未验证 提交 3108ba11 编写于 作者: C caozhou 提交者: GitHub

[Auto Parallel]Add parallel tuner (#46189)

* add parallel tuner

* add unittest

* fix unittest

* set timeout of unittest

* set unittest timeout

* fix auto_mode setting

* update unittest

* sync from develop and update unittest

* remove unused import

* update unittest

* update cmakelist

* add unittests
上级 9cdf30dc
......@@ -1305,6 +1305,8 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
process_mesh = dist_attr.process_mesh
processes = process_mesh.processes
# col parallel: matmul + allreduce
if backward_op.attr("trans_y"):
Y_var_dim_mapping.reverse()
assert Y_var_dim_mapping[0] < 0
parallel_axis = Y_var_dim_mapping[1]
......
......@@ -14,8 +14,7 @@
from .completion import Completer
from .dist_context import get_default_distributed_context
# from .tuner.parallel_tuner import ParallelTuner
from .tuner.parallel_tuner import ParallelTuner
class Planner:
......@@ -38,20 +37,20 @@ class Planner:
self._completer = Completer(self._dist_context)
self._strategy = dist_context.strategy
# if self._strategy.auto_search:
# self._parallel_tuner = ParallelTuner(
# self._dist_context, mode=self._mode)
# set parallel tuner for auto search
if self._strategy.auto_mode == "full":
self._parallel_tuner = ParallelTuner(self._dist_context,
mode=self._mode)
@property
def completer(self):
return self._completer
def plan(self):
if self._strategy.auto_mode == "full":
self._parallel_tuner.tune()
else:
self._completer.complete_forward_annotation()
# if self._strategy.auto_search:
# self._parallel_tuner.tune()
# else:
# self._completer.complete_forward_annotation()
# parse forward sub block
self._dist_context.block_state.parse_forward_blocks(
self._dist_context.serial_main_program)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import math
import copy
import hashlib
import itertools
from collections import defaultdict
import numpy as np
from ..process_mesh import ProcessMesh
from ..completion import Completer
from ..parallelizer_v2 import Parallelizer
from ..dist_context import _node_id
from ..dist_op import DistributedOperator
from ..operators.common import find_compatible_distributed_operator_impls
from .trial import Trial, TrialStatus
from .tunable_space import TunableSpace
from .tunable_variable import Boolean, IntRange
from ..cost import CostEstimator
from .tunable_variable import Boolean, IntRange
class ParallelTuner:
def __init__(self,
dist_context,
mode="train",
max_trials=25,
tuner_id=None,
seed=None,
logger=None,
loop_count=10):
self._loop_count = loop_count
self._estimator = None
self._dist_context = dist_context
assert self._dist_context._is_initialized
self._mode = mode
self._cluster = self._dist_context.cluster
self._num_machines = self._cluster.get_num_machines()
self._num_devices_per_machine = self._cluster.get_num_devices_per_machine(
)
self._space = TunableSpace()
self._objective = "time"
self._direction = "min"
self._max_trials = max_trials
self._tuner_id = tuner_id
self._seed = seed if seed is not None else 9999
print("seed",
self._seed,
"mode",
self._mode,
"num_machies",
self._num_machines,
"num_devices_per_machine",
self._num_devices_per_machine,
flush=True)
self._seed_state = self._seed
self._logger = logger
self._max_collisions = 3
self._tried_values = set()
self._num_trials = 0
self._rng = np.random.default_rng(self._seed)
# Search the op types in the include_op_types,
# and will search all op types if it is empty.
# Exclude the op types in the exclude_op_types
# from the search list.
self._exclude_op_types = []
self._include_op_types = []
# The final dist ops will be searched after considering
# the include_op_types and exclude_op_types.
self._concerned_dist_ops = {}
self._op_id_to_dist_attr_candidates = defaultdict(list)
self._cached_dims_mapping_candidates = {}
self._cached_candidates_info = defaultdict(list)
self._special_ops = [
"create_py_reader", "create_double_buffer_reader", "read", "while",
"read_from_array", "write_to_array"
]
# Each parallel strategy has two elements. The First one is for distributed tensors,
# the second element is for distributed tensors, the third element is for process meshes.
self._init_parallel_strategy = [None, None, None]
self._best_parallel_strategy = [None, None, None]
self._completer = Completer(self._dist_context)
self._parallelizer = Parallelizer(self._mode, self._completer,
self._dist_context)
def _generate_combination(self,
elements,
target,
idx,
partial_candidate,
candidates,
num_candidates=None):
if target == 0:
candidates.append(copy.deepcopy(partial_candidate))
return
if target < 0 or idx == len(elements) \
or len(candidates) > num_candidates:
return
# Use
partial_candidate.append(elements[idx])
self._generate_combination(elements, target - elements[idx], idx,
partial_candidate, candidates,
num_candidates)
# Not use
partial_candidate.pop()
self._generate_combination(elements, target, idx + 1, partial_candidate,
candidates, num_candidates)
def _permute_combination(self,
combination,
target,
check,
partial_candidate,
candidates,
num_candidates=None,
skip_prob=None):
if num_candidates is not None \
and len(candidates) == num_candidates:
return
if len(partial_candidate) == len(combination):
candidates.append(partial_candidate)
return
for i in range(len(combination)):
if check[i] == 1:
continue
if self._rng.choice([True, False], p=[skip_prob, 1 - skip_prob]):
continue
if i > 0 and combination[i] == combination[i - 1] \
and check[i -1] == 0:
continue
check[i] = 1
self._permute_combination(combination, target, check,
partial_candidate + [combination[i]],
candidates, num_candidates, skip_prob)
check[i] = 0
def _partition_number(self, target):
log2_target = int(math.log2(target))
elements = [pow(2, i) for i in range(log2_target)]
if pow(2, log2_target) == target:
elements.append(target)
seed_candidates = []
num_seed_candidates = 1000
partial_results = []
self._generate_combination(elements, target, 0, partial_results,
seed_candidates, num_seed_candidates)
candidates = []
for seed_candidate in seed_candidates:
cur_candidates = []
num_cur_candidates = 16
seed_candidate.sort()
check = [0 for i in range(len(seed_candidate))]
if target <= 8:
skip_prob = 0.0
else:
skip_prob = (len(seed_candidate) / target)
self._permute_combination(seed_candidate, target, check, [],
cur_candidates, num_cur_candidates,
skip_prob)
candidates.extend(cur_candidates)
return candidates
def _partition_devices(self, num_machines, num_devices_per_machine):
inter_node_partitions = self._partition_number(num_machines)
