Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
32f5c9dd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32f5c9dd
编写于
10月 02, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
recurrent_op pass the unit test
上级
7163dd04
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
66 addition
and
136 deletion
+66
-136
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+20
-67
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+2
-21
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+23
-32
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+3
-3
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+3
-2
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+15
-11
未找到文件。
paddle/operators/recurrent_op.cc
浏览文件 @
32f5c9dd
...
...
@@ -28,7 +28,8 @@ using Variable = framework::Variable;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
void
RecurrentAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
void
RecurrentAlgorithm
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
*
input0
=
scope
.
FindVar
(
arg_
->
inlinks
[
0
]);
PADDLE_ENFORCE_NOT_NULL
(
input0
);
seq_len_
=
input0
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
...
...
@@ -36,38 +37,16 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
CreateScopes
(
scope
);
auto
&
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
true
/*infer_shape_mode*/
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
InitMemories
(
step_scopes
[
0
]);
for
(
size_t
i
=
0
;
i
<
seq_len_
;
i
++
)
{
if
(
i
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
,
true
/*infer_shape_mode*/
);
}
(
*
stepnet_
)
->
InferShape
(
*
step_scopes
[
i
]);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
}
void
RecurrentAlgorithm
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
false
/*infer_shape_mode*/
);
for
(
size_t
step_id
=
0
;
step_id
<
seq_len_
;
step_id
++
)
{
// create output alias variables
if
(
step_id
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
,
false
/*infer_shape_mode*/
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
);
}
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
i
],
dev_ctx
);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
}
void
RecurrentAlgorithm
::
CreateScopes
(
const
Scope
&
scope
)
const
{
...
...
@@ -105,8 +84,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
}
}
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
,
bool
infer_shape_mode
)
const
{
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
auto
*
pre_mem
=
step_scope
->
NewVar
(
attr
.
pre_var
)
->
GetMutable
<
LoDTensor
>
();
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
...
...
@@ -114,13 +92,10 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope,
attr
.
boot_var
);
auto
*
boot_mem
=
step_scope
->
FindVar
(
attr
.
boot_var
)
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
pre_mem
->
Resize
(
boot_mem
->
dims
());
PADDLE_ENFORCE_EQ
(
pre_mem
->
dims
().
size
(),
2
);
}
else
{
pre_mem
->
ShareDataWith
<
float
>
(
*
boot_mem
);
}
}
}
const
rnn
::
ArgumentName
RecurrentOp
::
kArgName
{
...
...
@@ -169,23 +144,22 @@ class RecurrentAlgorithmProtoAndCheckerMaker
void
RecurrentGradientAlgorithm
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
seq_len_
=
scope
.
FindVar
(
arg_
->
inlinks
[
0
])
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
false
/*infer_shape_mode*/
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
);
}
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
LinkBootMemoryGradients
(
step_scopes
[
0
],
false
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
LinkBootMemoryGradients
(
step_scopes
[
0
]);
}
void
RecurrentGradientAlgorithm
::
LinkBootMemoryGradients
(
Scope
*
step_scope
,
bool
infer_shape_mode
)
const
{
Scope
*
step_scope
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
var
)
!=
nullptr
,
"memory variable [%s] does not exists"
,
attr
.
var
);
...
...
@@ -194,30 +168,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
auto
*
mem_grad
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
LoDTensor
>
();
auto
*
boot_mem_grad
=
step_scope
->
NewVar
(
attr
.
boot_var
)
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
boot_mem_grad
->
Resize
(
mem_grad
->
dims
());
}
else
{
boot_mem_grad
->
ShareDataWith
<
float
>
(
*
mem_grad
);
}
}
}
void
RecurrentGradientAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
(
arg_
->
inlinks
[
0
])
->
GetMutable
<
LoDTensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
true
/*infer_shape_mode*/
);
}
(
*
stepnet_
)
->
InferShape
(
*
step_scopes
[
step_id
]);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
LinkBootMemoryGradients
(
step_scopes
[
0
],
true
/*infer_shape_mode*/
);
}
RecurrentGradientOp
::
RecurrentGradientOp
(
...
