未验证 提交 319f95d0 编写于 作者: K KP 提交者: GitHub

Add complex type compatibility for stft api and stft op. (#40113)

* Add stft_op.

* Add stft_grad_op.

* Add stft_op unittest.

* [DLTP-45176] Add complex compatibility in static mode for stft api.

* [DLTP-45176] Add complex compatibility in static mode for stft api.

* Add doc.

* Update unitests of stft op.

* Update spectral helper.

* fix coding style.
上级 3d0be938
......@@ -64,18 +64,26 @@ class FrameOp : public framework::OperatorWithKernel {
end_axis = x_rank - 2;
}
bool contain_unknown_dim = phi::contain_unknown_dim(x_dims);
bool check = ctx->IsRuntime() || !contain_unknown_dim;
if (check) {
PADDLE_ENFORCE_LE(frame_length, seq_length,
platform::errors::InvalidArgument(
"Attribute(frame_length) of FrameOp should be less "
"equal than sequence length, but got (%s) > (%s).",
frame_length, seq_length));
}
// It won't go into for loop when x_rank == 1U.
for (int i = start_axis; i <= end_axis; i++) {
output_shape.push_back(x_dims[i]);
}
if (seq_length == -1) {
n_frames = -1;
} else {
n_frames = 1 + (seq_length - frame_length) / hop_length;
}
if (axis == 0) {
// (n_frames, frame_length, ...)
......
......@@ -98,9 +98,17 @@ REGISTER_OP_CPU_KERNEL(
mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
ops::MeanKernel<paddle::platform::CPUDeviceContext, double>,
ops::MeanKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>);
paddle::platform::bfloat16>,
ops::MeanKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MeanKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
mean_grad, ops::MeanGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MeanGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MeanGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::bfloat16>);
paddle::platform::bfloat16>,
ops::MeanGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<float>>,
ops::MeanGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex<double>>);
......@@ -102,10 +102,17 @@ namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
mean, ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, double>,
ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, plat::float16>);
ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, plat::float16>,
ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<float>>,
ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
mean_grad,
ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, plat::float16>,
ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext,
plat::float16>);
paddle::platform::complex<float>>,
ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex<double>>);
......@@ -54,6 +54,7 @@ class OverlapAddOp : public framework::OperatorWithKernel {
std::vector<int64_t> output_shape;
int n_frames;
int frame_length;
int seq_length;
int start_axis;
int end_axis;
......@@ -69,14 +70,22 @@ class OverlapAddOp : public framework::OperatorWithKernel {
end_axis = x_rank - 3;
}
bool contain_unknown_dim = phi::contain_unknown_dim(x_dims);
bool check = ctx->IsRuntime() || !contain_unknown_dim;
if (check) {
PADDLE_ENFORCE_LE(
hop_length, frame_length,
platform::errors::InvalidArgument(
"Attribute(hop_length) of OverlapAddOp should be less or equal "
"than frame_length, but got hop_length(%s) > frame_length(%s).",
hop_length, frame_length));
}
const int seq_length = (n_frames - 1) * hop_length + frame_length;
if (n_frames == -1) {
seq_length = -1;
} else {
seq_length = (n_frames - 1) * hop_length + frame_length;
}
// It won't go into for loop when x_rank == 2U.
for (int i = start_axis; i <= end_axis; i++) {
......
......@@ -16,451 +16,469 @@
#include "paddle/fluid/operators/spectral_op.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#if defined(PADDLE_WITH_ONEMKL)
#include "paddle/phi/backends/dynload/mklrt.h"
#elif defined(PADDLE_WITH_POCKETFFT)
#include "extern_pocketfft/pocketfft_hdronly.h"
#endif
namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxFFTNdim + 1;
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct FFTConfigKey {
// between 1 and kMaxFFTNdim, i.e., 1 <= signal_ndim <= 3
int64_t signal_ndim_;
// These include additional batch dimension as well.
int64_t sizes_[kMaxDataNdim];
int64_t input_shape_[kMaxDataNdim];
int64_t output_shape_[kMaxDataNdim];
FFTTransformType fft_type_;
ScalarType value_type_;
FFTConfigKey() = default;
FFTConfigKey(const std::vector<int64_t>& in_shape,
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& signal_size,
FFTTransformType fft_type, ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_size.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;
std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
}
};
#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
::cufftHandle handle_;
public:
CuFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftCreate(&handle_));
}
CuFFTHandle(const CuFFTHandle& other) = delete;
CuFFTHandle& operator=(const CuFFTHandle& other) = delete;
using Tensor = framework::Tensor;
CuFFTHandle(CuFFTHandle&& other) = delete;
CuFFTHandle& operator=(CuFFTHandle&& other) = delete;
// FFT Functors
#if defined(PADDLE_WITH_ONEMKL)
::cufftHandle& get() { return handle_; }
const ::cufftHandle& get() const { return handle_; }
#define MKL_DFTI_CHECK(expr) \
do { \
MKL_LONG status = (expr); \
if (!phi::dynload::DftiErrorClass(status, DFTI_NO_ERROR)) \
PADDLE_THROW( \
platform::errors::External(phi::dynload::DftiErrorMessage(status))); \
} while (0);
~CuFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftDestroy(handle_));
struct DftiDescriptorDeleter {
void operator()(DFTI_DESCRIPTOR_HANDLE handle) {
if (handle != nullptr) {
MKL_DFTI_CHECK(phi::dynload::DftiFreeDescriptor(&handle));
}
}
};
using plan_size_type = long long int; // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class FFTConfig {
// A RAII wrapper for MKL_DESCRIPTOR*
class DftiDescriptor {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit FFTConfig(const FFTConfigKey& plan_key)
: FFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
cudaDataType itype, otype, exec_type;
const auto complex_input = has_complex_input(fft_type);
const auto complex_output = has_complex_output(fft_type);
if (dtype == framework::proto::VarType::FP32) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == framework::proto::VarType::FP64) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == framework::proto::VarType::FP16) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"cuFFT only support transforms of type float16, float32 and "
"float64"));
void init(DFTI_CONFIG_VALUE precision, DFTI_CONFIG_VALUE signal_type,
MKL_LONG signal_ndim, MKL_LONG* sizes) {
PADDLE_ENFORCE_EQ(desc_.get(), nullptr,
platform::errors::AlreadyExists(
"DftiDescriptor has already been initialized."));
DFTI_DESCRIPTOR* raw_desc;
MKL_DFTI_CHECK(phi::dynload::DftiCreateDescriptorX(
&raw_desc, precision, signal_type, signal_ndim, sizes));
desc_.reset(raw_desc);
}
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftXtMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));
ws_size = ws_size_t;
DFTI_DESCRIPTOR* get() const {
DFTI_DESCRIPTOR* raw_desc = desc_.get();
PADDLE_ENFORCE_NOT_NULL(raw_desc,
platform::errors::PreconditionNotMet(
"DFTI DESCRIPTOR has not been initialized."));
return raw_desc;
}
FFTConfig(const FFTConfig& other) = delete;
FFTConfig& operator=(const FFTConfig& other) = delete;
FFTConfig(FFTConfig&& other) = delete;
FFTConfig& operator=(FFTConfig&& other) = delete;
const cufftHandle& plan() const { return plan_ptr.get(); }
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
private:
CuFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
std::unique_ptr<DFTI_DESCRIPTOR, DftiDescriptorDeleter> desc_;
};
#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
::hipfftHandle handle_;
public:
HIPFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftCreate(&handle_));
static DftiDescriptor _plan_mkl_fft(
const framework::proto::VarType::Type& in_dtype,
const framework::proto::VarType::Type& out_dtype,
const framework::DDim& in_strides, const framework::DDim& out_strides,
const std::vector<int>& signal_sizes, FFTNormMode normalization,
bool forward) {
const DFTI_CONFIG_VALUE precision = [&] {
switch (in_dtype) {
case framework::proto::VarType::FP32:
return DFTI_SINGLE;
case framework::proto::VarType::COMPLEX64:
return DFTI_SINGLE;
case framework::proto::VarType::FP64:
return DFTI_DOUBLE;
case framework::proto::VarType::COMPLEX128:
return DFTI_DOUBLE;
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"Invalid input datatype (%s), input data type should be FP32, "
"FP64, COMPLEX64 or COMPLEX128.",
framework::DataTypeToString(in_dtype)));
}
}();
HIPFFTHandle(const HIPFFTHandle& other) = delete;
HIPFFTHandle& operator=(const HIPFFTHandle& other) = delete;
HIPFFTHandle(HIPFFTHandle&& other) = delete;
HIPFFTHandle& operator=(HIPFFTHandle&& other) = delete;
::hipfftHandle& get() { return handle_; }
const ::hipfftHandle& get() const { return handle_; }
~HIPFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftDestroy(handle_));
}
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class FFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit FFTConfig(const FFTConfigKey& plan_key)
: FFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
hipfftType exec_type = [&] {
if (dtype == framework::proto::VarType::FP32) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_C2C;
case FFTTransformType::R2C:
return HIPFFT_R2C;
case FFTTransformType::C2R:
return HIPFFT_C2R;
// C2C, R2C, C2R
const FFTTransformType fft_type = GetFFTTransformType(in_dtype, out_dtype);
const DFTI_CONFIG_VALUE domain =
(fft_type == FFTTransformType::C2C) ? DFTI_COMPLEX : DFTI_REAL;
DftiDescriptor descriptor;
std::vector<MKL_LONG> fft_sizes(signal_sizes.cbegin(), signal_sizes.cend());
const MKL_LONG signal_ndim = fft_sizes.size() - 1;
descriptor.init(precision, domain, signal_ndim, fft_sizes.data() + 1);
// placement inplace or not inplace
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(), DFTI_PLACEMENT,
DFTI_NOT_INPLACE));
// number of transformations
const MKL_LONG batch_size = fft_sizes[0];
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_NUMBER_OF_TRANSFORMS, batch_size));
// input & output distance
const MKL_LONG idist = in_strides[0];
const MKL_LONG odist = out_strides[0];
MKL_DFTI_CHECK(
phi::dynload::DftiSetValue(descriptor.get(), DFTI_INPUT_DISTANCE, idist));
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(),
DFTI_OUTPUT_DISTANCE, odist));
// input & output stride
std::vector<MKL_LONG> mkl_in_stride(1 + signal_ndim, 0);
std::vector<MKL_LONG> mkl_out_stride(1 + signal_ndim, 0);
for (MKL_LONG i = 1; i <= signal_ndim; i++) {
mkl_in_stride[i] = in_strides[i];
mkl_out_stride[i] = out_strides[i];
}
} else if (dtype == framework::proto::VarType::FP64) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_Z2Z;
case FFTTransformType::R2C:
return HIPFFT_D2Z;
case FFTTransformType::C2R:
return HIPFFT_Z2D;
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_INPUT_STRIDES, mkl_in_stride.data()));
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_OUTPUT_STRIDES, mkl_out_stride.data()));
// conjugate even storage
if (!(fft_type == FFTTransformType::C2C)) {
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX));
}
MKL_LONG signal_numel =
std::accumulate(fft_sizes.cbegin() + 1, fft_sizes.cend(), 1UL,
std::multiplies<MKL_LONG>());
if (normalization != FFTNormMode::none) {
const double scale =
((normalization == FFTNormMode::by_sqrt_n)
? 1.0 / std::sqrt(static_cast<double>(signal_numel))
: 1.0 / static_cast<double>(signal_numel));
const auto scale_direction = [&]() {
if (fft_type == FFTTransformType::R2C ||
(fft_type == FFTTransformType::C2C && forward)) {
return DFTI_FORWARD_SCALE;
} else {
// (fft_type == FFTTransformType::C2R ||
// (fft_type == FFTTransformType::C2C && !forward))
return DFTI_BACKWARD_SCALE;
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}();
MKL_DFTI_CHECK(
phi::dynload::DftiSetValue(descriptor.get(), scale_direction, scale));
}
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
// commit the descriptor
MKL_DFTI_CHECK(phi::dynload::DftiCommitDescriptor(descriptor.get()));
return descriptor;
}
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
batch, &ws_size_t));
// Execute a general fft operation (can be c2c, onesided r2c or onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* x, Tensor* out,
const std::vector<int64_t>& axes, FFTNormMode normalization,
