Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
32ae8e81
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
32ae8e81
编写于
8月 27, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
leaky_relu, log_softmax, hardshrink formula format (#26720)
上级
c2c68958
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
58 addition
and
58 deletion
+58
-58
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+17
-17
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+41
-41
未找到文件。
python/paddle/nn/functional/activation.py
浏览文件 @
32ae8e81
...
@@ -168,13 +168,13 @@ def hardshrink(x, threshold=0.5, name=None):
...
@@ -168,13 +168,13 @@ def hardshrink(x, threshold=0.5, name=None):
.. math::
.. math::
hardshrink(x)=
hardshrink(x)=
\
left
\{
\
\
left
\
\
{
\b
egin{aligned}
\
\
begin{aligned}
&x, & & if \
x > threshold
\\
&x, & & if
\
\
x > threshold
\\
\\
&x, & & if \
x < -threshold
\\
&x, & & if
\
\
x < -threshold
\\
\\
&0, & & if \ others
&0, & & if
\
\
others
\end{aligned}
\
\
end{aligned}
\r
ight.
\
\
right.
Args:
Args:
x (Tensor): The input Tensor with data type float32, float64.
x (Tensor): The input Tensor with data type float32, float64.
...
@@ -391,14 +391,14 @@ def leaky_relu(x, negative_slope=0.01, name=None):
...
@@ -391,14 +391,14 @@ def leaky_relu(x, negative_slope=0.01, name=None):
"""
"""
leaky_relu activation
leaky_relu activation
.. math:
.. math:
:
leaky_relu(x)=
leaky
\\
_relu(x)=
\
left
\{
\
\
left
\
\
{
\b
egin{aligned}
\
\
begin{aligned}
&x, & & if \
x >= 0
\\
&x, & & if
\
\
x >= 0
\\
\\
&negative\_slope * x, & & otherwise
\\
&negative\_slope * x, & & otherwise
\\
\\
\end{aligned}
\
\
end{aligned}
\
r
ight.
\\
\
\
right.
\\
\\
Args:
Args:
x (Tensor): The input Tensor with data type float32, float64.
x (Tensor): The input Tensor with data type float32, float64.
...
@@ -1033,8 +1033,8 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
...
@@ -1033,8 +1033,8 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
.. math::
.. math::
Out[i, j] = log(softmax(x))
log
\\
_softmax[i, j] = log(softmax(x))
= log(
\f
rac{\exp(X[i, j])}{
\sum_j(exp(X[i, j])})
= log(
\\
frac{\exp(X[i, j])}{
\
\
sum_j(exp(X[i, j])})
Parameters:
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
x (Tensor): The input Tensor with data type float32, float64.
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
32ae8e81
...
@@ -144,13 +144,13 @@ class Hardshrink(layers.Layer):
...
@@ -144,13 +144,13 @@ class Hardshrink(layers.Layer):
.. math::
.. math::
hardshrink(x)=
hardshrink(x)=
\
left
\{
\
\
left
\
\
{
\b
egin{aligned}
\
\
begin{aligned}
&x, & & if \
x > threshold
\\
&x, & & if
\
\
x > threshold
\\
\\
&x, & & if \
x < -threshold
\\
&x, & & if
\
\
x < -threshold
\\
\\
&0, & & if \ others
&0, & & if
\
\
others
\end{aligned}
\
\
end{aligned}
\r
ight.
\
\
right.
Parameters:
Parameters:
threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
...
@@ -598,15 +598,15 @@ class LeakyReLU(layers.Layer):
...
@@ -598,15 +598,15 @@ class LeakyReLU(layers.Layer):
"""
"""
Leaky ReLU Activation.
Leaky ReLU Activation.
.. math:
.. math:
:
LeakyReLU(x)=
LeakyReLU(x)=
\
left
\{
\
\
left
\
\
{
\b
egin{aligned}
\
\
begin{aligned}
&x, & & if \
x >= 0
\\
&x, & & if
\
\
x >= 0
\\
\\
&negative\_slope * x, & & otherwise
\\
&negative\_slope * x, & & otherwise
\\
\\
\end{aligned}
\
\
end{aligned}
\
r
ight.
\\
\
\
right.
\\
\\
Parameters:
Parameters:
negative_slope (float, optional): Slope of the activation function at
negative_slope (float, optional): Slope of the activation function at
...
@@ -1015,7 +1015,7 @@ class LogSoftmax(layers.Layer):
...
@@ -1015,7 +1015,7 @@ class LogSoftmax(layers.Layer):
.. math::
.. math::
Out[i, j] = log(softmax(x))
Out[i, j] = log(softmax(x))
= log(
\
f
rac{\exp(X[i, j])}{
\sum_j(exp(X[i, j])})
= log(
\
\
frac{\exp(X[i, j])}{
\
\
sum_j(exp(X[i, j])})
Parameters:
Parameters:
axis (int, optional): The axis along which to perform log_softmax
axis (int, optional): The axis along which to perform log_softmax
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录