzer_rnn2 ${RNN2_INSTALL_DIR} analyzer_rnn2
...
@@ -48,10 +48,13 @@ inference_analysis_api_test(test_analyzer_rnn2 ${RNN2_INSTALL_DIR} analyzer_rnn2
# DAM
# DAM
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
# For the normal DAM model
# For the normal DAM model
: download DAM_model.tar.gz and DAM_data.txt.tar.gz.
# download_model_and_data(${DAM_INSTALL_DIR} "DAM_model.tar.gz" "DAM_data.txt.tar.gz")
# download_model_and_data(${DAM_INSTALL_DIR} "DAM_model.tar.gz" "DAM_data.txt.tar.gz")
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"small_dam_model.tar.gz"
"small_dam_data.txt.tar.gz"
)
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"dam_small_model.tar.gz"
"dam_small_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_dam
${
DAM_INSTALL_DIR
}
analyzer_dam_tester.cc
)
# For the normal DAM model: --max_turn_num=9.
inference_analysis_test
(
test_analyzer_dam SRCS analyzer_dam_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
DAM_INSTALL_DIR
}
/model --infer_data=
${
DAM_INSTALL_DIR
}
/data.txt --max_turn_num=1
)
# chinese_ner
# chinese_ner
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
...
...
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
浏览文件 @
33b49635
...
@@ -14,38 +14,54 @@
...
@@ -14,38 +14,54 @@
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
DEFINE_int32
(
max_turn_num
,
1
,
"The max turn number: 1 for the small and 9 for the normal."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
using
contrib
::
AnalysisConfig
;
#define MAX_TURN_NUM 1
#define MAX_TURN_LEN 50
constexpr
int32_t
kMaxTurnLen
=
50
;
static
std
::
vector
<
float
>
result_data
;
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
std
::
vector
<
std
::
vector
<
int64_t
>>
*
turns
;
turns
[
MAX_TURN_NUM
];
// turns data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
float
>>
*
turns_mask
;
std
::
vector
<
std
::
vector
<
float
>>
turns_mask
[
MAX_TURN_NUM
];
// turns mask data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
float
>>
response_mask
;
// response mask data : 1
std
::
vector
<
std
::
vector
<
float
>>
response_mask
;
// response mask data : 1
size_t
batch_iter
{
0
};
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
size_t
num_samples
;
// total number of samples
DataRecord
()
=
default
;
DataRecord
()
{
turns
=
new
std
::
vector
<
std
::
vector
<
int64_t
>>
[
FLAGS_max_turn_num
];
// turns data : FLAGS_max_turn_num
turns_mask
=
new
std
::
vector
<
std
::
vector
<
float
>>
[
FLAGS_max_turn_num
];
// turns mask data : FLAGS_max_turn_num
}
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
:
DataRecord
()
{
this
->
batch_size
=
batch_size
;
Load
(
path
);
Load
(
path
);
}
}
~
DataRecord
()
{
delete
[]
turns
;
delete
[]
turns_mask
;
}
DataRecord
NextBatch
()
{
DataRecord
NextBatch
()
{
DataRecord
data
;
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
response
.
size
())
{
if
(
batch_end
<=
response
.
size
())
{
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
data
.
turns
[
i
].
assign
(
turns
[
i
].
begin
()
+
batch_iter
,
data
.
turns
[
i
].
assign
(
turns
[
i
].
begin
()
+
batch_iter
,
turns
[
i
].
begin
()
+
batch_end
);
turns
[
i
].
begin
()
+
batch_end
);
}
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
data
.
turns_mask
[
i
].
assign
(
turns_mask
[
i
].
begin
()
+
batch_iter
,
data
.
turns_mask
[
i
].
assign
(
turns_mask
[
i
].
begin
()
+
batch_iter
,
turns_mask
[
i
].
begin
()
+
batch_end
);
turns_mask
[
i
].
begin
()
+
batch_end
);
}
}
...
@@ -60,6 +76,7 @@ struct DataRecord {
...
@@ -60,6 +76,7 @@ struct DataRecord {
batch_iter
+=
batch_size
;
batch_iter
+=
batch_size
;
return
data
;
return
data
;
}
}
void
Load
(
const
std
::
string
&
path
)
{
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
ifstream
file
(
path
);
std
::
string
line
;
std
::
string
line
;
...
@@ -69,30 +86,30 @@ struct DataRecord {
...
@@ -69,30 +86,30 @@ struct DataRecord {
num_lines
++
;
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
','
,
&
data
);
split
(
line
,
','
,
&
data
);
CHECK_EQ
(
data
.
size
(),
(
size_t
)(
2
*
MAX_TURN_NUM
+
3
));
CHECK_EQ
(
data
.
size
(),
(
size_t
)(
2
*
FLAGS_max_turn_num
+
3
));
// load turn data
// load turn data
std
::
vector
<
int64_t
>
turns_tmp
[
MAX_TURN_NUM
];
std
::
vector
<
int64_t
>
turns_tmp
[
FLAGS_max_turn_num
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
split_to_int64
(
data
[
i
],
' '
,
&
turns_tmp
[
i
]);
split_to_int64
(
data
[
i
],
' '
,
&
turns_tmp
[
i
]);
turns
[
i
].
push_back
(
std
::
move
(
turns_tmp
[
i
]));
turns
[
i
].
push_back
(
std
::
move
(
turns_tmp
[
i
]));
}
}
// load turn_mask data
// load turn_mask data
std
::
vector
<
float
>
turns_mask_tmp
[
MAX_TURN_NUM
];
std
::
vector
<
float
>
turns_mask_tmp
[
FLAGS_max_turn_num
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
split_to_float
(
data
[
MAX_TURN_NUM
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
split_to_float
(
data
[
FLAGS_max_turn_num
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
turns_mask
[
i
].