bool forward) {
const framework::DDim& in_sizes = x->dims();
const int ndim = in_sizes.size();
const int signal_ndim = axes.size();
const int batch_ndim = ndim - signal_ndim;
const framework::DDim& out_sizes = out->dims();
// make a dim permutation
std::vector<int> dim_permute(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), 0);
std::vector<bool> is_transformed_dim(ndim, false);
for (const auto& d : axes) {
is_transformed_dim[d] = true;
}
const auto batch_end =
std::partition(dim_permute.begin(), dim_permute.end(),
[&](size_t axis) { return !is_transformed_dim[axis]; });
std::copy(axes.cbegin(), axes.cend(), batch_end);
// transpose input according to that permutation
framework::DDim transposed_input_shape = in_sizes.transpose(dim_permute);
std::vector<int64_t> transposed_input_shape_ =
phi::vectorize(transposed_input_shape);
framework::Tensor transposed_input;
transposed_input.Resize(transposed_input_shape);
const auto place = ctx.GetPlace();
transposed_input.mutable_data<Ti>(place);
TransCompute<platform::CPUDeviceContext, Ti>(ndim, ctx, *x, &transposed_input,
dim_permute);
// make an collapsed input: collapse batch axes for input
const int batch_size = std::accumulate(
transposed_input_shape.Get(), transposed_input_shape.Get() + batch_ndim,
1L, std::multiplies<int64_t>());
std::vector<int> collapsed_input_shape_(1 + signal_ndim);
collapsed_input_shape_[0] = batch_size;
std::copy(transposed_input_shape_.begin() + batch_ndim,
transposed_input_shape_.end(), collapsed_input_shape_.begin() + 1);
const framework::DDim collapsed_input_shape =
phi::make_ddim(collapsed_input_shape_);
transposed_input.Resize(collapsed_input_shape);
framework::Tensor& collapsed_input = transposed_input;
// make a collapsed output
std::vector<int> collapsed_output_shape_(1 + signal_ndim);
collapsed_output_shape_[0] = batch_size;
for (int i = 0; i < signal_ndim; i++) {
collapsed_output_shape_[1 + i] = out_sizes[axes[i]];
}
const framework::DDim collapsed_output_shape =
phi::make_ddim(collapsed_output_shape_);
framework::Tensor collapsed_output;
collapsed_output.Resize(collapsed_output_shape);
collapsed_output.mutable_data(place, out->type());
// signal sizes
std::vector<int> signal_sizes(1 + signal_ndim);
signal_sizes[0] = batch_size;
for (int i = 0; i < signal_ndim; i++) {
signal_sizes[1 + i] =
std::max(collapsed_input_shape[1 + i], collapsed_output_shape[1 + i]);
}
ws_size = ws_size_t;
// input & output stride
const framework::DDim input_stride = phi::stride(collapsed_input_shape);
const framework::DDim output_stride = phi::stride(collapsed_output_shape);
// make a DFTI_DESCRIPTOR
DftiDescriptor desc =
_plan_mkl_fft(framework::TransToProtoVarType(x->dtype()),
framework::TransToProtoVarType(out->dtype()), input_stride,
output_stride, signal_sizes, normalization, forward);
const FFTTransformType fft_type =
GetFFTTransformType(framework::TransToProtoVarType(x->dtype()),
framework::TransToProtoVarType(out->type()));
if (fft_type == FFTTransformType::C2R && forward) {
framework::Tensor collapsed_input_conj(collapsed_input.dtype());
collapsed_input_conj.mutable_data<Ti>(collapsed_input.dims(),
ctx.GetPlace());
// conjugate the input
platform::ForRange<DeviceContext> for_range(ctx, collapsed_input.numel());
phi::funcs::ConjFunctor<Ti> functor(collapsed_input.data<Ti>(),
collapsed_input.numel(),
collapsed_input_conj.data<Ti>());
for_range(functor);
MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
desc.get(), collapsed_input_conj.data(), collapsed_output.data()));
} else if (fft_type == FFTTransformType::R2C && !forward) {
framework::Tensor collapsed_output_conj(collapsed_output.dtype());
collapsed_output_conj.mutable_data<To>(collapsed_output.dims(),
ctx.GetPlace());
MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
desc.get(), collapsed_input.data(), collapsed_output_conj.data()));
// conjugate the output
platform::ForRange<DeviceContext> for_range(ctx, collapsed_output.numel());
phi::funcs::ConjFunctor<To> functor(collapsed_output_conj.data<To>(),
collapsed_output.numel(),
collapsed_output.data<To>());
for_range(functor);
} else {
if (forward) {
MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
desc.get(), collapsed_input.data(), collapsed_output.data()));
} else {
MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
desc.get(), collapsed_input.data(), collapsed_output.data()));
}
}
const hipfftHandle& plan() const { return plan_ptr.get(); }
// resize for the collapsed output
framework::DDim transposed_output_shape = out_sizes.transpose(dim_permute);
collapsed_output.Resize(transposed_output_shape);
framework::Tensor& transposed_output = collapsed_output;
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
// reverse the transposition
std::vector<int> reverse_dim_permute(ndim);
for (int i = 0; i < ndim; i++) {
reverse_dim_permute[dim_permute[i]] = i;
}
TransCompute<platform::CPUDeviceContext, To>(ndim, ctx, transposed_output,
out, reverse_dim_permute);
}
private:
HIPFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
};
#endif
// Hashing machinery for Key
// Fowler–Noll–Vo hash function
// see
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
template <typename Key>
struct KeyHash {
// Key must be a POD because we read out its memory
// contenst as char* when hashing
static_assert(std::is_pod<Key>::value, "Key must be plain old data type");
size_t operator()(const Key& params) const {
auto ptr = reinterpret_cast<const uint8_t*>(&params);
uint32_t value = 0x811C9DC5;
for (int i = 0; i < static_cast<int>(sizeof(Key)); ++i) {
value ^= ptr[i];
value *= 0x01000193;
}
return static_cast<size_t>(value);
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
};
template <typename Key>
struct KeyEqual {
// Key must be a POD because we read out its memory
// contenst as char* when comparing
static_assert(std::is_pod<Key>::value, "Key must be plain old data type");
bool operator()(const Key& a, const Key& b) const {
auto ptr1 = reinterpret_cast<const uint8_t*>(&a);
auto ptr2 = reinterpret_cast<const uint8_t*>(&b);
return memcmp(ptr1, ptr2, sizeof(Key)) == 0;
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
if (axes.size() > 1) {
const std::vector<int64_t> c2c_dims(axes.begin(), axes.end() - 1);
Tensor temp;
temp.mutable_data<Ti>(x->dims(), ctx.GetPlace());
FFTC2CFunctor<platform::CPUDeviceContext, Ti, Ti> c2c_functor;
c2c_functor(ctx, x, &temp, c2c_dims, normalization, forward);
const std::vector<int64_t> new_axes{axes.back()};
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, &temp, out, new_axes,
normalization, forward);
} else {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
}
};
#if CUDA_VERSION < 10000
// Note that the max plan number for CUDA version < 10 has to be 1023
// due to a bug that fails on the 1024th plan
constexpr size_t CUFFT_MAX_PLAN_NUM = 1023;
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
#else
constexpr size_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<size_t>::max();
// The default max cache size chosen for CUDA version > 10 is arbitrary.
// This number puts a limit on how big of a plan cache should we maintain by
// default. Users can always configure it via cufft_set_plan_cache_max_size.
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
#endif
static_assert(CUFFT_MAX_PLAN_NUM >= 0 &&
CUFFT_MAX_PLAN_NUM <= std::numeric_limits<size_t>::max(),
"CUFFT_MAX_PLAN_NUM not in size_t range");
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 &&
CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
"CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
// This cache assumes that the mapping from key to value never changes.
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
// value returned from try_emplace_value.
// The contract of using this cache is that try_emplace_value should only be
// used when the max_size is positive.
class FFTConfigCache {
public:
using kv_t = typename std::pair<FFTConfigKey, FFTConfig>;
using map_t = typename std::unordered_map<
std::reference_wrapper<FFTConfigKey>, typename std::list<kv_t>::iterator,
KeyHash<FFTConfigKey>, KeyEqual<FFTConfigKey>>;
using map_kkv_iter_t = typename map_t::iterator;
FFTConfigCache() : FFTConfigCache(CUFFT_DEFAULT_CACHE_SIZE) {}
explicit FFTConfigCache(int64_t max_size) { _set_max_size(max_size); }
FFTConfigCache(const FFTConfigCache& other) = delete;
FFTConfigCache& operator=(const FFTConfigCache& other) = delete;
FFTConfigCache(FFTConfigCache&& other) noexcept
: _usage_list(std::move(other._usage_list)),
_cache_map(std::move(other._cache_map)),
_max_size(other._max_size) {}
FFTConfigCache& operator=(FFTConfigCache&& other) noexcept {
_usage_list = std::move(other._usage_list);
_cache_map = std::move(other._cache_map);
_max_size = other._max_size;
return *this;
#elif defined(PADDLE_WITH_POCKETFFT)
template <typename T>
T compute_factor(int64_t size, FFTNormMode normalization) {
constexpr auto one = static_cast<T>(1);
switch (normalization) {
case FFTNormMode::none:
return one;
case FFTNormMode::by_n:
return one / static_cast<T>(size);
case FFTNormMode::by_sqrt_n:
return one / std::sqrt(static_cast<T>(size));
}
PADDLE_THROW(
platform::errors::InvalidArgument("Unsupported normalization type"));
}
// If key is in this cache, return the cached config. Otherwise, emplace the
// config in this cache and return it.
FFTConfig& lookup(FFTConfigKey params) {
PADDLE_ENFORCE_GT(_max_size, 0,
platform::errors::InvalidArgument(
"The max size of FFTConfigCache must be great than 0,"
"But received is [%d]",
_max_size));
map_kkv_iter_t map_it = _cache_map.find(params);
// Hit, put to list front
if (map_it != _cache_map.end()) {
_usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
return map_it->second->second;
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = typename Ti::value_type;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
const int64_t data_size = sizeof(C);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
auto* out_data = reinterpret_cast<C*>(out->data<To>());
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= in_sizes[i];
}
// Miss
// remove if needed
if (_usage_list.size() >= _max_size) {
auto last = _usage_list.end();
last--;
_cache_map.erase(last->first);
_usage_list.pop_back();
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::c2c(in_sizes, in_strides, in_strides, axes_, forward, in_data,
out_data, factor);
}
};
// construct new plan at list front, then insert into _cache_map
_usage_list.emplace_front(std::piecewise_construct,
std::forward_as_tuple(params),
std::forward_as_tuple(params));
auto kv_it = _usage_list.begin();
_cache_map.emplace(std::piecewise_construct,
std::forward_as_tuple(kv_it->first),
std::forward_as_tuple(kv_it));
return kv_it->second;
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = Ti;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
{
const int64_t data_size = sizeof(R);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
void clear() {
_cache_map.clear();
_usage_list.clear();
const auto& output_dim = out->dims();
const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
std::vector<std::ptrdiff_t> out_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
{
const int64_t data_size = sizeof(C);
std::transform(out_strides.begin(), out_strides.end(),
out_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
void resize(int64_t new_size) {
_set_max_size(new_size);
auto cur_size = _usage_list.size();
if (cur_size > _max_size) {
auto delete_it = _usage_list.end();
for (size_t i = 0; i < cur_size - _max_size; i++) {
delete_it--;
_cache_map.erase(delete_it->first);
}
_usage_list.erase(delete_it, _usage_list.end());
const auto* in_data = x->data<R>();
auto* out_data = reinterpret_cast<C*>(out->data<To>());
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet normalization factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= in_sizes[i];
}
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::r2c(in_sizes, in_strides, out_strides, axes_, forward, in_data,
out_data, factor);
}
size_t size() const { return _cache_map.size(); }
size_t max_size() const noexcept { return _max_size; }
std::mutex mutex;
private:
// Only sets size and does value check. Does not resize the data structures.
void _set_max_size(int64_t new_size) {
// We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
// CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
// first.