...
paddle/operators/recurrent_op.h
浏览文件 @
32f5c9dd
...
...
@@ -41,11 +41,6 @@ class RecurrentAlgorithm {
stepnet_
=
stepnet
;
}
/**
* InferShape must be called before Run.
*/
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
;
protected:
/*
* The step scopes will be stored in the father scope as a variable.
...
...
@@ -61,7 +56,7 @@ class RecurrentAlgorithm {
->
GetMutable
<
std
::
vector
<
framework
::
Scope
*>>
();
}
void
InitMemories
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
void
InitMemories
(
framework
::
Scope
*
step_scopes
)
const
;
private:
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
...
...
@@ -91,13 +86,7 @@ class RecurrentGradientAlgorithm {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
LinkBootMemoryGradients
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
/**
* InferShape must be called before Run.
*/
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
;
void
LinkBootMemoryGradients
(
framework
::
Scope
*
step_scopes
)
const
;
protected:
inline
const
std
::
vector
<
framework
::
Scope
*>&
GetStepScopes
(
...
...
@@ -136,10 +125,6 @@ class RecurrentOp : public framework::OperatorBase {
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
{
alg_
.
InferShape
(
scope
);
}
static
const
rnn
::
ArgumentName
kArgName
;
private:
...
...
@@ -162,10 +147,6 @@ class RecurrentGradientOp : public framework::OperatorBase {
PADDLE_THROW
(
"Not Implemented"
);
}
void
InferShape
(
const
framework
::
Scope
&
scope
)
const
{
alg_
.
InferShape
(
scope
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
alg_
.
Run
(
scope
,
dev_ctx
);
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
32f5c9dd
...
...
@@ -25,7 +25,7 @@ using LoDTensor = framework::LoDTensor;
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
std
::
string
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
const
size_t
seq_len
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
// global inputs
...
...
@@ -41,11 +41,9 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
])
->
GetMutable
<
Tensor
>
();
if
(
!
infer_shape_mode
)
{
// The input of operators of each step is Tensor here.
// Maybe need to modify Slice function.
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
}
}
...
...
@@ -53,14 +51,13 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
std
::
string
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
const
size_t
seq_len
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
auto
output_var
=
step_scopes
[
0
]
->
parent
().
FindVar
(
outlinks
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
output_var
,
"output link [%s] is not in scope."
,
outlinks
[
i
]);
LoDTensor
*
output
=
output_var
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
auto
step_scope_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
step_scope_var
,
"%s not in scope"
,
outlinks
[
i
]);
f
::
DDim
step_dims
=
...
...
@@ -68,7 +65,6 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
std
::
vector
<
int64_t
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
f
::
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
LoDTensor
*
step_output
=
...
...
@@ -79,13 +75,11 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
.
CopyFrom
<
float
>
(
*
step_output
,
platform
::
CPUPlace
());
}
}
}
}
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
scopes
,
const
std
::
vector
<
rnn
::
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
)
{
const
size_t
step_id
,
const
int
offset
)
{
PADDLE_ENFORCE_LT
(
step_id
,
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
step_id
,
scopes
.
size
());
...
...
@@ -100,12 +94,9 @@ void LinkMemories(const std::vector<Scope*>& scopes,
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
LoDTensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
}
}
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
32f5c9dd
...
...
@@ -64,18 +64,18 @@ struct ArgumentName {
*/
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
std
::
string
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
const
size_t
seq_len
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
std
::
string
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
const
size_t
seq_len
);
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
);
const
int
offset
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
,
bool
is_grad
=
false
);
...
...
paddle/operators/sum_op.cc
浏览文件 @
32f5c9dd
...
...