push_back
(
std
::
move
(
turns_mask_tmp
[
i
]));
turns_mask
[
i
].
push_back
(
std
::
move
(
turns_mask_tmp
[
i
]));
}
}
// load response data
// load response data
std
::
vector
<
int64_t
>
response_tmp
;
std
::
vector
<
int64_t
>
response_tmp
;
split_to_int64
(
data
[
2
*
MAX_TURN_NUM
],
' '
,
&
response_tmp
);
split_to_int64
(
data
[
2
*
FLAGS_max_turn_num
],
' '
,
&
response_tmp
);
response
.
push_back
(
std
::
move
(
response_tmp
));
response
.
push_back
(
std
::
move
(
response_tmp
));
// load response_mask data
// load response_mask data
std
::
vector
<
float
>
response_mask_tmp
;
std
::
vector
<
float
>
response_mask_tmp
;
split_to_float
(
data
[
2
*
MAX_TURN_NUM
+
1
],
' '
,
&
response_mask_tmp
);
split_to_float
(
data
[
2
*
FLAGS_max_turn_num
+
1
],
' '
,
&
response_mask_tmp
);
response_mask
.
push_back
(
std
::
move
(
response_mask_tmp
));
response_mask
.
push_back
(
std
::
move
(
response_mask_tmp
));
// load result data
// load result data
float
result_tmp
;
float
result_tmp
;
result_tmp
=
std
::
stof
(
data
[
2
*
MAX_TURN_NUM
+
2
]);
result_tmp
=
std
::
stof
(
data
[
2
*
FLAGS_max_turn_num
+
2
]);
result_data
.
push_back
(
result_tmp
);
result_data
.
push_back
(
result_tmp
);
}
}
num_samples
=
num_lines
;
num_samples
=
num_lines
;
...
@@ -101,8 +118,8 @@ struct DataRecord {
...
@@ -101,8 +118,8 @@ struct DataRecord {
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
int
batch_size
)
{
PaddleTensor
turns_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_tensor
[
FLAGS_max_turn_num
];
PaddleTensor
turns_mask_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_mask_tensor
[
FLAGS_max_turn_num
];
PaddleTensor
response_tensor
;
PaddleTensor
response_tensor
;
PaddleTensor
response_mask_tensor
;
PaddleTensor
response_mask_tensor
;
std
::
string
turn_pre
=
"turn_"
;
std
::
string
turn_pre
=
"turn_"
;
...
@@ -110,16 +127,16 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -110,16 +127,16 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
auto
one_batch
=
data
->
NextBatch
();
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
response
[
0
].
size
();
int
size
=
one_batch
.
response
[
0
].
size
();
CHECK_EQ
(
size
,
MAX_TURN_LEN
);
CHECK_EQ
(
size
,
kMaxTurnLen
);
// turn tensor assignment
// turn tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
turns_tensor
[
i
].
name
=
turn_pre
+
std
::
to_string
(
i
);
turns_tensor
[
i
].
name
=
turn_pre
+
std
::
to_string
(
i
);
turns_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_tensor
[
i
].
dtype
=
PaddleDType
::
INT64
;
turns_tensor
[
i
].
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
turns_tensor
[
i
],
one_batch
.
turns
[
i
]);
TensorAssignData
<
int64_t
>
(
&
turns_tensor
[
i
],
one_batch
.
turns
[
i
]);
}
}
// turn mask tensor assignment
// turn mask tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
turns_mask_tensor
[
i
].
name
=
turn_mask_pre
+
std
::
to_string
(
i
);
turns_mask_tensor
[
i
].
name
=
turn_mask_pre
+
std
::
to_string
(
i
);
turns_mask_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_mask_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_mask_tensor
[
i
].
dtype
=
PaddleDType
::
FLOAT32
;
turns_mask_tensor
[
i
].
dtype
=
PaddleDType
::
FLOAT32
;
...
@@ -137,10 +154,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -137,10 +154,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
TensorAssignData
<
float
>
(
&
response_mask_tensor
,
one_batch
.
response_mask
);
TensorAssignData
<
float
>
(
&
response_mask_tensor
,
one_batch
.
response_mask
);
// Set inputs.
// Set inputs.
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_tensor
[
i
]));
input_slots
->
push_back
(
std
::
move
(
turns_tensor
[
i
]));
}
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_max_turn_num
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_mask_tensor
[
i
]));
input_slots
->
push_back
(
std
::
move
(
turns_mask_tensor
[
i
]));
}
}
input_slots
->
push_back
(
std
::
move
(
response_tensor
));
input_slots
->
push_back
(
std
::
move
(
response_tensor
));
...
@@ -148,7 +165,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -148,7 +165,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
cfg
->
model_dir
=
FLAGS_infer_model
;
cfg
->
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
->
param_file
=
FLAGS_infer_model
+
"/param"
;
cfg
->
use_gpu
=
false
;
cfg
->
use_gpu
=
false
;
cfg
->
device
=
0
;
cfg
->
device
=
0
;
cfg
->
specify_input_name
=
true
;
cfg
->
specify_input_name
=
true
;
...
@@ -201,8 +219,6 @@ TEST(Analyzer_dam, fuse_statis) {
...
@@ -201,8 +219,6 @@ TEST(Analyzer_dam, fuse_statis) {
auto
fuse_statis
=
GetFuseStatis
(
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
45
);
EXPECT_EQ
(
num_ops
,
292
);
}
}
// Compare result of NativeConfig and AnalysisConfig
// Compare result of NativeConfig and AnalysisConfig
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录