PADDLE_ENFORCE_GE(
new_size, 0,
platform::errors::InvalidArgument(
"cuFFT plan cache size must be non-negative, But received is [%d]",
new_size));
PADDLE_ENFORCE_LE(new_size, CUFFT_MAX_PLAN_NUM,
platform::errors::InvalidArgument(
"cuFFT plan cache size can not be larger than [%d], "
"But received is [%d]",
CUFFT_MAX_PLAN_NUM, new_size));
_max_size = static_cast<size_t>(new_size);
}
std::list<kv_t> _usage_list;
map_t _cache_map;
size_t _max_size;
};
static std::vector<std::unique_ptr<FFTConfigCache>> plan_caches;
static std::mutex plan_caches_mutex;
static inline FFTConfigCache& get_fft_plan_cache(int64_t device_index) {
std::lock_guard<std::mutex> guard(plan_caches_mutex);
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = To;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
{
const int64_t data_size = sizeof(C);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
if (device_index >= plan_caches.size()) {
plan_caches.resize(device_index + 1);
const auto& output_dim = out->dims();
const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
std::vector<std::ptrdiff_t> out_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
{
const int64_t data_size = sizeof(R);
std::transform(out_strides.begin(), out_strides.end(),
out_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
if (!plan_caches[device_index]) {
plan_caches[device_index] = std::make_unique<FFTConfigCache>();
const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
auto* out_data = out->data<R>();
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet normalization factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= out_sizes[i];
}
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::c2r(out_sizes, in_strides, out_strides, axes_, forward, in_data,
out_data, factor);
}
};
return *plan_caches[device_index];
}
#endif
} // namespace operators
} // namespace paddle
......@@ -13,28 +13,7 @@
// limitations under the License.
#include "paddle/fluid/operators/spectral_op.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#if defined(PADDLE_WITH_ONEMKL)
#include "paddle/phi/backends/dynload/mklrt.h"
#elif defined(PADDLE_WITH_POCKETFFT)
#include "extern_pocketfft/pocketfft_hdronly.h"
#endif
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/operators/spectral_helper.h"
namespace paddle {
namespace operators {
......@@ -355,465 +334,6 @@ FFTNormMode get_norm_from_string(const std::string& norm, bool forward) {
norm));
}
// FFT Functors
#if defined(PADDLE_WITH_ONEMKL)
#define MKL_DFTI_CHECK(expr) \
do { \
MKL_LONG status = (expr); \
if (!phi::dynload::DftiErrorClass(status, DFTI_NO_ERROR)) \
PADDLE_THROW( \
platform::errors::External(phi::dynload::DftiErrorMessage(status))); \
} while (0);
namespace {
struct DftiDescriptorDeleter {
void operator()(DFTI_DESCRIPTOR_HANDLE handle) {
if (handle != nullptr) {
MKL_DFTI_CHECK(phi::dynload::DftiFreeDescriptor(&handle));
}
}
};
// A RAII wrapper for MKL_DESCRIPTOR*
class DftiDescriptor {
public:
void init(DFTI_CONFIG_VALUE precision, DFTI_CONFIG_VALUE signal_type,
MKL_LONG signal_ndim, MKL_LONG* sizes) {
PADDLE_ENFORCE_EQ(desc_.get(), nullptr,
platform::errors::AlreadyExists(
"DftiDescriptor has already been initialized."));
DFTI_DESCRIPTOR* raw_desc;
MKL_DFTI_CHECK(phi::dynload::DftiCreateDescriptorX(
&raw_desc, precision, signal_type, signal_ndim, sizes));
desc_.reset(raw_desc);
}
DFTI_DESCRIPTOR* get() const {
DFTI_DESCRIPTOR* raw_desc = desc_.get();
PADDLE_ENFORCE_NOT_NULL(raw_desc,
platform::errors::PreconditionNotMet(
"DFTI DESCRIPTOR has not been initialized."));
return raw_desc;
}
private:
std::unique_ptr<DFTI_DESCRIPTOR, DftiDescriptorDeleter> desc_;
};
DftiDescriptor _plan_mkl_fft(const framework::proto::VarType::Type& in_dtype,
const framework::proto::VarType::Type& out_dtype,
const framework::DDim& in_strides,
const framework::DDim& out_strides,
const std::vector<int>& signal_sizes,
FFTNormMode normalization, bool forward) {
const DFTI_CONFIG_VALUE precision = [&] {
switch (in_dtype) {
case framework::proto::VarType::FP32:
return DFTI_SINGLE;
case framework::proto::VarType::COMPLEX64:
return DFTI_SINGLE;
case framework::proto::VarType::FP64:
return DFTI_DOUBLE;
case framework::proto::VarType::COMPLEX128:
return DFTI_DOUBLE;
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"Invalid input datatype (%s), input data type should be FP32, "
"FP64, COMPLEX64 or COMPLEX128.",
framework::DataTypeToString(in_dtype)));
}
}();
// C2C, R2C, C2R
const FFTTransformType fft_type = GetFFTTransformType(in_dtype, out_dtype);
const DFTI_CONFIG_VALUE domain =
(fft_type == FFTTransformType::C2C) ? DFTI_COMPLEX : DFTI_REAL;
DftiDescriptor descriptor;
std::vector<MKL_LONG> fft_sizes(signal_sizes.cbegin(), signal_sizes.cend());
const MKL_LONG signal_ndim = fft_sizes.size() - 1;
descriptor.init(precision, domain, signal_ndim, fft_sizes.data() + 1);
// placement inplace or not inplace
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(), DFTI_PLACEMENT,
DFTI_NOT_INPLACE));
// number of transformations
const MKL_LONG batch_size = fft_sizes[0];
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_NUMBER_OF_TRANSFORMS, batch_size));
// input & output distance
const MKL_LONG idist = in_strides[0];
const MKL_LONG odist = out_strides[0];
MKL_DFTI_CHECK(
phi::dynload::DftiSetValue(descriptor.get(), DFTI_INPUT_DISTANCE, idist));
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(),
DFTI_OUTPUT_DISTANCE, odist));
// input & output stride
std::vector<MKL_LONG> mkl_in_stride(1 + signal_ndim, 0);
std::vector<MKL_LONG> mkl_out_stride(1 + signal_ndim, 0);
for (MKL_LONG i = 1; i <= signal_ndim; i++) {
mkl_in_stride[i] = in_strides[i];
mkl_out_stride[i] = out_strides[i];
}
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_INPUT_STRIDES, mkl_in_stride.data()));
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_OUTPUT_STRIDES, mkl_out_stride.data()));
// conjugate even storage
if (!(fft_type == FFTTransformType::C2C)) {
MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
descriptor.get(), DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX));
}
MKL_LONG signal_numel =
std::accumulate(fft_sizes.cbegin() + 1, fft_sizes.cend(), 1UL,
std::multiplies<MKL_LONG>());
if (normalization != FFTNormMode::none) {
const double scale =
((normalization == FFTNormMode::by_sqrt_n)
? 1.0 / std::sqrt(static_cast<double>(signal_numel))
: 1.0 / static_cast<double>(signal_numel));
const auto scale_direction = [&]() {
if (fft_type == FFTTransformType::R2C ||
(fft_type == FFTTransformType::C2C && forward)) {
return DFTI_FORWARD_SCALE;
} else {
// (fft_type == FFTTransformType::C2R ||
// (fft_type == FFTTransformType::C2C && !forward))
return DFTI_BACKWARD_SCALE;
}
}();
MKL_DFTI_CHECK(
phi::dynload::DftiSetValue(descriptor.get(), scale_direction, scale));
}
// commit the descriptor
MKL_DFTI_CHECK(phi::dynload::DftiCommitDescriptor(descriptor.get()));
return descriptor;
}
// Execute a general fft operation (can be c2c, onesided r2c or onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* x, Tensor* out,
const std::vector<int64_t>& axes, FFTNormMode normalization,
bool forward) {
const framework::DDim& in_sizes = x->dims();
const int ndim = in_sizes.size();
const int signal_ndim = axes.size();
const int batch_ndim = ndim - signal_ndim;
const framework::DDim& out_sizes = out->dims();
// make a dim permutation
std::vector<int> dim_permute(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), 0);
std::vector<bool> is_transformed_dim(ndim, false);
for (const auto& d : axes) {
is_transformed_dim[d] = true;
}
const auto batch_end =
std::partition(dim_permute.begin(), dim_permute.end(),
[&](size_t axis) { return !is_transformed_dim[axis]; });
std::copy(axes.cbegin(), axes.cend(), batch_end);
// transpose input according to that permutation
framework::DDim transposed_input_shape = in_sizes.transpose(dim_permute);
std::vector<int64_t> transposed_input_shape_ =
phi::vectorize(transposed_input_shape);
framework::Tensor transposed_input;
transposed_input.Resize(transposed_input_shape);
const auto place = ctx.GetPlace();
transposed_input.mutable_data<Ti>(place);
TransCompute<platform::CPUDeviceContext, Ti>(ndim, ctx, *x, &transposed_input,
dim_permute);
// make an collapsed input: collapse batch axes for input
const int batch_size = std::accumulate(
transposed_input_shape.Get(), transposed_input_shape.Get() + batch_ndim,
1L, std::multiplies<int64_t>());
std::vector<int> collapsed_input_shape_(1 + signal_ndim);
collapsed_input_shape_[0] = batch_size;
std::copy(transposed_input_shape_.begin() + batch_ndim,
transposed_input_shape_.end(), collapsed_input_shape_.begin() + 1);
const framework::DDim collapsed_input_shape =
phi::make_ddim(collapsed_input_shape_);
transposed_input.Resize(collapsed_input_shape);
framework::Tensor& collapsed_input = transposed_input;
// make a collapsed output
std::vector<int> collapsed_output_shape_(1 + signal_ndim);
collapsed_output_shape_[0] = batch_size;
for (int i = 0; i < signal_ndim; i++) {
collapsed_output_shape_[1 + i] = out_sizes[axes[i]];
}
const framework::DDim collapsed_output_shape =
phi::make_ddim(collapsed_output_shape_);
framework::Tensor collapsed_output;
collapsed_output.Resize(collapsed_output_shape);
collapsed_output.mutable_data(place, out->type());
// signal sizes
std::vector<int> signal_sizes(1 + signal_ndim);
signal_sizes[0] = batch_size;
for (int i = 0; i < signal_ndim; i++) {
signal_sizes[1 + i] =
std::max(collapsed_input_shape[1 + i], collapsed_output_shape[1 + i]);
}
// input & output stride
const framework::DDim input_stride = phi::stride(collapsed_input_shape);
const framework::DDim output_stride = phi::stride(collapsed_output_shape);
// make a DFTI_DESCRIPTOR
DftiDescriptor desc =
_plan_mkl_fft(framework::TransToProtoVarType(x->dtype()),
framework::TransToProtoVarType(out->dtype()), input_stride,
output_stride, signal_sizes, normalization, forward);
const FFTTransformType fft_type =
GetFFTTransformType(framework::TransToProtoVarType(x->dtype()),
framework::TransToProtoVarType(out->type()));
if (fft_type == FFTTransformType::C2R && forward) {
framework::Tensor collapsed_input_conj(collapsed_input.dtype());
collapsed_input_conj.mutable_data<Ti>(collapsed_input.dims(),
ctx.GetPlace());
// conjugate the input
platform::ForRange<DeviceContext> for_range(ctx, collapsed_input.numel());
phi::funcs::ConjFunctor<Ti> functor(collapsed_input.data<Ti>(),
collapsed_input.numel(),
collapsed_input_conj.data<Ti>());
for_range(functor);
MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
desc.get(), collapsed_input_conj.data(), collapsed_output.data()));
} else if (fft_type == FFTTransformType::R2C && !forward) {
framework::Tensor collapsed_output_conj(collapsed_output.dtype());
collapsed_output_conj.mutable_data<To>(collapsed_output.dims(),
ctx.GetPlace());
MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
desc.get(), collapsed_input.data(), collapsed_output_conj.data()));
// conjugate the output
platform::ForRange<DeviceContext> for_range(ctx, collapsed_output.numel());
phi::funcs::ConjFunctor<To> functor(collapsed_output_conj.data<To>(),
collapsed_output.numel(),
collapsed_output.data<To>());
for_range(functor);
} else {
if (forward) {
MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
desc.get(), collapsed_input.data(), collapsed_output.data()));
} else {
MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
desc.get(), collapsed_input.data(), collapsed_output.data()));
}
}
// resize for the collapsed output
framework::DDim transposed_output_shape = out_sizes.transpose(dim_permute);
collapsed_output.Resize(transposed_output_shape);
framework::Tensor& transposed_output = collapsed_output;
// reverse the transposition
std::vector<int> reverse_dim_permute(ndim);
for (int i = 0; i < ndim; i++) {
reverse_dim_permute[dim_permute[i]] = i;
}
TransCompute<platform::CPUDeviceContext, To>(ndim, ctx, transposed_output,
out, reverse_dim_permute);
}
} // anonymous namespace
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
};
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
};
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
if (axes.size() > 1) {
const std::vector<int64_t> c2c_dims(axes.begin(), axes.end() - 1);
Tensor temp;
temp.mutable_data<Ti>(x->dims(), ctx.GetPlace());
FFTC2CFunctor<platform::CPUDeviceContext, Ti, Ti> c2c_functor;
c2c_functor(ctx, x, &temp, c2c_dims, normalization, forward);
const std::vector<int64_t> new_axes{axes.back()};
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, &temp, out, new_axes,
normalization, forward);
} else {
exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
normalization, forward);
}
}
};
#elif defined(PADDLE_WITH_POCKETFFT)
namespace {
template <typename T>
T compute_factor(int64_t size, FFTNormMode normalization) {
constexpr auto one = static_cast<T>(1);
switch (normalization) {
case FFTNormMode::none:
return one;
case FFTNormMode::by_n:
return one / static_cast<T>(size);
case FFTNormMode::by_sqrt_n:
return one / std::sqrt(static_cast<T>(size));
}