intra_node_partitions = self._partition_number(num_devices_per_machine)
return inter_node_partitions, intra_node_partitions
def _generate_process_mesh_list(self, inter_node_partition,
intra_node_partition):
process_mesh_list = []
start_row = 0
start_col = 0
for m in inter_node_partition:
start_col = 0
for n in intra_node_partition:
process_mesh = []
for p in range(m):
start = (start_row +
p) * self._num_devices_per_machine + start_col
tmp = []
for q in range(n):
tmp.append(start + q)
process_mesh.append(tmp)
process_mesh_list.append(copy.deepcopy(process_mesh))
start_col += n
start_row += m
return process_mesh_list
def _generate_dims_mapping_candidates_helper(self, dims_mapping, dims_list,
start, visited, candidates):
if start == len(dims_mapping) or all(visited):
candidates.append(copy.deepcopy(dims_mapping))
return
for idx, dim in enumerate(dims_list):
if visited[idx] == False:
dims_mapping[start] = dim
visited[idx] = True
self._generate_dims_mapping_candidates_helper(
dims_mapping, dims_list, start + 1, visited, candidates)
visited[idx] = False
dims_mapping[start] = -1
self._generate_dims_mapping_candidates_helper(dims_mapping, dims_list,
start + 1, visited,
candidates)
def _generate_dims_mapping_candidates(self, dims_mapping_len,
process_mesh_len):
assert dims_mapping_len >= 1 and process_mesh_len >= 1
key = (dims_mapping_len, process_mesh_len)
if key in self._cached_dims_mapping_candidates:
return self._cached_dims_mapping_candidates[key]
candidates = []
dims_mapping = [-1 for i in range(dims_mapping_len)]
dims_list = [i for i in range(process_mesh_len)]
visited = [False for i in range(process_mesh_len)]
self._generate_dims_mapping_candidates_helper(dims_mapping, dims_list,
0, visited, candidates)
self._cached_dims_mapping_candidates[key] = candidates
return candidates
def _generate_dist_attr_candidates(self, op_id, dist_op):
# For now, only allow the process meshes have two dimensions
process_mesh_len = 2
serial_op = dist_op.serial_op
op_dist_attr = dist_op.dist_attr
if serial_op.type in self._special_ops:
return [copy.deepcopy(op_dist_attr)]
key = []
key.append(serial_op.type)
for input_name in serial_op.input_names:
key.append(input_name)
for input_arg_name in serial_op.input(input_name):
key.append(
len(op_dist_attr.get_input_dims_mapping(input_arg_name)))
for output_name in serial_op.output_names:
key.append(output_name)
for output_arg_name in serial_op.output(output_name):
key.append(
len(op_dist_attr.get_output_dims_mapping(output_arg_name)))
key = tuple(key)
if key in self._cached_candidates_info:
cached_dist_attr_candidates = []
cached_input_arg_names = self._cached_candidates_info[key][0]
cached_output_arg_names = self._cached_candidates_info[key][1]
for cached_dist_attr in self._cached_candidates_info[key][2]:
new_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
i = 0
for input_name in serial_op.input_names:
for input_arg_name in serial_op.input(input_name):
cached_dims_mapping = cached_dist_attr.get_input_dims_mapping(
cached_input_arg_names[i])
new_op_dist_attr.set_input_dims_mapping(
input_arg_name, cached_dims_mapping)
i += 1
i = 0
for output_name in serial_op.output_names:
for output_arg_name in serial_op.output(output_name):
cached_dims_mapping = cached_dist_attr.get_output_dims_mapping(
cached_output_arg_names[i])
new_op_dist_attr.set_output_dims_mapping(
output_arg_name, cached_dims_mapping)
i += 1
cached_dist_attr_candidates.append(new_op_dist_attr)
return cached_dist_attr_candidates
# cached_candidates_info = []
input_arg_names = []
for input_name in serial_op.input_names:
for input_arg_name in serial_op.input(input_name):
input_arg_names.append(input_arg_name)
self._cached_candidates_info[key].append(input_arg_names)
# cached_candidates_info.append(input_arg_names)
output_arg_names = []
for output_name in serial_op.output_names:
for output_arg_name in serial_op.output(output_name):
output_arg_names.append(output_arg_name)
self._cached_candidates_info[key].append(output_arg_names)
# cached_candidates_info.append(output_arg_names)
new_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
# Find valid dims_mapping candidates for inputs
input_names = []
dims_mapping_generated = []
inputs_dist_attrs = op_dist_attr.inputs_dist_attrs
for tensor_name, tensor_dist_attr in inputs_dist_attrs.items():
original_dims_mapping = tensor_dist_attr.dims_mapping
dims_mapping_len = len(original_dims_mapping)
input_names.append(tensor_name)
if dims_mapping_len < 1:
dims_mapping_generated.append(
[copy.deepcopy(original_dims_mapping)])
else:
dims_mapping_generated.append(
self._generate_dims_mapping_candidates(
dims_mapping_len, process_mesh_len))
input_dims_mapping_candidates = []
for dims_mapping_list in itertools.product(*dims_mapping_generated):
dims_mapping_list = list(dims_mapping_list)
assert len(dims_mapping_list) == len(input_names)
for i, dims_mapping in enumerate(dims_mapping_list):
new_op_dist_attr.set_input_dims_mapping(input_names[i],
dims_mapping)
new_dist_op = DistributedOperator(dist_op.serial_op,
new_op_dist_attr)
dist_op_impls = find_compatible_distributed_operator_impls(
new_dist_op, fwd=True)
if dist_op_impls is not None:
input_dims_mapping_candidates.append(dims_mapping_list)
# Find valid dims_mapping candidates for outputs
output_names = []
dims_mapping_generated = []
outputs_dist_attrs = op_dist_attr.outputs_dist_attrs
for tensor_name, tensor_dist_attr in outputs_dist_attrs.items():
original_dims_mapping = tensor_dist_attr.dims_mapping
dims_mapping_len = len(original_dims_mapping)
output_names.append(tensor_name)
if dims_mapping_len < 1:
dims_mapping_generated.append(
[copy.deepcopy(original_dims_mapping)])
else:
dims_mapping_generated.append(
self._generate_dims_mapping_candidates(
dims_mapping_len, process_mesh_len))
output_dims_mapping_candidates = []
for dims_mapping_list in itertools.product(*dims_mapping_generated):
dims_mapping_list = list(dims_mapping_list)
assert len(dims_mapping_list) == len(output_names)
for i, dims_mapping in enumerate(dims_mapping_list):
new_op_dist_attr.set_output_dims_mapping(
output_names[i], dims_mapping)
new_dist_op = DistributedOperator(dist_op.serial_op,
new_op_dist_attr)
dist_op_impls = find_compatible_distributed_operator_impls(
new_dist_op, fwd=False)
if dist_op_impls is not None:
output_dims_mapping_candidates.append(dims_mapping_list)
if not input_dims_mapping_candidates and output_dims_mapping_candidates:
inout_dims_mapping_generated = [[[[-2]]],
output_dims_mapping_candidates]
elif input_dims_mapping_candidates and not output_dims_mapping_candidates:
inout_dims_mapping_generated = [
input_dims_mapping_candidates, [[[-2]]]
]
elif not input_dims_mapping_candidates and not output_dims_mapping_candidates:
inout_dims_mapping_generated = [[[[-2]]], [[[-2]]]]
else:
inout_dims_mapping_generated = [
input_dims_mapping_candidates, output_dims_mapping_candidates
]
# Find valid dims_mapping generated for both inputs and outputs
cached_dist_attr_candidates = []
for inout_dims_mapping_list in itertools.product(
*inout_dims_mapping_generated):
assert len(inout_dims_mapping_list) == 2
if input_dims_mapping_candidates:
assert len(inout_dims_mapping_list[0]) == len(input_names)
if output_dims_mapping_candidates:
assert len(inout_dims_mapping_list[1]) == len(output_names)
# set the dims_mappings for inputs
for i, dims_mapping in enumerate(inout_dims_mapping_list[0]):
if dims_mapping != [-2]:
new_op_dist_attr.set_input_dims_mapping(
input_names[i], dims_mapping)
# set the dims_mappings for outputs
for i, dims_mapping in enumerate(inout_dims_mapping_list[1]):
if dims_mapping != [-2]:
new_op_dist_attr.set_output_dims_mapping(
output_names[i], dims_mapping)
new_dist_op = DistributedOperator(dist_op.serial_op,
new_op_dist_attr)
dist_op_impls = find_compatible_distributed_operator_impls(
new_dist_op, partial=False)
if dist_op_impls is None:
continue
for dist_op_impl in dist_op_impls:
new_op_dist_attr.impl_type = dist_op_impl.type
new_op_dist_attr.impl_idx = dist_op_impl.idx
cached_dist_attr_candidates.append(
copy.deepcopy(new_op_dist_attr))
self._cached_candidates_info[key].append(cached_dist_attr_candidates)
return self._cached_candidates_info[key][2]
def construct_space(self):
inter_node_partitions, intra_node_partitions = self._partition_devices(
self._num_machines, self._num_devices_per_machine)
self._space.choice("inter_node_partitions",
inter_node_partitions,
default=inter_node_partitions[0])
self._space.choice("intra_node_partitions",
intra_node_partitions,
default=intra_node_partitions[0])
dist_ops = self._dist_context._dist_ops_for_program
for op_id, dist_op in dist_ops.items():
op_type = dist_op.serial_op.type
if self._include_op_types:
if op_type in self._include_op_types:
self._concerned_dist_ops[op_id] = dist_op
else:
self._concerned_dist_ops[op_id] = dist_op
for op_id, dist_op in self._concerned_dist_ops.items():
op_type = dist_op.serial_op.type
if op_type in self._exclude_op_types:
del self._concerned_dist_ops[op_id]
print("Number of the concered dist ops",
len(self._concerned_dist_ops),
flush=True)
search_space = 1
for op_id, dist_op in self._concerned_dist_ops.items():
op_dist_attr_candidates = self._generate_dist_attr_candidates(
op_id, dist_op)
search_space *= len(op_dist_attr_candidates)
self._space.choice(str(op_id),
op_dist_attr_candidates,
default=op_dist_attr_candidates[0])
def _compute_values_hash(self, values):
keys = sorted(values.keys())
s = "".join(str(k) + "=" + str(values[k]) for k in keys)
return hashlib.sha256(s.encode("utf-8")).hexdigest()[:32]
def _random_values(self):
space = TunableSpace()
collisions = 0
while True:
for v in self._space.variables.values():
space._register(v)
space.values[v.name] = v.random(self._seed_state)
self._seed_state += 1
values = space.values
values_hash = self._compute_values_hash(values)
if values_hash in self._tried_values:
collisions += 1
if collisions > self._max_collisions:
return None
continue
self._tried_values.add(values_hash)
break
return values
def _populate_space(self):
values = self._random_values()
if values is None:
return {"status": TrialStatus.STOPPED, "values": None}
return {"status": TrialStatus.RUNNING, "values": values}
def _create_trial(self):
trial_id = "{{:0{}d}}".format(len(str(self._max_trials)))
trial_id = trial_id.format(self._num_trials)
if self._max_trials and self._num_trials >= self._max_trials:
status = TrialStatus.STOPPED
values = None
else:
results = self._populate_space()
status = results["status"]
values = results["values"]
space = TunableSpace()
space.variables = self._space.variables
space.values = values
trial = Trial(tunable_space=space, trial_id=trial_id, status=status)
self._num_trials += 1
return trial
def _generate_pipeline_starts(self, process_mesh_list):
total_ops = len(self._dist_context._dist_ops_for_program)
total_stages = len(process_mesh_list)
ops_per_stage = total_ops // total_stages
if ops_per_stage == 0:
return None
# Compute the initial pipeline starts
pipeline_starts = []
start = 0
pipeline_starts.append(0)
# The pipeline_starts have total_stages+1 items, and
# at least have 2 items.
for _ in process_mesh_list:
start += ops_per_stage
pipeline_starts.append(start)
pipeline_starts[-1] = total_ops
# Adjust the pipeline starts by random selection
directions = []
sizes = []
half_ops_per_stage = ops_per_stage // 2
if half_ops_per_stage > 0 and total_stages > 1:
new_pipeline_starts = []
# Don't change the first start
new_pipeline_starts.append(0)
# Consider the starts except the first and the last one
for _ in pipeline_starts[1:-1]:
directions.append(Boolean("direction"))
sizes.append(
IntRange("size",
start=0,
stop=half_ops_per_stage,
endpoint=True))
for i, start in enumerate(pipeline_starts[1:-1]):
direction = directions[i].random(self._seed)
size = sizes[i].random(self._seed)
if direction:
# Substract 1 from size to avoid the overlapping of new starts
new_start = start - (size - 1)
else:
new_start = start + size
new_pipeline_starts.append(new_start)
# Don't change the last start
new_pipeline_starts.append(pipeline_starts[-1])
# Validate the new starts
print("Adjusted pipeline starts",
new_pipeline_starts,
half_ops_per_stage,
pipeline_starts,
flush=True)
for i, new_start in enumerate(new_pipeline_starts[1:]):
assert new_start > new_pipeline_starts[i]
return new_pipeline_starts
else:
print("Non-adjusted pipeline starts",
pipeline_starts,
half_ops_per_stage,
flush=True)
return pipeline_starts
def _apply_pipeline_partition(self, process_mesh_list):
op_id_to_process_mesh = {}
total_ops = len(self._dist_context._dist_ops_for_program)
total_stages = len(process_mesh_list)
ops_per_stage = total_ops // total_stages
if ops_per_stage == 0:
return None
pipeline_starts = self._generate_pipeline_starts(process_mesh_list)
start_idx = 1
sorted_op_ids = sorted(self._dist_context._dist_ops_for_program.keys())
for idx, op_id in enumerate(sorted_op_ids):
if idx < pipeline_starts[start_idx]:
op_id_to_process_mesh[op_id] = process_mesh_list[start_idx - 1]
else:
start_idx += 1
op_id_to_process_mesh[op_id] = process_mesh_list[start_idx - 1]
return op_id_to_process_mesh
def _amend_dist_attr(self):
