Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
330b1a0a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
330b1a0a
编写于
9月 23, 2022
作者:
Z
Zhang Zheng
提交者:
GitHub
9月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize performance of depthwise_conv_fwd (#46287)
* Optimize performance of depthwise_conv_fwd * fix
上级
22fe4f03
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
55 addition
and
51 deletion
+55
-51
paddle/phi/kernels/gpu/depthwise_conv.h
paddle/phi/kernels/gpu/depthwise_conv.h
+55
-51
未找到文件。
paddle/phi/kernels/gpu/depthwise_conv.h
浏览文件 @
330b1a0a
...
...
@@ -139,56 +139,53 @@ __forceinline__ __device__ T BlockReduceSum(T val) {
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
template
<
typename
T
,
bool
fuse_relu_before_conv
>
template
<
typename
T
,
int
c_filter
,
bool
fuse_relu_before_conv
>
__device__
__inline__
void
KernelDepthwiseConvNCHW
(
ARG_DEFINE_KernelDepthwiseConv
)
{
const
int
fw_size
=
c_filter
!=
-
1
?
c_filter
:
filter_width
;
const
int
fh_size
=
c_filter
!=
-
1
?
c_filter
:
filter_height
;
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
>=
(
output_channels
*
batch_size
*
output_height
*
output_width
))
return
;
const
int
w_out
=
idx
%
output_width
;
const
int
h_out
=
(
idx
/
output_width
)
%
output_height
;
const
int
c_out
=
(
idx
/
output_width
/
output_height
)
%
output_channels
;
const
int
batch
=
idx
/
output_width
/
output_height
/
output_channels
;
int
tmp_1
=
idx
/
output_width
;
const
int
w_out
=
idx
-
tmp_1
*
output_width
;
int
tmp_2
=
tmp_1
/
output_height
;
const
int
h_out
=
tmp_1
-
tmp_2
*
output_height
;
tmp_1
=
tmp_2
;
tmp_2
=
tmp_1
/
output_channels
;
const
int
c_out
=
tmp_1
-
tmp_2
*
output_channels
;
const
int
batch
=
tmp_2
;
const
int
c_in
=
c_out
/
filter_multiplier
;
const
T
*
weight
=
filter_data
+
c_out
*
filter_height
*
filter_width
;
T
value
(
0
);
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
h_in_start
+
filter_height
*
dilate_height
;
const
int
w_in_end
=
w_in_start
+
filter_width
*
dilate_width
;
int
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
int
weight_offset
=
0
;
int
weight_offset
=
c_out
*
filter_height
*
filter_width
;
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
#pragma unroll
for
(
int
h_in
=
h_in_start
;
h_in
<
h_in_end
;
h_in
+=
dilate_height
)
{
for
(
int
fh
=
0
,
h_in
=
h_in_start
;
fh
<
fh_size
;
fh
++
,
h_in
+=
dilate_height
)
{
#pragma unroll
for
(
int
w_in
=
w_in_start
;
w_in
<
w_in_end
;
w_in
+=
dilate_width
)
{
if
(
h_in
>=
h_start
&&
h_in
<
h_end
&&
w_in
>=
w_start
&&
w_in
<
w_end
)
{
for
(
int
fw
=
0
,
w_in
=
w_in_start
;
fw
<
fw_size
;
fw
++
,
w_in
+=
dilate_width
)
{
if
(
h_in
>=
0
&&
h_in
<
input_height
&&
w_in
>=
0
&&
w_in
<
input_width
)
{
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
T
in_data
=
input_data
[
offset
];
if
(
fuse_relu_before_conv
)
{
value
+=
weight
[
weight_offset
]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
in_data
)));
value
+=
filter_data
[
weight_offset
]
*
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
in_data
)));
}
else
{
value
+=
weight
[
weight_offset
]
*
in_data
;
value
+=
filter_data
[
weight_offset
]
*
in_data
;
}
}
weight_offset
++
;
}
}
int
index
=
batch
*
output_channels
*
output_height
*
output_width
+
c_out
*
output_height
*
output_width
+
h_out
*
output_width
+
w_out
;
output_data
[
index
]
=
value
;
output_data
[
idx
]
=
value
;
}
// A Cuda kernel to compute the depthwise convolution forward pass
...
...
@@ -229,7 +226,8 @@ __device__ __inline__ void KernelDepthwiseConvNHWC(
T
in_data
=
input_data
[
offset
];
const
T
*
weight
=
filter_data
+
weight_offset
*
output_channels
+
c_out
;
if
(
fuse_relu_before_conv
)
{
value
+=
weight
[
0
]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
in_data
)));
value
+=
weight
[
0
]
*
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
in_data
)));
}
else
{
value
+=
weight
[
0
]
*
in_data
;
}
...
...
@@ -282,7 +280,8 @@ __device__ __inline__ void KernelDepthwiseConvCFilterNCHW(
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
if
(
fuse_relu_before_conv
)
{
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
offset
])));
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
offset
])));
}
else
{
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
input_data
[
offset
];
}
...
...
@@ -338,7 +337,8 @@ __device__ __inline__ void KernelDepthwiseConvCFilterNHWC(
in_offset
+
(
h_in
*
input_width
+
w_in
)
*
input_channels
+
c_in
;
if
(
fuse_relu_before_conv
)
{
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
T
(
max
(
0.0
,
static_cast
<
double
>
(
input_data
[
offset
])));
static_cast
<
T
>
(
max
(
0.0
,
static_cast
<
double
>
(
input_data
[
offset
])));
}
else
{
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
input_data
[
offset
];
}
...
...
@@ -368,7 +368,8 @@ __global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
}
if
(
c_filter
==
-
1
)
{
if
(
data_layout
!=
DataLayout
::
kNHWC
)
{
KernelDepthwiseConvNCHW
<
T
,
fuse_relu_before_conv
>
(
input_data
,
KernelDepthwiseConvNCHW
<
T
,
c_filter
,
fuse_relu_before_conv
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
...
...
@@ -881,7 +882,8 @@ __device__ __inline__ void KernelDepthwiseConvFilterGradNCHW(
image_wk
;
if
(
fuse_relu_before_conv
)
{
s
+=
output_grad_data
[
gaid
(
bid
,
kernel_id
,
image_h
,
image_w
)]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
}
else
{
s
+=
output_grad_data
[
gaid
(
bid
,
kernel_id
,
image_h
,
image_w
)]
*
input_data
[
input_id
];
...
...
@@ -942,7 +944,8 @@ __device__ __inline__ void KernelDepthwiseConvFilterGradNHWC(
kernel_id
/
filter_multiplier
;
if
(
fuse_relu_before_conv
)
{
s
+=
output_grad_data
[
gaid
(
bid
,
image_h
,
image_w
,
kernel_id
)]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
}
else
{
s
+=
output_grad_data
[
gaid
(
bid
,
image_h
,
image_w
,
kernel_id
)]
*
input_data
[
input_id
];
...
...
@@ -1014,7 +1017,8 @@ __device__ __inline__ void KernelDepthwiseConvFilterGradCFilterNHWC(
T
s
(
0
);
if
(
fuse_relu_before_conv
)
{
s
=
output_grad_data
[
output_id
]
*
T
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
static_cast
<
T
>
(
max
(
0.0
f
,
static_cast
<
double
>
(
input_data
[
input_id
])));
}
else
{
s
=
output_grad_data
[
output_id
]
*
input_data
[
input_id
];
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录