PADDLE_THROW(
platform::errors::InvalidArgument("Unsupported normalization type"));
}
} // anonymous namespace
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = typename Ti::value_type;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
const int64_t data_size = sizeof(C);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
auto* out_data = reinterpret_cast<C*>(out->data<To>());
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= in_sizes[i];
}
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::c2c(in_sizes, in_strides, in_strides, axes_, forward, in_data,
out_data, factor);
}
};
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = Ti;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
{
const int64_t data_size = sizeof(R);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
const auto& output_dim = out->dims();
const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
std::vector<std::ptrdiff_t> out_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
{
const int64_t data_size = sizeof(C);
std::transform(out_strides.begin(), out_strides.end(),
out_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
const auto* in_data = x->data<R>();
auto* out_data = reinterpret_cast<C*>(out->data<To>());
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet normalization factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= in_sizes[i];
}
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::r2c(in_sizes, in_strides, out_strides, axes_, forward, in_data,
out_data, factor);
}
};
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
using R = To;
using C = std::complex<R>;
const auto& input_dim = x->dims();
const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
std::vector<std::ptrdiff_t> in_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
{
const int64_t data_size = sizeof(C);
std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
const auto& output_dim = out->dims();
const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
std::vector<std::ptrdiff_t> out_strides =
phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
{
const int64_t data_size = sizeof(R);
std::transform(out_strides.begin(), out_strides.end(),
out_strides.begin(),
[&](std::ptrdiff_t s) { return s * data_size; });
}
const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
auto* out_data = out->data<R>();
// pocketfft requires std::vector<size_t>
std::vector<size_t> axes_(axes.size());
std::copy(axes.begin(), axes.end(), axes_.begin());
// compuet normalization factor
int64_t signal_numel = 1;
for (auto i : axes) {
signal_numel *= out_sizes[i];
}
R factor = compute_factor<R>(signal_numel, normalization);
pocketfft::c2r(out_sizes, in_strides, out_strides, axes_, forward, in_data,
out_data, factor);
}
};
#endif
} // namespace operators
} // namespace paddle
......
......@@ -8,496 +8,9 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <functional>
#include <list>
#include <memory>
#include <mutex>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/operators/spectral_helper.h"
#include "paddle/fluid/operators/spectral_op.cu.h"
#include "paddle/fluid/operators/spectral_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
namespace paddle {
namespace operators {
namespace {
// Calculates the normalization constant
double fft_normalization_scale(FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& dims) {
// auto norm = static_cast<fft_norm_mode>(normalization);
if (normalization == FFTNormMode::none) {
return static_cast<double>(1.0);
}
int64_t signal_numel = 1;
for (auto dim : dims) {
signal_numel *= sizes[dim];
}
const double scale_denom = (normalization == FFTNormMode::by_sqrt_n)
? std::sqrt(signal_numel)
: static_cast<double>(signal_numel);
return static_cast<double>(1.0 / scale_denom);
}
template <typename DeviceContext, typename T>
void exec_normalization(const DeviceContext& ctx, const Tensor* in, Tensor* out,
FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& axes) {
double scale = fft_normalization_scale(normalization, sizes, axes);
if (scale != 1.0) {
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto dev = ctx.eigen_device();
EigenScale<Eigen::GpuDevice, T>::Eval(*dev, eigen_out, eigen_in,
static_cast<T>(scale),
static_cast<T>(0), false);
} else {
framework::TensorCopy(*in, ctx.GetPlace(), out);
}
}
#if defined(PADDLE_WITH_CUDA)
FFTConfigKey create_fft_configkey(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type =
framework::IsComplexType(framework::TransToProtoVarType(input.dtype()))
? framework::ToRealType(framework::TransToProtoVarType(input.dtype()))
: framework::TransToProtoVarType(input.dtype());
auto fft_type =
GetFFTTransformType(framework::TransToProtoVarType(input.dtype()),
framework::TransToProtoVarType(output.dtype()));
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
FFTConfigKey key(phi::vectorize(input.dims()), phi::vectorize(output.dims()),
signal_size, fft_type, value_type);
return key;
}
// Execute a pre-planned transform
static void exec_cufft_plan_raw(const FFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftXtExec(
plan, in_data, out_data, forward ? CUFFT_FORWARD : CUFFT_INVERSE));
}
template <typename DeviceContext, typename Ti, typename To>
void exec_cufft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
// execute transform plan
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
phi::funcs::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_cufft_plan_raw(config, input_conj.data(), output->data(), forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_cufft_plan_raw(config, input->data(), out_conj.data(), forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
phi::funcs::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_cufft_plan_raw(config, input->data(), output->data(), forward);
}
}
#elif defined(PADDLE_WITH_HIP)
FFTConfigKey create_fft_configkey(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type =
framework::IsComplexType(framework::TransToProtoVarType(input.dtype()))
? framework::ToRealType(framework::TransToProtoVarType(input.dtype()))
: framework::TransToProtoVarType(input.dtype());
auto fft_type =
GetFFTTransformType(framework::TransToProtoVarType(input.dtype()),
framework::TransToProtoVarType(output.type()));
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
FFTConfigKey key(phi::vectorize(input.dims()), phi::vectorize(output.dims()),
signal_size, fft_type, value_type);
return key;
}
// Execute a pre-planned transform
static void exec_hipfft_plan_raw(const FFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
auto value_type = config.data_type();
if (value_type == framework::proto::VarType::FP32) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecC2C(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecR2C(
plan, static_cast<hipfftReal*>(in_data),
static_cast<hipfftComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecC2R(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftReal*>(out_data)));
return;
}
}
} else if (value_type == framework::proto::VarType::FP64) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecZ2Z(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecD2Z(
plan, static_cast<hipfftDoubleReal*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecZ2D(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleReal*>(out_data)));
return;
}
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}
template <typename DeviceContext, typename Ti, typename To>
void exec_hipfft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
phi::funcs::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_hipfft_plan_raw(config, input_conj.data(), output->data(), forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_hipfft_plan_raw(config, input->data(), out_conj.data(), forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
phi::funcs::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_hipfft_plan_raw(config, input->data(), output->data(), forward);
}
}
#endif
// Execute a general unnormalized fft operation (can be c2c, onesided r2c or
// onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* X, Tensor* out,
const std::vector<int64_t>& dim, bool forward) {
const auto x_dims = phi::vectorize(X->dims());
const int64_t ndim = static_cast<int64_t>(X->dims().size());
auto tensor_place = ctx.GetPlace();
// make a dim permutation
std::vector<int> dim_permute(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), int{0});
std::vector<bool> is_transformed_dim(ndim);
for (const auto& d : dim) {
is_transformed_dim[d] = true;
}
auto batch_end =
std::partition(dim_permute.begin(), dim_permute.end(),
[&](int64_t d) { return !is_transformed_dim[d]; });
std::sort(dim_permute.begin(), batch_end);
std::copy(dim.cbegin(), dim.cend(), batch_end);
// transpose input according to dim permutation
auto transposed_input_shape = X->dims().transpose(dim_permute);
framework::Tensor transposed_input;
transposed_input.Resize(transposed_input_shape);
transposed_input.mutable_data<Ti>(tensor_place);
TransCompute<DeviceContext, Ti>(ndim, ctx, *X, &transposed_input,
dim_permute);
// Reshape batch dimensions into a single dimension
const int64_t signal_ndim = static_cast<int64_t>(dim.size());
std::vector<int64_t> collapsed_input_shape(signal_ndim + 1);
auto transposed_input_shape_ = phi::vectorize(transposed_input_shape);
const int64_t batch_dims = ndim - signal_ndim;
auto batch_size =
std::accumulate(transposed_input_shape_.begin(),
transposed_input_shape_.begin() + batch_dims,
static_cast<int>(1), std::multiplies<int>());
collapsed_input_shape[0] = batch_size;
std::copy(transposed_input_shape_.begin() + batch_dims,
transposed_input_shape_.end(), collapsed_input_shape.begin() + 1);
framework::Tensor& collapsed_input = transposed_input;
collapsed_input.Resize(phi::make_ddim(collapsed_input_shape));
// make a collpased output
const auto out_dims = phi::vectorize(out->dims());
std::vector<int64_t> collapsed_output_shape(1 + signal_ndim);
collapsed_output_shape[0] = batch_size;
for (size_t i = 0; i < dim.size(); ++i) {
collapsed_output_shape[i + 1] = out_dims[dim[i]];
}
framework::Tensor collapsed_output;
collapsed_output.Resize(phi::make_ddim(collapsed_output_shape));
collapsed_output.mutable_data<To>(tensor_place);
FFTConfig* config = nullptr;
#if defined(PADDLE_WITH_CUDA)
std::unique_ptr<FFTConfig> config_ = nullptr;
// create plan
FFTConfigKey key =
create_fft_configkey(collapsed_input, collapsed_output, signal_ndim);
bool using_cache = false;
#if !defined(CUFFT_VERSION) || (CUFFT_VERSION < 10200)
using_cache = true;
#endif
if (using_cache) {
const int64_t device_id = static_cast<int64_t>(
reinterpret_cast<const platform::CUDAPlace*>(&collapsed_input.place())
->GetDeviceId());
FFTConfigCache& plan_cache = get_fft_plan_cache(device_id);
std::unique_lock<std::mutex> guard(plan_cache.mutex, std::defer_lock);
guard.lock();
config = &(plan_cache.lookup(key));
} else {
config_ = std::make_unique<FFTConfig>(key);
config = config_.get();
}
// prepare cufft for execution
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::cufftSetStream(config->plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config->workspace_size());
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftSetWorkArea(
config->plan(), workspace_tensor.data<To>()));
// execute transform plan
exec_cufft_plan<DeviceContext, Ti, To>(ctx, *config, &collapsed_input,
&collapsed_output, forward);
#elif defined(PADDLE_WITH_HIP)
// create plan
FFTConfigKey key =
create_fft_configkey(collapsed_input, collapsed_output, signal_ndim);
const int64_t device_id = static_cast<int64_t>(
reinterpret_cast<const platform::CUDAPlace*>(&collapsed_input.place())
->GetDeviceId());
FFTConfigCache& plan_cache = get_fft_plan_cache(device_id);
std::unique_lock<std::mutex> guard(plan_cache.mutex, std::defer_lock);
guard.lock();
config = &(plan_cache.lookup(key));
// prepare cufft for execution
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::hipfftSetStream(config->plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config->workspace_size());
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftSetWorkArea(
config->plan(), workspace_tensor.data<To>()));
// execute transform plan
exec_hipfft_plan<DeviceContext, Ti, To>(ctx, *config, &collapsed_input,
&collapsed_output, forward);
#endif
// Inverting output by reshape and transpose to original batch and dimension
auto transposed_out_shape = out->dims().transpose(dim_permute);
collapsed_output.Resize(transposed_out_shape);
auto& transposed_output = collapsed_output;
std::vector<int> reverse_dim_permute(ndim);
for (size_t i = 0; i < ndim; i++) {
reverse_dim_permute[dim_permute[i]] = i;
}
TransCompute<DeviceContext, To>(ndim, ctx, transposed_output, out,
reverse_dim_permute);
}
} // anonymous namespace
// Use the optimized path to perform single R2C or C2R if transformation dim is
// supported by cuFFT
bool use_optimized_fft_path(const std::vector<int64_t>& axes) {
// For performance reason, when axes starts with (0, 1), do not use the
// optimized path.