# 1) Reshape the process mesh of [1, x] to [x] or [x, 1] to [x],
# and amend the corresponding dims_mapping.
# 2) Set the dim_mapping to -1 when the shape cannot be divided
# by the corresponding processes.
for dist_op in self._dist_context._dist_ops_for_program.values():
dist_attr = dist_op.dist_attr
process_mesh = dist_attr.process_mesh
if process_mesh is None:
continue
assert process_mesh.ndim == 2
dim_of_one = None
dim_of_other = None
if process_mesh.topology[0] == 1:
dim_of_one = 0
dim_of_other = 1
elif process_mesh.topology[1] == 1:
dim_of_one = 1
dim_of_other = 0
if dim_of_one is not None:
dist_attr.process_mesh = ProcessMesh(process_mesh.processes)
self._dist_context.add_process_mesh(dist_attr.process_mesh)
for arg_name in dist_attr.inputs_dist_attrs.keys():
new_dims_mapping = []
dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
for dim_mapping in dims_mapping:
if dim_mapping == dim_of_one:
new_dims_mapping.append(-1)
elif dim_mapping == dim_of_other:
new_dims_mapping.append(0)
else:
new_dims_mapping.append(dim_mapping)
dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
# dynamic_dims = dist_attr.get_input_dynamic_dims(arg_name)
process_mesh = dist_attr.process_mesh
process_shape = process_mesh.topology
tensor = dist_op.get_serial_input(arg_name)
if dims_mapping:
tensor_shape = tensor.shape
else:
continue
for i, dim_mapping in enumerate(dims_mapping):
# if dim_mapping != -1 \
# and (tensor_shape[i] % process_shape[dim_mapping] != 0 \
# or dynamic_dims[i] == 1):
if dim_mapping != -1 \
and (tensor_shape[i] % process_shape[dim_mapping] != 0):
dims_mapping[i] = -1
# it is a fix-bug
if dim_mapping != -1 \
and process_shape[dim_mapping] == 1:
dims_mapping[i] = -1
for arg_name in dist_attr.outputs_dist_attrs.keys():
new_dims_mapping = []
dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
for dim_mapping in dims_mapping:
if dim_mapping == dim_of_one:
new_dims_mapping.append(-1)
elif dim_mapping == dim_of_other:
new_dims_mapping.append(0)
else:
new_dims_mapping.append(dim_mapping)
dist_attr.set_output_dims_mapping(arg_name, new_dims_mapping)
dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
# dynamic_dims = dist_attr.get_output_dynamic_dims(arg_name)
process_mesh = dist_attr.process_mesh
process_shape = process_mesh.topology
tensor = dist_op.get_serial_output(arg_name)
if dims_mapping:
tensor_shape = tensor.shape
else:
continue
for i, dim_mapping in enumerate(dims_mapping):
if dim_mapping != -1 \
and (tensor_shape[i] % process_shape[dim_mapping] != 0):
dims_mapping[i] = -1
# it is a fix-bug
if dim_mapping != -1 \
and process_shape[dim_mapping] == 1:
dims_mapping[i] = -1
dist_op_impls = find_compatible_distributed_operator_impls(
dist_op, partial=False)
serial_op_type = dist_op.serial_op.type
if dist_op_impls is not None and (
serial_op_type != "fused_softmax_mask_upper_triangle"
or self._check_fused_softmax_mask_upper_triangle(dist_op)):
dist_op.dist_attr.impl_type = dist_op_impls[0].type
dist_op.dist_attr.impl_idx = dist_op_impls[0].idx
else:
# Use the default dist op impl
for arg_name in dist_attr.inputs_dist_attrs.keys():
dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
for i, _ in enumerate(dims_mapping):
dims_mapping[i] = -1
for arg_name in dist_attr.outputs_dist_attrs.keys():
dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
for i, _ in enumerate(dims_mapping):
dims_mapping[i] = -1
dist_op.dist_attr.impl_type = "default"
dist_op.dist_attr.impl_idx = 0
def _check_fused_softmax_mask_upper_triangle(self, dist_op):
"""The last_but_one dim shoule be equal to last dim."""