@@ -22,14 +22,15 @@ class SumOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"Inputs(X) should not be null"
);
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
PADDLE_ENFORCE
(
!
x_dims
.
empty
(),
"Input(X) of SumOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SumOp should not be null."
);
auto
in_dim
=
x_dims
[
0
];
size_t
N
=
x_dims
.
size
();
PADDLE_ENFORCE_GT
(
N
,
1
,
"Input tensors count should > 1."
);
auto
in_dim
=
x_dims
[
0
];
for
(
size_t
i
=
1
;
i
<
N
;
i
++
)
{
auto
dim
=
x_dims
[
i
];
PADDLE_ENFORCE
(
in_dim
==
dim
,
"Input tensors must have same shape"
);
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
32f5c9dd
...
...
@@ -16,14 +16,17 @@ class PySimpleRNN(object):
'''
def
__init__
(
self
,
input_dim
=
30
,
batch_size
=
50
,
weight_dim
=
15
,
sent_len
=
11
):
self
.
x
=
np
.
random
.
normal
(
size
=
(
sent_len
,
batch_size
,
input_dim
))
self
.
W
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
U
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
h_boot
=
np
.
random
.
normal
(
size
=
(
batch_size
,
input_dim
))
self
.
x
=
np
.
random
.
normal
(
size
=
(
sent_len
,
batch_size
,
input_dim
)).
astype
(
"float32"
)
self
.
W
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
)).
astype
(
"float32"
)
self
.
U
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
)).
astype
(
"float32"
)
self
.
h_boot
=
np
.
random
.
normal
(
size
=
(
batch_size
,
input_dim
)).
astype
(
"float32"
)
# memories
self
.
mems
=
[
np
.
zeros
(
shape
=
(
batch_size
,
input_dim
))
for
i
in
range
(
sent_len
)
np
.
zeros
(
shape
=
(
batch_size
,
input_dim
)).
astype
(
"float32"
)
for
i
in
range
(
sent_len
)
]
def
forward
(
self
):
...
...
@@ -36,7 +39,7 @@ class PySimpleRNN(object):
return
[
self
.
x
[
i
]
for
i
in
range
(
self
.
x
.
shape
[
0
])]
def
concat_outputs
(
self
):
return
np
.
array
(
self
.
mems
)
return
np
.
array
(
self
.
mems
)
.
astype
(
"float32"
)
def
step
(
self
,
step_id
,
x
):
'''
...
...
@@ -47,8 +50,8 @@ class PySimpleRNN(object):
pre_mem
=
self
.
mems
[
step_id
-
1
]
else
:
pre_mem
=
self
.
h_boot
xW
=
np
.
matmul
(
x
,
self
.
W
)
hU
=
np
.
matmul
(
pre_mem
,
self
.
U
)
xW
=
np
.
matmul
(
x
,
self
.
W
)
.
astype
(
"float32"
)
hU
=
np
.
matmul
(
pre_mem
,
self
.
U
)
.
astype
(
"float32"
)
sum
=
xW
+
hU
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
...
...
@@ -102,7 +105,8 @@ class RecurrentOpTest(unittest.TestCase):
self
.
create_step_net
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
rnnop
.
run
(
self
.
scope
,
ctx
)
return
np
.
array
(
self
.
scope
.
find_var
(
"h@mem"
).
get_tensor
())
return
np
.
array
(
self
.
scope
.
find_var
(
"h@mem"
).
get_tensor
()).
astype
(
"float32"
)
def
create_global_variables
(
self
):
# create inlink
...
...
@@ -142,7 +146,7 @@ class RecurrentOpTest(unittest.TestCase):
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"
add"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sum_op
=
Operator
(
"
sum"
,
X
=
[
"Wx"
,
"Uh"
]
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@mem"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
...
...
@@ -179,7 +183,7 @@ class RecurrentGradientOpTest(unittest.TestCase):
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"
add"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sum_op
=
Operator
(
"
sum"
,
X
=
[
"Wx"
,
"Uh"
]
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录