if (axes.size() > kMaxFFTNdim ||
(axes.size() >= 2 && axes[0] == 0 && axes[1] == 1)) {
return false;
} else {
return true;
}
}
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
if (axes.empty()) {
framework::TensorCopy(*X, ctx.GetPlace(), out);
return;
}
framework::Tensor* p_out = out;
std::vector<int64_t> out_dims = phi::vectorize(X->dims());
std::vector<int64_t> working_axes(axes.begin(), axes.end());
std::vector<int64_t> first_dims;
size_t max_dims;
framework::Tensor working_tensor;
working_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
framework::Tensor* p_working_tensor = &working_tensor;
framework::TensorCopy(*X, ctx.GetPlace(), &working_tensor);
while (true) {
max_dims =
std::min(static_cast<size_t>(kMaxFFTNdim), working_axes.size());
first_dims.assign(working_axes.end() - max_dims, working_axes.end());
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, p_working_tensor,
p_out, first_dims, forward);
working_axes.resize(working_axes.size() - max_dims);
first_dims.clear();
if (working_axes.empty()) {
break;
}
std::swap(p_out, p_working_tensor);
}
exec_normalization<platform::CUDADeviceContext, To>(
ctx, p_out, out, normalization, out_dims, axes);
}
};
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
std::vector<int64_t> in_dims = phi::vectorize(X->dims());
std::vector<int64_t> out_dims = phi::vectorize(out->dims());
if (use_optimized_fft_path(axes)) {
framework::Tensor x_copy(X->type());
x_copy.mutable_data<Ti>(X->dims(), ctx.GetPlace());
framework::TensorCopy(*X, ctx.GetPlace(), &x_copy);
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &x_copy, out, axes,
forward);
} else {
framework::Tensor temp_tensor;
temp_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
const std::vector<int64_t> dims(axes.begin(), axes.end() - 1);
FFTC2CFunctor<platform::CUDADeviceContext, Ti, Ti> c2c_functor;
c2c_functor(ctx, X, &temp_tensor, dims, FFTNormMode::none, forward);
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &temp_tensor, out,
{axes.back()}, forward);
}
exec_normalization<platform::CUDADeviceContext, To>(
ctx, out, out, normalization, out_dims, axes);
}
};
// n dimension real to complex FFT use cufft lib
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
// Step1: R2C transform on the last dimension
framework::Tensor* r2c_out = out;
const std::vector<int64_t> last_dim{axes.back()};
std::vector<int64_t> out_dims = phi::vectorize(out->dims());
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, X, r2c_out, last_dim,
forward);
// Step2: C2C transform on the remaining dimension
framework::Tensor c2c_out;
if (axes.size() > 1) {
c2c_out.mutable_data<To>(out->dims(), ctx.GetPlace());
std::vector<int64_t> remain_dim(axes.begin(), axes.end() - 1);
FFTC2CFunctor<platform::CUDADeviceContext, To, To> fft_c2c_func;
fft_c2c_func(ctx, r2c_out, &c2c_out, remain_dim, FFTNormMode::none,
forward);
}
const auto in_sizes = phi::vectorize(X->dims());
framework::Tensor* norm_tensor = axes.size() > 1 ? &c2c_out : r2c_out;
exec_normalization<platform::CUDADeviceContext, To>(
ctx, norm_tensor, out, normalization, in_sizes, axes);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <functional>
#include <list>
#include <memory>
#include <mutex>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/operators/spectral_op.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#endif
namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
const int64_t kMaxFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxFFTNdim + 1;
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
struct FFTConfigKey {
// between 1 and kMaxFFTNdim, i.e., 1 <= signal_ndim <= 3
int64_t signal_ndim_;
// These include additional batch dimension as well.
int64_t sizes_[kMaxDataNdim];
int64_t input_shape_[kMaxDataNdim];
int64_t output_shape_[kMaxDataNdim];
FFTTransformType fft_type_;
ScalarType value_type_;
FFTConfigKey() = default;
FFTConfigKey(const std::vector<int64_t>& in_shape,
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& signal_size,
FFTTransformType fft_type, ScalarType value_type) {
// Padding bits must be zeroed for hashing
memset(this, 0, sizeof(*this));
signal_ndim_ = signal_size.size() - 1;
fft_type_ = fft_type;
value_type_ = value_type;
std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
}
};
#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
::cufftHandle handle_;
public:
CuFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftCreate(&handle_));
}
CuFFTHandle(const CuFFTHandle& other) = delete;
CuFFTHandle& operator=(const CuFFTHandle& other) = delete;
CuFFTHandle(CuFFTHandle&& other) = delete;
CuFFTHandle& operator=(CuFFTHandle&& other) = delete;
::cufftHandle& get() { return handle_; }
const ::cufftHandle& get() const { return handle_; }
~CuFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftDestroy(handle_));
}
};
using plan_size_type = long long int; // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class FFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit FFTConfig(const FFTConfigKey& plan_key)
: FFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
cudaDataType itype, otype, exec_type;
const auto complex_input = has_complex_input(fft_type);
const auto complex_output = has_complex_output(fft_type);
if (dtype == framework::proto::VarType::FP32) {
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
exec_type = CUDA_C_32F;
} else if (dtype == framework::proto::VarType::FP64) {
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
exec_type = CUDA_C_64F;
} else if (dtype == framework::proto::VarType::FP16) {
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
exec_type = CUDA_C_16F;
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"cuFFT only support transforms of type float16, float32 and "
"float64"));
}
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftXtMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
batch, &ws_size_t, exec_type));
ws_size = ws_size_t;
}
FFTConfig(const FFTConfig& other) = delete;
FFTConfig& operator=(const FFTConfig& other) = delete;
FFTConfig(FFTConfig&& other) = delete;
FFTConfig& operator=(FFTConfig&& other) = delete;
const cufftHandle& plan() const { return plan_ptr.get(); }
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
private:
CuFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
::hipfftHandle handle_;
public:
HIPFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftCreate(&handle_));
}
HIPFFTHandle(const HIPFFTHandle& other) = delete;
HIPFFTHandle& operator=(const HIPFFTHandle& other) = delete;
HIPFFTHandle(HIPFFTHandle&& other) = delete;
HIPFFTHandle& operator=(HIPFFTHandle&& other) = delete;
::hipfftHandle& get() { return handle_; }
const ::hipfftHandle& get() const { return handle_; }
~HIPFFTHandle() {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftDestroy(handle_));
}
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
// 1. the plan
// 2. the workspace size needed
class FFTConfig {
public:
// Only move semantics is enought for this class. Although we already use
// unique_ptr for the plan, still remove copy constructor and assignment op so
// we don't accidentally copy and take perf hit.
explicit FFTConfig(const FFTConfigKey& plan_key)
: FFTConfig(
std::vector<int64_t>(plan_key.sizes_,
plan_key.sizes_ + plan_key.signal_ndim_ + 1),
plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}
// sizes are full signal, including batch size and always two-sided
FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
FFTTransformType fft_type, ScalarType dtype)
: fft_type_(fft_type), value_type_(dtype) {
// signal sizes (excluding batch dim)
std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());
// input batch size
const auto batch = static_cast<plan_size_type>(sizes[0]);
// const int64_t signal_ndim = sizes.size() - 1;
PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
platform::errors::InvalidArgument(
"The signal_ndim must be equal to sizes.size() - 1,"
"But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
signal_ndim, sizes.size() - 1));
hipfftType exec_type = [&] {
if (dtype == framework::proto::VarType::FP32) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_C2C;
case FFTTransformType::R2C:
return HIPFFT_R2C;
case FFTTransformType::C2R:
return HIPFFT_C2R;
}
} else if (dtype == framework::proto::VarType::FP64) {
switch (fft_type) {
case FFTTransformType::C2C:
return HIPFFT_Z2Z;
case FFTTransformType::R2C:
return HIPFFT_D2Z;
case FFTTransformType::C2R:
return HIPFFT_Z2D;
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}();
// disable auto allocation of workspace to use allocator from the framework
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
plan(), /* autoAllocate */ 0));
size_t ws_size_t;
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftMakePlanMany(
plan(), signal_ndim, signal_sizes.data(),
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
batch, &ws_size_t));
ws_size = ws_size_t;
}
const hipfftHandle& plan() const { return plan_ptr.get(); }
FFTTransformType transform_type() const { return fft_type_; }
ScalarType data_type() const { return value_type_; }
size_t workspace_size() const { return ws_size; }
private:
HIPFFTHandle plan_ptr;
size_t ws_size;
FFTTransformType fft_type_;
ScalarType value_type_;
};
#endif
// Hashing machinery for Key
// Fowler–Noll–Vo hash function
// see
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
template <typename Key>
struct KeyHash {
// Key must be a POD because we read out its memory
// contenst as char* when hashing
static_assert(std::is_pod<Key>::value, "Key must be plain old data type");
size_t operator()(const Key& params) const {
auto ptr = reinterpret_cast<const uint8_t*>(&params);
uint32_t value = 0x811C9DC5;
for (int i = 0; i < static_cast<int>(sizeof(Key)); ++i) {
value ^= ptr[i];
value *= 0x01000193;
}
return static_cast<size_t>(value);
}
};
template <typename Key>
struct KeyEqual {
// Key must be a POD because we read out its memory
// contenst as char* when comparing
static_assert(std::is_pod<Key>::value, "Key must be plain old data type");
bool operator()(const Key& a, const Key& b) const {
auto ptr1 = reinterpret_cast<const uint8_t*>(&a);
auto ptr2 = reinterpret_cast<const uint8_t*>(&b);
return memcmp(ptr1, ptr2, sizeof(Key)) == 0;
}
};
#if CUDA_VERSION < 10000
// Note that the max plan number for CUDA version < 10 has to be 1023
// due to a bug that fails on the 1024th plan
constexpr size_t CUFFT_MAX_PLAN_NUM = 1023;
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
#else
constexpr size_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<size_t>::max();
// The default max cache size chosen for CUDA version > 10 is arbitrary.
// This number puts a limit on how big of a plan cache should we maintain by
// default. Users can always configure it via cufft_set_plan_cache_max_size.
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
#endif
static_assert(CUFFT_MAX_PLAN_NUM >= 0 &&
CUFFT_MAX_PLAN_NUM <= std::numeric_limits<size_t>::max(),
"CUFFT_MAX_PLAN_NUM not in size_t range");
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 &&
CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
"CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
// This cache assumes that the mapping from key to value never changes.
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
// value returned from try_emplace_value.