input_name = dist_op.serial_op.input_arg_names[0]
input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
input_name)
topology = dist_op.dist_attr.process_mesh.topology
input_tensor = dist_op.get_serial_input(input_name)
last_but_one_dim = input_tensor.shape[-2] // topology[
input_dims_mapping[-2]] if input_dims_mapping[
-2] != -1 else input_tensor.shape[-2]
last_dim = input_tensor.shape[-1] // topology[input_dims_mapping[
-1]] if input_dims_mapping[-1] != -1 else input_tensor.shape[-1]
if last_but_one_dim == last_dim:
return True
return False
def _eval_trial(self, trial):
if self._num_trials == 0:
num_prev_trials = 0
else:
num_prev_trials = self._num_trials - 1
results = None
start_time = time.time()
inter_node_partition = trial.space.values["inter_node_partitions"]
intra_node_partition = trial.space.values["intra_node_partitions"]
process_mesh_list = self._generate_process_mesh_list(
inter_node_partition, intra_node_partition)
print("\tprocess_mesh list", process_mesh_list, flush=True)
op_id_to_process_mesh = self._apply_pipeline_partition(
process_mesh_list)
if op_id_to_process_mesh is None:
print("Operators are less than pipeline stages", flush=True)
return results
op_id_to_dist_attr = {}
for name, value in trial.space.values.items():
if name != "inter_node_partitions" \
and name !="intra_node_partitions":
op_id_to_dist_attr[int(name)] = value
end_time = time.time()
cur_sample_time = end_time - start_time
self._sample_time = (num_prev_trials * self._sample_time +
cur_sample_time) / self._num_trials
print("\tsample_time",
num_prev_trials,
self._num_trials,
self._sample_time,
cur_sample_time,
flush=True)
assert len(op_id_to_process_mesh) == len(op_id_to_dist_attr)
start_time = time.time()
for op_id, process_mesh in op_id_to_process_mesh.items():
dist_op = self._dist_context._dist_ops_for_program[op_id]
dist_op.dist_attr = copy.deepcopy(op_id_to_dist_attr[op_id])
assert dist_op.dist_attr.impl_type == op_id_to_dist_attr[
op_id].impl_type
assert dist_op.dist_attr.impl_idx == op_id_to_dist_attr[
op_id].impl_idx
dist_op.dist_attr.process_mesh = process_mesh
self._amend_dist_attr()
self._completer._complete_tensor_dist_attr_by_op()
self._dist_context.block_state.parse_forward_blocks(
self._dist_context.serial_main_program)
end_time = time.time()
cur_complete_time = end_time - start_time
self._complete_time = (num_prev_trials * self._complete_time +
cur_complete_time) / self._num_trials
print("\tcomplete_time",
num_prev_trials,
self._num_trials,
self._complete_time,
cur_complete_time,
flush=True)
start_time = time.time()
estimate_time = self._estimate_trial()
end_time = time.time()
cur_estimate_time = end_time - start_time
self._estimate_time = (num_prev_trials * self._estimate_time +
cur_estimate_time) / self._num_trials
print("\testimate_time",
num_prev_trials,
self._num_trials,
self._estimate_time,
cur_estimate_time,
estimate_time,
flush=True)
results = {"estimate_time": estimate_time}
return results
def _update_trail(self, trial, metrics, step=0):
for metric_name, metric_value in metrics.items():
trial.recorder.update(metric_name, metric_value, step=step)
return trial.status
def _estimate_trial(self):
assert self._cluster is not None
if self._mode == "eval":
self._estimator = CostEstimator(
self._dist_context.serial_main_program,
self._cluster,
loop_count=self._loop_count)
elif self._mode == "predict":
self._estimator = CostEstimator(
self._dist_context.serial_main_program,
self._cluster,
loop_count=self._loop_count)
elif self._mode == "train":
# get serial main program with backward
serial_main_program = self._dist_context.serial_main_program
serial_startup_program = self._dist_context.serial_startup_program
serial_optimizer = self._dist_context.serial_optimizer
# Generate backward
serial_loss = self._dist_context.serial_fetch_vars["loss"][0]
params_grads = self._parallelizer._generate_backward(
serial_main_program, serial_startup_program, serial_loss)
# Generate optimizer
optimizer_ops = self._parallelizer._generate_optimizer(
serial_main_program, serial_startup_program, serial_optimizer,
params_grads)
self._estimator = CostEstimator(serial_main_program,
self._cluster,
loop_count=self._loop_count)
max_memory = self._estimator._estimate_max_memory_by_dist_op(
self._dist_context)
print("\tmax_memory", "{:,}".format(max_memory), flush=True)
# The max memory must be less than 80% 32GB (hard code)
if max_memory > 32 * 0.8 * 1024 * 1024 * 1024:
return math.inf
else:
global_cost = self._estimator.estimate(self._dist_context)
return global_cost.time
def _store_init_parallel_strategy(self):
# If there is no annotation information, use the dp as the initial parallel strategy.
# TODO: we should need a better way to set up the initial parallel strategy.
if not self._dist_context.has_annotation \
or not self._dist_context.process_meshes:
ranks = self._num_machines * self._num_devices_per_machine
tensor_node = self._dist_context._serial_ordered_tensor_nodes[0]
tensor_node_id = _node_id(tensor_node)
tensor = self._dist_context._dist_tensors_for_graph[
tensor_node_id].serial_tensor
tensor_dist_attr = self._dist_context._dist_tensors_for_graph[
tensor_node_id].dist_attr
tensor_dist_attr.process_mesh = ProcessMesh(list(range(ranks)))
self._dist_context._process_meshes.append(
tensor_dist_attr.process_mesh)
tensor_dist_attr.dims_mapping = [0] + [
-1 for _ in range(len(tensor.shape) - 1)
]
tensor_dist_attr.mark_annotated("process_mesh")
tensor_dist_attr.mark_annotated("dims_mapping")
print("Use dp as the init parallel strategy!", flush=True)
# Do the sharding propagation
self._completer.complete_forward_annotation()
self._dist_context.block_state.parse_forward_blocks(
self._dist_context.serial_main_program)
# Backup the intital parallel strategy
self._init_parallel_strategy[0] = copy.deepcopy(
self._dist_context._dist_tensors_for_program)
self._init_parallel_strategy[1] = copy.deepcopy(
self._dist_context._dist_ops_for_program)
self._init_parallel_strategy[2] = copy.deepcopy(
self._dist_context.process_meshes)
# Initialize the best parallel strategy to the initial one
self._best_parallel_strategy[0] = copy.deepcopy(
self._dist_context._dist_tensors_for_program)
self._best_parallel_strategy[1] = copy.deepcopy(
self._dist_context._dist_ops_for_program)
self._best_parallel_strategy[2] = copy.deepcopy(
self._dist_context._process_meshes)
def _store_best_parallel_strategy(self):
# Swap the best and the current parallel strategy
tmp = [None, None, None]
tmp[0] = self._best_parallel_strategy[0]
tmp[1] = self._best_parallel_strategy[1]
tmp[2] = self._best_parallel_strategy[2]
self._best_parallel_strategy[
0] = self._dist_context._dist_tensors_for_program
self._best_parallel_strategy[
1] = self._dist_context._dist_ops_for_program
self._best_parallel_strategy[2] = self._dist_context._process_meshes
self._dist_context._dist_tensors_for_program = tmp[0]
self._dist_context._dist_ops_for_program = tmp[1]
self._dist_context._process_meshes = tmp[2]
def tune(self):
global_start_time = time.time()
self._dist_context._backup(serial=True, dist=True)
# This store statement must follow the above backup statement
self._store_init_parallel_strategy()
init_time = self._estimate_trial() # estimate_trial when init
# print_program_with_dist_attr(self._dist_context.serial_main_program, self._dist_context)
# We have to restore the distributed context, because the estimation of one trail need to
# generate the backward and update parts. Since we will do the tuning process,
# here we only need to reset all distributed information to the default one.
self._dist_context._restore(serial=True,
serial_mode="to_backup",
dist=True,
dist_mode="to_default")
best_time = init_time
start_time = time.time()
self.construct_space()
end_time = time.time()
print("construct_space time",
self._num_trials,
end_time - start_time,
flush=True)
create_trial_time = 0.0
eval_trial_time = 0.0
self._sample_time = 0.0
self._complete_time = 0.0
self._estimate_time = 0.0
while True:
start_time = time.time()
trial = self._create_trial()
if self._num_trials == 0:
num_prev_trials = 0
else:
num_prev_trials = self._num_trials - 1
end_time = time.time()
cur_create_trial_time = end_time - start_time
create_trial_time = (num_prev_trials * create_trial_time +
cur_create_trial_time) / self._num_trials
print("create_trial time",
num_prev_trials,
self._num_trials,
create_trial_time,
cur_create_trial_time,
flush=True)
if trial.status == TrialStatus.STOPPED:
break
# We need to backup the distributed context, because the evaluation of one trail will
# generate the backward and update parts which may change the context.
# However, the distributed information of the context aren't backup since a new one is used.
self._dist_context._backup(serial=True, dist=False)
start_time = time.time()
results = self._eval_trial(trial)
end_time = time.time()
cur_eval_trial_time = end_time - start_time
eval_trial_time = (num_prev_trials * eval_trial_time +
cur_eval_trial_time) / self._num_trials
print("eval_trial time",
num_prev_trials,
self._num_trials,
eval_trial_time,
cur_eval_trial_time,
"\n",
flush=True)
cur_time = results["estimate_time"]
if cur_time < best_time:
self._update_trail(trial, results)
self._store_best_parallel_strategy()
best_time = cur_time
# We need to restore the distributed context and reset the distributed information to the default.
self._dist_context._restore(serial=True,
serial_mode="to_backup",
dist=True,
dist_mode="to_default")
# Select the best parallel strategy
self._dist_context._dist_tensors_for_program = self._best_parallel_strategy[
0]
self._dist_context._dist_ops_for_program = self._best_parallel_strategy[
1]
self._dist_context._process_meshes = self._best_parallel_strategy[2]
......@@ -37,10 +37,18 @@ class TunableSpace(object):
def variables(self):
return self._variables
@variables.setter
def variables(self, variables):
self._variables = variables
@property
def values(self):
return self._values
@values.setter
def values(self, values):
self._values = values
def get_value(self, name):
if name in self.values:
return self.values[name]
......
......@@ -90,6 +90,7 @@ class Choice(TunableVariable):
raise TypeError(
"Choice can contain only one type of value, but found values: {} with types: {}."
.format(str(values), str(types)))
self._is_unknown_type = False
if isinstance(values[0], str):
values = [str(v) for v in values]
......@@ -108,9 +109,8 @@ class Choice(TunableVariable):
if default is not None:
default = bool(default)
else:
raise TypeError(
"Choice can only contain str, int, float, or boll, but found: {} "
.format(str(values)))
self._is_unknown_type = True
self._indices = [i for i in range(len(values))]
self.values = values
if default is not None and default not in values:
......@@ -129,6 +129,10 @@ class Choice(TunableVariable):
def random(self, seed=None):
rng = np.random.default_rng(seed)
if self._is_unknown_type:
indice = rng.choice(self._indices)
return self.values[indice]
else:
return rng.choice(self.values)
def get_state(self):
......
......@@ -99,8 +99,20 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_interface MODULES test_interface)
py_test_modules(test_strategy MODULES test_strategy)
py_test_modules(test_pass_quantization MODULES test_pass_quantization)
py_test_modules(test_dist_shape MODULES test_dist_shape)
py_test_modules(test_dist_assign MODULES test_dist_assign)
py_test_modules(test_conditional_block_reshard MODULES
test_conditional_block_reshard)
py_test_modules(test_parallel_tuner MODULES test_parallel_tuner ENVS
${dist_ENVS})
set_tests_properties(test_parallel_tuner PROPERTIES TIMEOUT 120)
py_test_modules(test_parallel_tuner_full MODULES test_parallel_tuner_full
ENVS ${dist_ENVS})
set_tests_properties(test_parallel_tuner_full PROPERTIES TIMEOUT 120)
py_test_modules(test_parallel_tuner_predict MODULES
test_parallel_tuner_predict ENVS ${dist_ENVS})
set_tests_properties(test_parallel_tuner_predict PROPERTIES TIMEOUT 120)
endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.static as static
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.dist_context import DistributedContext, set_default_distributed_context
from paddle.distributed.auto_parallel.tuner.parallel_tuner import ParallelTuner
from paddle.distributed.auto_parallel.process_mesh import ProcessMesh
import sys
sys.path.append("..")
import auto_parallel_gpt_model as modeling
from auto_parallel_gpt_model import GPTModel, GPTForPretraining, GPTPretrainingCriterion
paddle.enable_static()
batch_size = 4
epoch_num = 10
hidden_size = 1024
sequence_len = 512
_g_process_mesh = [
ProcessMesh([0, 1], dim_names=["x"]),
ProcessMesh([2, 3], dim_names=["x"])
]
def get_program_v3():
dist_strategy = fleet.DistributedStrategy()
dist_strategy.semi_auto = True
# fleet.init(is_collective=True, strategy=dist_strategy)
place = paddle.set_device("gpu")
gpus = [0, 1]
batch_size = 8
sequence_len = 512
vocab_size = 1000
train_program = static.Program()
start_program = static.Program()
modeling.init_global()
modeling._global_parallel_strategy = None
# modeling.DPMPPP_MESH_LIST = [
# ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]),
# ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"])
# ]
with static.program_guard(train_program, start_program):
tokens = paddle.static.data(name="tokens",
shape=[batch_size, sequence_len],
dtype='int64')
position_ids = paddle.static.data(name="position_ids",
shape=[batch_size, sequence_len],
dtype='int64')
attention_mask = paddle.static.data(
name="attention_mask",
shape=[batch_size, 1, sequence_len, sequence_len],
dtype='float32')
labels = paddle.static.data(name="labels",
shape=[batch_size, sequence_len],
dtype='int64')
loss_mask = paddle.static.data(name="loss_mask",
shape=[batch_size, sequence_len],
dtype='float32')
data_holder = [tokens, position_ids, attention_mask, labels, loss_mask]
gpt = GPTModel(vocab_size=1000,
hidden_size=1024,
num_hidden_layers=2,
num_attention_heads=16,
intermediate_size=4 * 1024,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=1024,
type_vocab_size=1,
initializer_range=0.02,
pad_token_id=0,
eos_token_id=7,
bos_token_id=0,
eol_token_id=3,
pp_degree=1)
model = GPTForPretraining(gpt,
vocab_size=1000,
hidden_size=64,
initializer_range=0.02)
preds = model(tokens, position_ids, attention_mask)
criterion = GPTPretrainingCriterion()
loss = criterion(preds, labels, loss_mask)
optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
feed_vars = {
"inputs": [tokens, position_ids, attention_mask, loss_mask],
"labels": [labels]
}
fetch_vars = {"loss": [loss]}
return train_program, start_program, None, loss, optimizer, feed_vars, fetch_vars
class TestParallelTunerTrain(unittest.TestCase):
def test_tune_with_train(self):
flag = False
set_default_distributed_context(DistributedContext())
train_program, start_program, dataloader, loss, optimizer, feed_vars, fetch_vars = get_program_v3(
)
cluster = Cluster()
cluster.gen_default_config_cluster(node_count=1, device_count=8)
dist_context = DistributedContext(train_program, start_program,
optimizer, loss, feed_vars,
fetch_vars, cluster)
dist_context.initialize()
parallel_tuner = ParallelTuner(dist_context, max_trials=3, mode="train")
parallel_tuner.tune()
parallel_tuner._store_best_parallel_strategy()
flag = True
self.assertTrue(flag)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.static as static
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.dist_context import DistributedContext, set_default_distributed_context
from paddle.distributed.auto_parallel.tuner.parallel_tuner import ParallelTuner
from paddle.distributed.auto_parallel.process_mesh import ProcessMesh
from paddle.distributed.auto_parallel.planner_v2 import Planner
from paddle.distributed.auto_parallel.strategy import Strategy
import sys
sys.path.append("..")