// The contract of using this cache is that try_emplace_value should only be
// used when the max_size is positive.
class FFTConfigCache {
public:
using kv_t = typename std::pair<FFTConfigKey, FFTConfig>;
using map_t = typename std::unordered_map<
std::reference_wrapper<FFTConfigKey>, typename std::list<kv_t>::iterator,
KeyHash<FFTConfigKey>, KeyEqual<FFTConfigKey>>;
using map_kkv_iter_t = typename map_t::iterator;
FFTConfigCache() : FFTConfigCache(CUFFT_DEFAULT_CACHE_SIZE) {}
explicit FFTConfigCache(int64_t max_size) { _set_max_size(max_size); }
FFTConfigCache(const FFTConfigCache& other) = delete;
FFTConfigCache& operator=(const FFTConfigCache& other) = delete;
FFTConfigCache(FFTConfigCache&& other) noexcept
: _usage_list(std::move(other._usage_list)),
_cache_map(std::move(other._cache_map)),
_max_size(other._max_size) {}
FFTConfigCache& operator=(FFTConfigCache&& other) noexcept {
_usage_list = std::move(other._usage_list);
_cache_map = std::move(other._cache_map);
_max_size = other._max_size;
return *this;
}
// If key is in this cache, return the cached config. Otherwise, emplace the
// config in this cache and return it.
FFTConfig& lookup(FFTConfigKey params) {
PADDLE_ENFORCE_GT(_max_size, 0,
platform::errors::InvalidArgument(
"The max size of FFTConfigCache must be great than 0,"
"But received is [%d]",
_max_size));
map_kkv_iter_t map_it = _cache_map.find(params);
// Hit, put to list front
if (map_it != _cache_map.end()) {
_usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
return map_it->second->second;
}
// Miss
// remove if needed
if (_usage_list.size() >= _max_size) {
auto last = _usage_list.end();
last--;
_cache_map.erase(last->first);
_usage_list.pop_back();
}
// construct new plan at list front, then insert into _cache_map
_usage_list.emplace_front(std::piecewise_construct,
std::forward_as_tuple(params),
std::forward_as_tuple(params));
auto kv_it = _usage_list.begin();
_cache_map.emplace(std::piecewise_construct,
std::forward_as_tuple(kv_it->first),
std::forward_as_tuple(kv_it));
return kv_it->second;
}
void clear() {
_cache_map.clear();
_usage_list.clear();
}
void resize(int64_t new_size) {
_set_max_size(new_size);
auto cur_size = _usage_list.size();
if (cur_size > _max_size) {
auto delete_it = _usage_list.end();
for (size_t i = 0; i < cur_size - _max_size; i++) {
delete_it--;
_cache_map.erase(delete_it->first);
}
_usage_list.erase(delete_it, _usage_list.end());
}
}
size_t size() const { return _cache_map.size(); }
size_t max_size() const noexcept { return _max_size; }
std::mutex mutex;
private:
// Only sets size and does value check. Does not resize the data structures.
void _set_max_size(int64_t new_size) {
// We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
// CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
// first.
PADDLE_ENFORCE_GE(
new_size, 0,
platform::errors::InvalidArgument(
"cuFFT plan cache size must be non-negative, But received is [%d]",
new_size));
PADDLE_ENFORCE_LE(new_size, CUFFT_MAX_PLAN_NUM,
platform::errors::InvalidArgument(
"cuFFT plan cache size can not be larger than [%d], "
"But received is [%d]",
CUFFT_MAX_PLAN_NUM, new_size));
_max_size = static_cast<size_t>(new_size);
}
std::list<kv_t> _usage_list;
map_t _cache_map;
size_t _max_size;
};
static std::vector<std::unique_ptr<FFTConfigCache>> plan_caches;
static std::mutex plan_caches_mutex;
static inline FFTConfigCache& get_fft_plan_cache(int64_t device_index) {
std::lock_guard<std::mutex> guard(plan_caches_mutex);
if (device_index >= plan_caches.size()) {
plan_caches.resize(device_index + 1);
}
if (!plan_caches[device_index]) {
plan_caches[device_index] = std::make_unique<FFTConfigCache>();
}
return *plan_caches[device_index];
}
// Calculates the normalization constant
static double fft_normalization_scale(FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& dims) {
// auto norm = static_cast<fft_norm_mode>(normalization);
if (normalization == FFTNormMode::none) {
return static_cast<double>(1.0);
}
int64_t signal_numel = 1;
for (auto dim : dims) {
signal_numel *= sizes[dim];
}
const double scale_denom = (normalization == FFTNormMode::by_sqrt_n)
? std::sqrt(signal_numel)
: static_cast<double>(signal_numel);
return static_cast<double>(1.0 / scale_denom);
}
template <typename DeviceContext, typename T>
void exec_normalization(const DeviceContext& ctx, const Tensor* in, Tensor* out,
FFTNormMode normalization,
const std::vector<int64_t>& sizes,
const std::vector<int64_t>& axes) {
double scale = fft_normalization_scale(normalization, sizes, axes);
if (scale != 1.0) {
auto eigen_out = framework::EigenVector<T>::Flatten(*out);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto dev = ctx.eigen_device();
EigenScale<Eigen::GpuDevice, T>::Eval(*dev, eigen_out, eigen_in,
static_cast<T>(scale),
static_cast<T>(0), false);
} else {
framework::TensorCopy(*in, ctx.GetPlace(), out);
}
}
#if defined(PADDLE_WITH_CUDA)
static FFTConfigKey create_fft_configkey(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type =
framework::IsComplexType(framework::TransToProtoVarType(input.dtype()))
? framework::ToRealType(framework::TransToProtoVarType(input.dtype()))
: framework::TransToProtoVarType(input.dtype());
auto fft_type =
GetFFTTransformType(framework::TransToProtoVarType(input.dtype()),
framework::TransToProtoVarType(output.dtype()));
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
FFTConfigKey key(phi::vectorize(input.dims()), phi::vectorize(output.dims()),
signal_size, fft_type, value_type);
return key;
}
// Execute a pre-planned transform
static void exec_cufft_plan_raw(const FFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftXtExec(
plan, in_data, out_data, forward ? CUFFT_FORWARD : CUFFT_INVERSE));
}
template <typename DeviceContext, typename Ti, typename To>
void exec_cufft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
// execute transform plan
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
phi::funcs::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_cufft_plan_raw(config, input_conj.data(), output->data(), forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_cufft_plan_raw(config, input->data(), out_conj.data(), forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
phi::funcs::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_cufft_plan_raw(config, input->data(), output->data(), forward);
}
}
#elif defined(PADDLE_WITH_HIP)
static FFTConfigKey create_fft_configkey(const framework::Tensor& input,
const framework::Tensor& output,
int signal_ndim) {
// Create the transform plan (either from cache or locally)
const auto value_type =
framework::IsComplexType(framework::TransToProtoVarType(input.dtype()))
? framework::ToRealType(framework::TransToProtoVarType(input.dtype()))
: framework::TransToProtoVarType(input.dtype());
auto fft_type =
GetFFTTransformType(framework::TransToProtoVarType(input.dtype()),
framework::TransToProtoVarType(output.type()));
// signal sizes
std::vector<int64_t> signal_size(signal_ndim + 1);
signal_size[0] = input.dims()[0];
for (int64_t i = 1; i <= signal_ndim; ++i) {
auto in_size = input.dims()[i];
auto out_size = output.dims()[i];
signal_size[i] = std::max(in_size, out_size);
}
FFTConfigKey key(phi::vectorize(input.dims()), phi::vectorize(output.dims()),
signal_size, fft_type, value_type);
return key;
}
// Execute a pre-planned transform
static void exec_hipfft_plan_raw(const FFTConfig& config, void* in_data,
void* out_data, bool forward) {
auto& plan = config.plan();
auto value_type = config.data_type();
if (value_type == framework::proto::VarType::FP32) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecC2C(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecR2C(
plan, static_cast<hipfftReal*>(in_data),
static_cast<hipfftComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecC2R(
plan, static_cast<hipfftComplex*>(in_data),
static_cast<hipfftReal*>(out_data)));
return;
}
}
} else if (value_type == framework::proto::VarType::FP64) {
switch (config.transform_type()) {
case FFTTransformType::C2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecZ2Z(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data),
forward ? HIPFFT_FORWARD : HIPFFT_BACKWARD));
return;
}
case FFTTransformType::R2C: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecD2Z(
plan, static_cast<hipfftDoubleReal*>(in_data),
static_cast<hipfftDoubleComplex*>(out_data)));
return;
}
case FFTTransformType::C2R: {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftExecZ2D(
plan, static_cast<hipfftDoubleComplex*>(in_data),
static_cast<hipfftDoubleReal*>(out_data)));
return;
}
}
}
PADDLE_THROW(platform::errors::InvalidArgument(
"hipFFT only support transforms of type float32 and float64"));
}
template <typename DeviceContext, typename Ti, typename To>
void exec_hipfft_plan(const DeviceContext& ctx, const FFTConfig& config,
framework::Tensor* input, framework::Tensor* output,
bool forward) {
auto fft_type = config.transform_type();
if (fft_type == FFTTransformType::C2R && forward) {
forward = false;
framework::Tensor input_conj(input->type());
input_conj.mutable_data<Ti>(input->dims(), ctx.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx, input->numel());
phi::funcs::ConjFunctor<Ti> functor(input->data<Ti>(), input->numel(),
input_conj.data<Ti>());
for_range(functor);
exec_hipfft_plan_raw(config, input_conj.data(), output->data(), forward);
} else if (fft_type == FFTTransformType::R2C && !forward) {
forward = true;
framework::Tensor out_conj(output->type());
out_conj.mutable_data<To>(output->dims(), ctx.GetPlace());
exec_hipfft_plan_raw(config, input->data(), out_conj.data(), forward);
platform::ForRange<DeviceContext> for_range(ctx, output->numel());
phi::funcs::ConjFunctor<To> functor(out_conj.data<To>(), output->numel(),
output->data<To>());
for_range(functor);
} else {
exec_hipfft_plan_raw(config, input->data(), output->data(), forward);
}
}
#endif
// Execute a general unnormalized fft operation (can be c2c, onesided r2c or
// onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* X, Tensor* out,
const std::vector<int64_t>& dim, bool forward) {
const auto x_dims = phi::vectorize(X->dims());
const int64_t ndim = static_cast<int64_t>(X->dims().size());
auto tensor_place = ctx.GetPlace();
// make a dim permutation
std::vector<int> dim_permute(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), int{0});
std::vector<bool> is_transformed_dim(ndim);
for (const auto& d : dim) {
is_transformed_dim[d] = true;
}
auto batch_end =
std::partition(dim_permute.begin(), dim_permute.end(),
[&](int64_t d) { return !is_transformed_dim[d]; });
std::sort(dim_permute.begin(), batch_end);
std::copy(dim.cbegin(), dim.cend(), batch_end);
// transpose input according to dim permutation
auto transposed_input_shape = X->dims().transpose(dim_permute);
framework::Tensor transposed_input;
transposed_input.Resize(transposed_input_shape);
transposed_input.mutable_data<Ti>(tensor_place);
TransCompute<DeviceContext, Ti>(ndim, ctx, *X, &transposed_input,
dim_permute);
// Reshape batch dimensions into a single dimension
const int64_t signal_ndim = static_cast<int64_t>(dim.size());
std::vector<int64_t> collapsed_input_shape(signal_ndim + 1);
auto transposed_input_shape_ = phi::vectorize(transposed_input_shape);
const int64_t batch_dims = ndim - signal_ndim;
auto batch_size =
std::accumulate(transposed_input_shape_.begin(),
transposed_input_shape_.begin() + batch_dims,
static_cast<int>(1), std::multiplies<int>());
collapsed_input_shape[0] = batch_size;
std::copy(transposed_input_shape_.begin() + batch_dims,
transposed_input_shape_.end(), collapsed_input_shape.begin() + 1);
framework::Tensor& collapsed_input = transposed_input;
collapsed_input.Resize(phi::make_ddim(collapsed_input_shape));
// make a collpased output
const auto out_dims = phi::vectorize(out->dims());
std::vector<int64_t> collapsed_output_shape(1 + signal_ndim);
collapsed_output_shape[0] = batch_size;
for (size_t i = 0; i < dim.size(); ++i) {
collapsed_output_shape[i + 1] = out_dims[dim[i]];
}
framework::Tensor collapsed_output;
collapsed_output.Resize(phi::make_ddim(collapsed_output_shape));
collapsed_output.mutable_data<To>(tensor_place);
FFTConfig* config = nullptr;
#if defined(PADDLE_WITH_CUDA)
std::unique_ptr<FFTConfig> config_ = nullptr;
// create plan
FFTConfigKey key =
create_fft_configkey(collapsed_input, collapsed_output, signal_ndim);
bool using_cache = false;
#if !defined(CUFFT_VERSION) || (CUFFT_VERSION < 10200)
using_cache = true;
#endif
if (using_cache) {
const int64_t device_id = static_cast<int64_t>(
reinterpret_cast<const platform::CUDAPlace*>(&collapsed_input.place())
->GetDeviceId());
FFTConfigCache& plan_cache = get_fft_plan_cache(device_id);
std::unique_lock<std::mutex> guard(plan_cache.mutex, std::defer_lock);
guard.lock();
config = &(plan_cache.lookup(key));
} else {
config_ = std::make_unique<FFTConfig>(key);
config = config_.get();
}
// prepare cufft for execution
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::cufftSetStream(config->plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config->workspace_size());
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cufftSetWorkArea(
config->plan(), workspace_tensor.data<To>()));
// execute transform plan
exec_cufft_plan<DeviceContext, Ti, To>(ctx, *config, &collapsed_input,
&collapsed_output, forward);
#elif defined(PADDLE_WITH_HIP)
// create plan
FFTConfigKey key =
create_fft_configkey(collapsed_input, collapsed_output, signal_ndim);
const int64_t device_id = static_cast<int64_t>(
reinterpret_cast<const platform::CUDAPlace*>(&collapsed_input.place())
->GetDeviceId());
FFTConfigCache& plan_cache = get_fft_plan_cache(device_id);
std::unique_lock<std::mutex> guard(plan_cache.mutex, std::defer_lock);
guard.lock();
config = &(plan_cache.lookup(key));
// prepare cufft for execution
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::hipfftSetStream(config->plan(), ctx.stream()));
framework::Tensor workspace_tensor;
workspace_tensor.mutable_data<To>(tensor_place, config->workspace_size());
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::hipfftSetWorkArea(
config->plan(), workspace_tensor.data<To>()));
// execute transform plan
exec_hipfft_plan<DeviceContext, Ti, To>(ctx, *config, &collapsed_input,
&collapsed_output, forward);
#endif
// Inverting output by reshape and transpose to original batch and dimension
auto transposed_out_shape = out->dims().transpose(dim_permute);
collapsed_output.Resize(transposed_out_shape);
auto& transposed_output = collapsed_output;
std::vector<int> reverse_dim_permute(ndim);
for (size_t i = 0; i < ndim; i++) {
reverse_dim_permute[dim_permute[i]] = i;
}
TransCompute<DeviceContext, To>(ndim, ctx, transposed_output, out,
reverse_dim_permute);
}
// Use the optimized path to perform single R2C or C2R if transformation dim is
// supported by cuFFT
static bool use_optimized_fft_path(const std::vector<int64_t>& axes) {
// For performance reason, when axes starts with (0, 1), do not use the
// optimized path.
if (axes.size() > kMaxFFTNdim ||
(axes.size() >= 2 && axes[0] == 0 && axes[1] == 1)) {
return false;
} else {
return true;
}
}
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
if (axes.empty()) {
framework::TensorCopy(*X, ctx.GetPlace(), out);
return;
}
framework::Tensor* p_out = out;
std::vector<int64_t> out_dims = phi::vectorize(X->dims());
std::vector<int64_t> working_axes(axes.begin(), axes.end());
std::vector<int64_t> first_dims;
size_t max_dims;
framework::Tensor working_tensor;
working_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
framework::Tensor* p_working_tensor = &working_tensor;
framework::TensorCopy(*X, ctx.GetPlace(), &working_tensor);
while (true) {
max_dims =
std::min(static_cast<size_t>(kMaxFFTNdim), working_axes.size());
first_dims.assign(working_axes.end() - max_dims, working_axes.end());
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, p_working_tensor,
p_out, first_dims, forward);
working_axes.resize(working_axes.size() - max_dims);
first_dims.clear();
if (working_axes.empty()) {
break;
}
std::swap(p_out, p_working_tensor);
}
exec_normalization<platform::CUDADeviceContext, To>(
ctx, p_out, out, normalization, out_dims, axes);
}
};
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
std::vector<int64_t> in_dims = phi::vectorize(X->dims());
std::vector<int64_t> out_dims = phi::vectorize(out->dims());
if (use_optimized_fft_path(axes)) {
framework::Tensor x_copy(X->type());
x_copy.mutable_data<Ti>(X->dims(), ctx.GetPlace());
framework::TensorCopy(*X, ctx.GetPlace(), &x_copy);
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &x_copy, out, axes,
forward);
} else {
framework::Tensor temp_tensor;
temp_tensor.mutable_data<Ti>(X->dims(), ctx.GetPlace());
const std::vector<int64_t> dims(axes.begin(), axes.end() - 1);
FFTC2CFunctor<platform::CUDADeviceContext, Ti, Ti> c2c_functor;
c2c_functor(ctx, X, &temp_tensor, dims, FFTNormMode::none, forward);
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, &temp_tensor, out,
{axes.back()}, forward);
}
exec_normalization<platform::CUDADeviceContext, To>(
ctx, out, out, normalization, out_dims, axes);
}
};
// n dimension real to complex FFT use cufft lib
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CUDADeviceContext, Ti, To> {
void operator()(const platform::CUDADeviceContext& ctx, const Tensor* X,
Tensor* out, const std::vector<int64_t>& axes,
FFTNormMode normalization, bool forward) {
// Step1: R2C transform on the last dimension
framework::Tensor* r2c_out = out;
const std::vector<int64_t> last_dim{axes.back()};
std::vector<int64_t> out_dims = phi::vectorize(out->dims());
exec_fft<platform::CUDADeviceContext, Ti, To>(ctx, X, r2c_out, last_dim,
forward);
// Step2: C2C transform on the remaining dimension
framework::Tensor c2c_out;
if (axes.size() > 1) {
c2c_out.mutable_data<To>(out->dims(), ctx.GetPlace());
std::vector<int64_t> remain_dim(axes.begin(), axes.end() - 1);
FFTC2CFunctor<platform::CUDADeviceContext, To, To> fft_c2c_func;
fft_c2c_func(ctx, r2c_out, &c2c_out, remain_dim, FFTNormMode::none,
forward);
}
const auto in_sizes = phi::vectorize(X->dims());
framework::Tensor* norm_tensor = axes.size() > 1 ? &c2c_out : r2c_out;
exec_normalization<platform::CUDADeviceContext, To>(
ctx, norm_tensor, out, normalization, in_sizes, axes);
}
};
} // namespace operators
} // namespace paddle
......@@ -11,8 +11,11 @@
#pragma once
#define NOMINMAX // to use std::min std::max correctly on windows
#include <algorithm>
#include <functional>
#include <iostream>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/framework/convert_utils.h"
......@@ -23,8 +26,10 @@
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/padding.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "thrust/device_vector.h"
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stft_op.h"
#include "paddle/fluid/operators/spectral_helper.h"
namespace paddle {
namespace operators {
class StftOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "frame");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "frame");
const int n_fft = ctx->Attrs().Get<int>("n_fft");
const int hop_length = ctx->Attrs().Get<int>("hop_length");
const auto x_dims = ctx->GetInputDim("X");
const int x_rank = x_dims.size();
const bool onesided = ctx->Attrs().Get<bool>("onesided");
PADDLE_ENFORCE_EQ(
x_rank, 2,
platform::errors::InvalidArgument(
"Input(X) of StftOp should be a tensor with shape [N, T], "
"but got rank %s.",
x_rank));
PADDLE_ENFORCE_GT(
hop_length, 0,
platform::errors::InvalidArgument(
"Attribute(hop_length) should be greater than 0, but got %s.",
hop_length));
int seq_length = x_dims[x_rank - 1];
int n_frames = 1 + (seq_length - n_fft) / hop_length;
PADDLE_ENFORCE_LE(n_fft, seq_length,
platform::errors::InvalidArgument(
"Attribute(frame_length) should be less equal than "
"sequence length, but got (%s) > (%s).",
n_fft, seq_length));
std::vector<int64_t> output_shape;
output_shape.push_back(x_dims[0]);
if (onesided) {
output_shape.push_back(n_fft / 2 + 1);
} else {
output_shape.push_back(n_fft);
}
output_shape.push_back(n_frames);
ctx->SetOutputDim("Out", phi::make_ddim(output_shape));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const auto in_dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(in_dtype, ctx.GetPlace());
}
};
class StftOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input waveforms with shape (N, T)");
AddOutput("Out",
"The complex STFT output tensor with shape (N, n_fft, "
"num_frames) or (N, n_fft/2 + 1, num_frames)");
AddAttr<int>("n_fft", "The number of input samples to perform FFT");
AddAttr<int>("hop_length", "Number of samples between adjacent frames");
AddAttr<bool>("normalized",
"Control whether to scale the output by 1/sqrt(n_fft)");
AddAttr<bool>("onesided",
"Control whether to return half of the FFT output");
AddComment(R"DOC(
Short-time Fourier transform (STFT).