import auto_parallel_gpt_model as modeling
from auto_parallel_gpt_model import GPTModel, GPTForPretraining, GPTPretrainingCriterion
paddle.enable_static()
batch_size = 4
epoch_num = 10
hidden_size = 1024
sequence_len = 512
_g_process_mesh = [
ProcessMesh([0, 1], dim_names=["x"]),
ProcessMesh([2, 3], dim_names=["x"])
]
def get_program_v3():
dist_strategy = fleet.DistributedStrategy()
dist_strategy.semi_auto = True
# fleet.init(is_collective=True, strategy=dist_strategy)
place = paddle.set_device("gpu")
gpus = [0, 1]
batch_size = 8
sequence_len = 512
vocab_size = 1000
train_program = static.Program()
start_program = static.Program()
modeling.init_global()
modeling._global_parallel_strategy = "dp_mp_pp"
modeling.DPMPPP_MESH_LIST = [
ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]),
ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"])
]
with static.program_guard(train_program, start_program):
tokens = paddle.static.data(name="tokens",
shape=[batch_size, sequence_len],
dtype='int64')
position_ids = paddle.static.data(name="position_ids",
shape=[batch_size, sequence_len],
dtype='int64')
attention_mask = paddle.static.data(
name="attention_mask",
shape=[batch_size, 1, sequence_len, sequence_len],
dtype='float32')
labels = paddle.static.data(name="labels",
shape=[batch_size, sequence_len],
dtype='int64')
loss_mask = paddle.static.data(name="loss_mask",
shape=[batch_size, sequence_len],
dtype='float32')
data_holder = [tokens, position_ids, attention_mask, labels, loss_mask]
gpt = GPTModel(vocab_size=1000,
hidden_size=1024,
num_hidden_layers=2,
num_attention_heads=16,
intermediate_size=4 * 1024,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=1024,
type_vocab_size=1,
initializer_range=0.02,
pad_token_id=0,
eos_token_id=7,
bos_token_id=0,
eol_token_id=3,
pp_degree=len(modeling.DPMPPP_MESH_LIST))
model = GPTForPretraining(gpt,
vocab_size=1000,
hidden_size=64,
initializer_range=0.02)
preds = model(tokens, position_ids, attention_mask)
criterion = GPTPretrainingCriterion()
loss = criterion(preds, labels, loss_mask)
optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
feed_vars = {
"inputs": [tokens, position_ids, attention_mask, loss_mask],
"labels": [labels]
}
fetch_vars = {"loss": [loss]}
return train_program, start_program, None, loss, optimizer, feed_vars, fetch_vars
class TestParallelTunerFull(unittest.TestCase):
def test_tune_with_planner(self):
flag = False
set_default_distributed_context(DistributedContext())
train_program, start_program, dataloader, loss, optimizer, feed_vars, fetch_vars = get_program_v3(
)
cluster = Cluster()
cluster.gen_default_config_cluster(node_count=1, device_count=8)
strategy = Strategy()
strategy.auto_mode = "full"
dist_context = DistributedContext(train_program, start_program,
optimizer, loss, feed_vars,
fetch_vars, cluster, strategy)
dist_context.initialize()
planner = Planner("train", dist_context)
planner._parallel_tuner = ParallelTuner(planner._dist_context,
mode=planner._mode,
max_trials=3)
planner.plan()
flag = True
self.assertTrue(flag)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.static as static
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.dist_context import DistributedContext, set_default_distributed_context
from paddle.distributed.auto_parallel.tuner.parallel_tuner import ParallelTuner
from paddle.distributed.auto_parallel.process_mesh import ProcessMesh
import sys
sys.path.append("..")