)DOC");
}
};
template <typename T>
class StftGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("stft_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
}
};
class StftGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
const auto out_grad_name = framework::GradVarName("Out");
OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
"stft_grad");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "stft_grad");
const auto x_grad_name = framework::GradVarName("X");
OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
"stft_grad");
ctx->ShareDim("X", /*->*/ x_grad_name);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const auto in_dtype = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
const auto kernel_dtype = framework::ToRealType(in_dtype);
return framework::OpKernelType(kernel_dtype, ctx.GetPlace());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(stft, ops::StftOp, ops::StftOpMaker,
ops::StftGradOpMaker<paddle::framework::OpDesc>,
ops::StftGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(stft_grad, ops::StftGradOp);
REGISTER_OP_CPU_KERNEL(
stft, ops::StftKernel<paddle::platform::CPUDeviceContext, float>,
ops::StftKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
stft_grad, ops::StftGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::StftGradKernel<paddle::platform::CPUDeviceContext, double>);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/spectral_op.cu.h"
#include "paddle/fluid/operators/stft_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
stft, ops::StftKernel<paddle::platform::CUDADeviceContext, float>,
ops::StftKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
stft_grad, ops::StftGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::StftGradKernel<paddle::platform::CUDADeviceContext, double>);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/frame_op.h"
#include "paddle/fluid/operators/spectral_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class StftKernel : public framework::OpKernel<T> {
public:
/*
Batch Signals (N, T) -> Frames (N, n_fft, num_frames) -> FFTR2C -> (N,
n_fft/2 + 1, num_frames) or (N, n_fft, num_frames)
*/
void Compute(const framework::ExecutionContext& ctx) const override {
using C = paddle::platform::complex<T>;
const Tensor* x = ctx.Input<Tensor>("X");
Tensor* out = ctx.Output<Tensor>("Out");
out->mutable_data<C>(ctx.GetPlace());
const size_t x_rank = x->dims().size();
const size_t out_rank = out->dims().size();
const int n_fft = ctx.Attr<int>("n_fft");
const int hop_length = ctx.Attr<int>("hop_length");
const bool normalized = ctx.Attr<bool>("normalized");
const bool onesided = ctx.Attr<bool>("onesided");
const int n_frames = out->dims()[out_rank - 1];
const int seq_length = x->dims()[x_rank - 1];
auto& dev_ctx = ctx.device_context<DeviceContext>();
std::vector<int64_t> axes = {1};
// Frame
Tensor frames;
framework::DDim frames_dims(out->dims());
frames_dims.at(axes.back()) = n_fft;
frames.mutable_data<T>(frames_dims, ctx.GetPlace());
FrameFunctor<DeviceContext, T>()(dev_ctx, x, &frames, seq_length, n_fft,
n_frames, hop_length, /*is_grad*/ false);
// FFTR2C
FFTNormMode normalization;
if (normalized) {
normalization = get_norm_from_string("ortho", true);
} else {
normalization = get_norm_from_string("backward", true);
}
FFTR2CFunctor<DeviceContext, T, C> fft_r2c_func;
if (onesided) {
fft_r2c_func(dev_ctx, &frames, out, axes, normalization, true);
} else {
framework::DDim onesided_dims(out->dims());
const int64_t onesided_axis_size = out->dims().at(axes.back()) / 2 + 1;
onesided_dims.at(axes.back()) = onesided_axis_size;
Tensor onesided_out;
onesided_out.mutable_data<C>(onesided_dims, ctx.GetPlace());
fft_r2c_func(dev_ctx, &frames, &onesided_out, axes, normalization, true);
fill_conj<DeviceContext, C>(dev_ctx, &onesided_out, out, axes);
}
}
};
template <typename DeviceContext, typename T>
class StftGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using C = paddle::platform::complex<T>;
auto& dev_ctx = ctx.device_context<DeviceContext>();
const auto* dy = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(ctx.GetPlace());
const size_t dy_rank = dy->dims().size();
const size_t dx_rank = dx->dims().size();
const int n_fft = ctx.Attr<int>("n_fft");
const int hop_length = ctx.Attr<int>("hop_length");
const bool normalized = ctx.Attr<bool>("normalized");
const bool onesided = ctx.Attr<bool>("onesided");
const int n_frames = dy->dims()[dy_rank - 1];
const int seq_length = dx->dims()[dx_rank - 1];
std::vector<int64_t> axes = {1};
Tensor d_frames;
framework::DDim d_frames_dims(dy->dims());
d_frames_dims.at(axes.back()) = n_fft;
d_frames.mutable_data<T>(d_frames_dims, ctx.GetPlace());
Tensor complex_d_frames;
complex_d_frames.mutable_data<C>(d_frames_dims, ctx.GetPlace());
// dy -> d_frames
FFTNormMode normalization;
if (normalized) {
normalization = get_norm_from_string("ortho", true);
} else {
normalization = get_norm_from_string("backward", true);
}
FFTC2CFunctor<DeviceContext, C, C> fft_c2c_func;
if (!onesided) {
fft_c2c_func(dev_ctx, dy, &complex_d_frames, axes, normalization, false);
} else {
Tensor full_dy;
full_dy.mutable_data<C>(d_frames_dims, ctx.GetPlace());
auto zero_length = static_cast<int>(full_dy.dims().at(axes.back()) -
dy->dims().at(axes.back()));
auto rank = dy->dims().size();
std::vector<int> pads(rank * 2, 0);
pads[axes.back() * 2 + 1] = zero_length;
phi::funcs::PaddingFunctor<DeviceContext, C>(
rank, ctx.template device_context<DeviceContext>(), pads,
static_cast<C>(0), *dy, &full_dy);
fft_c2c_func(dev_ctx, &full_dy, &complex_d_frames, axes, normalization,
false);
}
framework::TransComplexToReal(
framework::TransToProtoVarType(d_frames.dtype()),
framework::TransToProtoVarType(complex_d_frames.dtype()),
complex_d_frames, &d_frames);
// d_frames -> dx
FrameFunctor<DeviceContext, T>()(dev_ctx, &d_frames, dx, seq_length, n_fft,
n_frames, hop_length, /*is_grad*/ true);
}
};
} // namespace operators
} // namespace paddle
......@@ -15,6 +15,7 @@
#include "paddle/phi/kernels/pad3d_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
......@@ -574,5 +575,13 @@ void Pad3dKernel(const Context& dev_ctx,
} // namespace phi
PD_REGISTER_KERNEL(
pad3d, CPU, ALL_LAYOUT, phi::Pad3dKernel, float, double, int, int64_t) {}
PD_REGISTER_KERNEL(pad3d,
CPU,
ALL_LAYOUT,
phi::Pad3dKernel,
float,
double,
int,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
......@@ -19,6 +19,7 @@
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
......@@ -585,4 +586,6 @@ PD_REGISTER_KERNEL(pad3d,
float,
double,
int,
int64_t) {}
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
......@@ -266,9 +266,10 @@ def generate_activation_fn(op_type):
op_type)
else:
# abs exp square ops support dtype(int32, int64, float16, float32, float64)
check_variable_and_dtype(
x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'],
op_type)
check_variable_and_dtype(x, 'x', [
'int32', 'int64', 'float16', 'float32', 'float64', 'complex64',
'complex128'
], op_type)
helper = LayerHelper(op_type, **locals())
......
......@@ -5616,9 +5616,10 @@ def transpose(x, perm, name=None):
out, _ = _C_ops.transpose2(x, 'axis', perm)
return out
check_variable_and_dtype(
x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'transpose')
check_variable_and_dtype(x, 'x', [
'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
'complex128'
], 'transpose')
check_type(perm, 'perm', (list, tuple), 'transpose')
if isinstance(perm, tuple):
perm = list(perm)
......@@ -6410,10 +6411,10 @@ def squeeze(input, axes, name=None):
return out
helper = LayerHelper("squeeze", **locals())
check_variable_and_dtype(
input, 'input',
['float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64'],
'squeeze')
check_variable_and_dtype(input, 'input', [
'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
'complex64', 'complex128'
], 'squeeze')
check_type(axes, 'axis/axes', (list, tuple), 'squeeze')
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
......@@ -6471,8 +6472,16 @@ def unsqueeze(input, axes, name=None):
check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
check_variable_and_dtype(input, 'input', [
'float16', 'float32', 'float64', 'bool', 'int8', 'int16', 'int32',
'int64'
'float16',
'float32',
'float64',
'bool',
'int8',
'int16',
'int32',
'int64',
'complex64',
'complex128',
], 'unsqueeze')
helper = LayerHelper("unsqueeze2", **locals())
inputs = {"X": input}
......
......@@ -756,7 +756,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
check_shape(shape)
check_dtype(dtype, 'dtype', [
'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
'int64'
'int64', 'complex64', 'complex128'
], 'fill_constant')
check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from numpy.lib.stride_tricks import as_strided
import paddle
import unittest
from op_test import OpTest
def frame_from_librosa(x, frame_length, hop_length, axis=-1):
if axis == -1 and not x.flags["C_CONTIGUOUS"]:
x = np.ascontiguousarray(x)
elif axis == 0 and not x.flags["F_CONTIGUOUS"]:
x = np.asfortranarray(x)
n_frames = 1 + (x.shape[axis] - frame_length) // hop_length
strides = np.asarray(x.strides)
if axis == -1:
shape = list(x.shape)[:-1] + [frame_length, n_frames]
strides = list(strides) + [hop_length * x.itemsize]
elif axis == 0:
shape = [n_frames, frame_length] + list(x.shape)[1:]
strides = [hop_length * x.itemsize] + list(strides)
else:
raise ValueError("Frame axis={} must be either 0 or -1".format(axis))
return as_strided(x, shape=shape, strides=strides)
def stft_np(x, n_fft, hop_length, **kwargs):
frames = frame_from_librosa(x, n_fft, hop_length)
res = np.fft.rfft(frames, axis=1)
return res
class TestStftOp(OpTest):
def setUp(self):
self.op_type = "stft"
self.shape, self.type, self.attrs = self.initTestCase()
self.inputs = {
'X': np.random.random(size=self.shape).astype(self.type),
}
self.outputs = {'Out': stft_np(x=self.inputs['X'], **self.attrs)}
def initTestCase(self):
input_shape = (2, 100)
input_type = 'float64'
attrs = {
'n_fft': 50,
'hop_length': 15,
'normalized': False,
'onesided': True,
}
return input_shape, input_type, attrs
def test_check_output(self):
paddle.enable_static()
self.check_output()
paddle.disable_static()
def test_check_grad_normal(self):
paddle.enable_static()
self.check_grad(['X'], 'Out')
paddle.disable_static()
if __name__ == '__main__':
unittest.main()
......@@ -119,6 +119,7 @@ def frame(x, frame_length, hop_length, axis=-1, name=None):
f'Unexpected hop_length: {hop_length}. It should be an positive integer.'
)
if in_dygraph_mode():
if frame_length > x.shape[axis]:
raise ValueError(
f'Attribute frame_length should be less equal than sequence length, '
......@@ -306,8 +307,7 @@ def stft(x,
y1 = stft(x, n_fft=512, center=False, onesided=False) # [8, 512, 372]
"""
check_variable_and_dtype(
x, 'x', ['float16', 'float32', 'float64', 'complex64', 'complex128'],
'stft')
x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'stft')
x_rank = len(x.shape)
assert x_rank in [1, 2], \
......@@ -325,6 +325,7 @@ def stft(x,
if win_length is None:
win_length = n_fft
if in_dygraph_mode():
assert 0 < n_fft <= x.shape[-1], \
f'n_fft should be in (0, seq_length({x.shape[-1]})], but got {n_fft}.'
......@@ -359,7 +360,7 @@ def stft(x,
x_frames = x_frames.transpose(
perm=[0, 2,
1]) # switch n_fft to last dim, egs: (batch, num_frames, n_fft)
x_frames = x_frames * window
x_frames = paddle.multiply(x_frames, window)
norm = 'ortho' if normalized else 'backward'
if is_complex(x_frames):
......@@ -495,6 +496,7 @@ def istft(x,
n_frames = x.shape[-1]
fft_size = x.shape[-2]
if in_dygraph_mode():
if onesided:
assert (fft_size == n_fft // 2 + 1), \
'fft_size should be equal to n_fft // 2 + 1({}) when onesided is True, but got {}.'.format(n_fft // 2 + 1, fft_size)
......@@ -506,7 +508,10 @@ def istft(x,
assert len(window.shape) == 1 and len(window) == win_length, \
'expected a 1D window tensor of size equal to win_length({}), but got window with shape {}.'.format(win_length, window.shape)
else:
window = paddle.ones(shape=(win_length, ))
window_dtype = paddle.float32 if x.dtype in [
paddle.float32, paddle.complex64
] else paddle.float64
window = paddle.ones(shape=(win_length, ), dtype=window_dtype)
if win_length < n_fft:
pad_left = (n_fft - win_length) // 2
......@@ -534,15 +539,15 @@ def istft(x,
x = x[:, :, :n_fft // 2 + 1]
out = fft_c2r(x=x, n=None, axis=-1, norm=norm, forward=False, name=None)
out = paddle.multiply(out, window).transpose(
perm=[0, 2, 1]) # (batch, n_fft, num_frames)
out = overlap_add(
x=(out * window).transpose(
perm=[0, 2, 1]), # (batch, n_fft, num_frames)
hop_length=hop_length,
axis=-1) # (batch, seq_length)
x=out, hop_length=hop_length, axis=-1) # (batch, seq_length)
window_envelop = overlap_add(
x=paddle.tile(
x=window * window, repeat_times=[n_frames, 1]).transpose(
x=paddle.multiply(window, window).unsqueeze(0),
repeat_times=[n_frames, 1]).transpose(
perm=[1, 0]), # (n_fft, num_frames)
hop_length=hop_length,
axis=-1) # (seq_length, )
......@@ -561,7 +566,7 @@ def istft(x,
window_envelop = window_envelop[start:start + length]
# Check whether the Nonzero Overlap Add (NOLA) constraint is met.
if window_envelop.abs().min().item() < 1e-11:
if in_dygraph_mode() and window_envelop.abs().min().item() < 1e-11:
raise ValueError(
'Abort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).'
)
......
......@@ -147,7 +147,9 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
var_names = {'x': x, 'y': y}
for name, val in var_names.items():
check_variable_and_dtype(
val, name, ['float16', 'float32', 'float64'], 'matmul')
val, name,
['float16', 'float32', 'float64', 'complex64', 'complex128'],
'matmul')
__check_input(x, y)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册