import auto_parallel_gpt_model as modeling
from auto_parallel_gpt_model import GPTModel, GPTForPretraining, GPTPretrainingCriterion
paddle.enable_static()
batch_size = 4
epoch_num = 10
hidden_size = 1024
sequence_len = 512
_g_process_mesh = [
ProcessMesh([0, 1], dim_names=["x"]),
ProcessMesh([2, 3], dim_names=["x"])
]
def get_program_v3():
dist_strategy = fleet.DistributedStrategy()
dist_strategy.semi_auto = True
# fleet.init(is_collective=True, strategy=dist_strategy)
place = paddle.set_device("gpu")
gpus = [0, 1]
batch_size = 8
sequence_len = 512
vocab_size = 1000
train_program = static.Program()
start_program = static.Program()
modeling.init_global()
modeling._global_parallel_strategy = "dp_mp_pp"
modeling.DPMPPP_MESH_LIST = [
ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]),
ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"])
]
with static.program_guard(train_program, start_program):
tokens = paddle.static.data(name="tokens",
shape=[batch_size, sequence_len],
dtype='int64')
position_ids = paddle.static.data(name="position_ids",
shape=[batch_size, sequence_len],
dtype='int64')
attention_mask = paddle.static.data(
name="attention_mask",
shape=[batch_size, 1, sequence_len, sequence_len],
dtype='float32')
labels = paddle.static.data(name="labels",
shape=[batch_size, sequence_len],
dtype='int64')
loss_mask = paddle.static.data(name="loss_mask",
shape=[batch_size, sequence_len],
dtype='float32')
data_holder = [tokens, position_ids, attention_mask, labels, loss_mask]
gpt = GPTModel(vocab_size=1000,
hidden_size=1024,
num_hidden_layers=2,
num_attention_heads=16,
intermediate_size=4 * 1024,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=1024,
type_vocab_size=1,
initializer_range=0.02,
pad_token_id=0,
eos_token_id=7,
bos_token_id=0,
eol_token_id=3,
pp_degree=len(modeling.DPMPPP_MESH_LIST))
model = GPTForPretraining(gpt,
vocab_size=1000,
hidden_size=64,
initializer_range=0.02)
preds = model(tokens, position_ids, attention_mask)
criterion = GPTPretrainingCriterion()
loss = criterion(preds, labels, loss_mask)
optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
feed_vars = {
"inputs": [tokens, position_ids, attention_mask, loss_mask],
"labels": [labels]
}
fetch_vars = {"loss": [loss]}
return train_program, start_program, None, loss, optimizer, feed_vars, fetch_vars
class TestParallelTunerPredict(unittest.TestCase):
def test_tune_predict(self):
flag = False
set_default_distributed_context(DistributedContext())
train_program, start_program, dataloader, loss, optimizer, feed_vars, fetch_vars = get_program_v3(
)
cluster = Cluster()
cluster.gen_default_config_cluster(node_count=1, device_count=8)
dist_context = DistributedContext(train_program, start_program,
optimizer, loss, feed_vars,
fetch_vars, cluster)
dist_context.initialize()
parallel_tuner = ParallelTuner(dist_context,
max_trials=3,
mode="predict")
parallel_tuner.tune()
flag = True
self.assertTrue(flag)
if __name__ == "__main__":
unittest.main()
......@@ -136,6 +136,16 @@ class TestTunableSpace(unittest.TestCase):
self.assertEqual(new_space.variables["int_range"].step, 1)
self.assertEqual(new_space.variables["int_range"].endpoint, False)
def test_expection(self):
space = ts.TunableSpace()
flag = True
try:
val = space.get_value("test")
flag = False
except:
pass
self.assertTrue(flag)
if __name__ == "__main__":
unittest.main()
......@@ -298,14 +298,14 @@ class TransformerDecoder(nn.Layer):
auto.shard_tensor(output, PP_MESH_LIST[0],
[None for i in range(len(output.shape))])
if _global_parallel_strategy == "dp_pp":
auto.shard_tensor(output, DPPP_MESH_LIST[0], ["x"].extends(
[None for i in range(len(output.shape) - 1)]))
auto.shard_tensor(output, DPPP_MESH_LIST[0], ["x"] +
[None for i in range(len(output.shape) - 1)])
if _global_parallel_strategy == "mp_pp":
auto.shard_tensor(output, MPPP_MESH_LIST[0],
[None for i in range(len(output.shape))])
if _global_parallel_strategy == "dp_mp_pp":
auto.shard_tensor(output, DPMPPP_MESH_LIST[0], ["x"].extends(
[None for i in range(len(output.shape) - 1)]))
auto.shard_tensor(output, DPMPPP_MESH_LIST[0], ["x"] +
[None for i in range(len(output.shape) - 1)])
for i, mod in enumerate(self.layers):
if cache is None:
if use_cache:
......@@ -323,8 +323,8 @@ class TransformerDecoder(nn.Layer):
tgt_mask,
use_cache, cache)
auto.shard_tensor(
output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
[None for i in range(len(output.shape) - 1)]))
output, DPPP_MESH_LIST[mod.mesh_idx], ["x"] +
[None for i in range(len(output.shape) - 1)])
elif _global_parallel_strategy == "mp_pp":
output, new_cache = auto.shard_op(
mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
......@@ -362,8 +362,8 @@ class TransformerDecoder(nn.Layer):
tgt_mask,
use_cache, cache)
auto.shard_tensor(
output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
[None for i in range(len(output.shape) - 1)]))
output, DPPP_MESH_LIST[mod.mesh_idx], ["x"] +
[None for i in range(len(output.shape) - 1)])
elif _global_parallel_strategy == "mp_pp":
output = auto.shard_op(
mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
......@@ -378,9 +378,8 @@ class TransformerDecoder(nn.Layer):
output, memory, tgt_mask,
use_cache, cache)
auto.shard_tensor(
output, DPMPPP_MESH_LIST[mod.mesh_idx],
["x"].extends(
[None for i in range(len(output.shape) - 1)]))
output, DPMPPP_MESH_LIST[mod.mesh_idx], ["x"] +
[None for i in range(len(output.shape) - 1)])
else:
output = mod(output,
memory,
......@@ -400,9 +399,9 @@ class TransformerDecoder(nn.Layer):
mod,
DPPP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
use_cache, cache)
auto.shard_tensor(output, DPPP_MESH_LIST[mod.mesh_idx], [
"x"
].extends([None for i in range(len(output.shape) - 1)]))
auto.shard_tensor(
output, DPPP_MESH_LIST[mod.mesh_idx],
["x"] + [None for i in range(len(output.shape) - 1)])
elif _global_parallel_strategy == "mp_pp":
output, new_cache = auto.shard_op(
mod,
......@@ -415,9 +414,9 @@ class TransformerDecoder(nn.Layer):
mod, DPMPPP_MESH_LIST[mod.mesh_idx])(output, memory,
tgt_mask,
use_cache, cache)
auto.shard_tensor(output, DPMPPP_MESH_LIST[mod.mesh_idx], [
"x"
].extends([None for i in range(len(output.shape) - 1)]))
auto.shard_tensor(
output, DPMPPP_MESH_LIST[mod.mesh_idx],
["x"] + [None for i in range(len(output.shape) - 1)])
else:
output, new_cache = mod(output,
memory,
......@@ -682,11 +681,11 @@ class GPTModel(nn.Layer):
auto.shard_tensor(input_ids, PP_MESH_LIST[0],
[None for i in range(len(input_ids.shape))])
if _global_parallel_strategy == "dp_pp":
auto.shard_tensor(input_ids, DPPP_MESH_LIST[0], ["x"].extends(
[None for i in range(len(input_ids.shape) - 1)]))
auto.shard_tensor(input_ids, DPPP_MESH_LIST[0], ["x"] +
[None for i in range(len(input_ids.shape) - 1)])
if _global_parallel_strategy == "dp_mp_pp":
auto.shard_tensor(input_ids, DPMPPP_MESH_LIST[0], ["x"].extends(
[None for i in range(len(input_ids.shape) - 1)]))
auto.shard_tensor(input_ids, DPMPPP_MESH_LIST[0], ["x"] +
[None for i in range(len(input_ids.shape) - 1)])
encoder_outputs = self.decoder(embedding_output,
memory=None,
tgt_mask=attention_mask,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册