Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30b66f03
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30b66f03
编写于
8月 05, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
8月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conflict (#44891)
上级
247002ec
变更
4
展开全部
显示空白变更内容
内联
并排
Showing
4 changed file
with
458 addition
and
456 deletion
+458
-456
python/paddle/distributed/auto_parallel/dist_op.py
python/paddle/distributed/auto_parallel/dist_op.py
+3
-3
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
.../paddle/fluid/tests/unittests/auto_parallel/engine_api.py
+30
-27
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
...n/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
+339
-343
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
.../fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
+86
-83
未找到文件。
python/paddle/distributed/auto_parallel/dist_op.py
浏览文件 @
30b66f03
...
...
@@ -26,6 +26,7 @@ from .dist_attribute import get_op_dist_attr_field_keys
class
DistributedOperator
:
def
__init__
(
self
,
serial_op
,
dist_attr
=
None
):
self
.
_serial_op
=
serial_op
self
.
_serial_inputs
=
{}
...
...
@@ -248,6 +249,7 @@ class DistributedOperator:
class
DistributedModule
:
def
__init__
(
self
,
serial_module
,
dist_attr
=
None
):
self
.
_serial_module
=
serial_module
self
.
_dist_attr
=
dist_attr
...
...
@@ -265,6 +267,4 @@ class DistributedModule:
dist_op
=
DistributedOperator
(
op
,
self
.
_dist_attr
)
dist_op
.
dist_attr
.
mark_annotated_as
(
self
.
_dist_attr
)
default_dist_ctx
.
add_dist_op_for_program
(
dist_op
)
if
isinstance
(
output
,
Variable
):
output
=
[
output
]
return
list
(
output
)
return
output
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
浏览文件 @
30b66f03
...
...
@@ -47,6 +47,7 @@ paddle.seed(44)
class
MyDataset
(
Dataset
):
def
__init__
(
self
,
num_samples
):
super
(
MyDataset
,
self
).
__init__
()
self
.
num_samples
=
num_samples
...
...
@@ -61,6 +62,7 @@ class MyDataset(Dataset):
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
...
...
@@ -69,39 +71,41 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout
=
nn
.
Dropout
(
dropout_ratio
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
input
):
out
=
auto
.
shard_op
(
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
})(
input
)[
0
]
out
=
self
.
linear0
(
inp
ut
)
out
=
auto
.
shard_op
(
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
})(
input
)
out
=
self
.
linear0
(
o
ut
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
auto
.
shard_op
(
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
})(
out
)[
0
]
out
=
auto
.
shard_op
(
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
})(
out
)
out
=
self
.
dropout
(
out
)
out
=
self
.
linear2
(
out
)
return
out
def
train
():
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-08
,
...
...
@@ -119,8 +123,7 @@ def train():
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
engine
=
Engine
(
mlp
,
engine
=
Engine
(
mlp
,
inputs_spec
=
inputs_spec
,
labels_spec
=
labels_spec
,
strategy
=
dist_strategy
)
...
...
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
浏览文件 @
30b66f03
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
浏览文件 @
30b66f03
...
...
@@ -38,6 +38,7 @@ PP_MESH_1 = auto.ProcessMesh([2, 3])
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
...
...
@@ -45,42 +46,51 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
word_embeddings
=
nn
.
Embedding
(
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
def
forward
(
self
,
input
):
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
linear0
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
,
0
]})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear0
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
,
0
]
})
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]
})
w_out
=
self
.
word_embeddings
(
input
)
out
=
self
.
linear0
(
w_out
)
gelu_out
=
F
.
gelu
(
out
,
approximate
=
True
)
...
...
@@ -98,19 +108,22 @@ def mlp_forward(train_program, start_program):
hidden_size
=
1024
sequence_len
=
512
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
batch_size
],
dtype
=
'int32'
)
label
=
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
]})
auto
.
shard_tensor
(
label
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
-
1
,
-
1
]})
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
label
=
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
-
1
]
})
auto
.
shard_tensor
(
label
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
-
1
,
-
1
]
})
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
...
...
@@ -137,8 +150,7 @@ def get_dist_prog(train_program, startup_program, dist_context, rank_id):
complete_train_program
=
completer
.
complete_forward_annotation
(
train_program
)
dist_context
.
block_state
.
parse_forward_blocks
(
complete_train_program
)
params_grads
=
parallelizer
.
_generate_backward
(
complete_train_program
,
params_grads
=
parallelizer
.
_generate_backward
(
complete_train_program
,
startup_program
,
loss
,
parameter_list
=
None
,
...
...
@@ -171,8 +183,7 @@ def check_send_recv_result(dist_main_prog, rank_id):
if
op
.
type
==
"send_v2"
and
"gelu_0.tmp_0@GRAD"
in
op
.
input_arg_names
[
0
]:
send_result
=
True
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
0
]:
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
0
]:
recv_result
=
True
return
send_result
and
recv_result
...
...
@@ -206,6 +217,7 @@ def check_allgather(dist_main_program):
class
TestMLPReshard
(
unittest
.
TestCase
):
def
test_mlp_mppp
(
self
):
train_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
...
...
@@ -230,29 +242,20 @@ class TestMLPReshard(unittest.TestCase):
process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
3
])
with
static
.
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
x
=
auto
.
shard_tensor
(
x
,
x
=
auto
.
shard_tensor
(
x
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
w
=
paddle
.
static
.
data
(
name
=
"w"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
w
=
auto
.
shard_tensor
(
w
,
w
=
auto
.
shard_tensor
(
w
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
-
1
,
-
1
]
})
# y = paddle.distributed.shard_op(paddle.matmul, process_mesh, {
# x.name: [-1, -1],
# w.name: [-1, -1]
# }, **{"x": x,
# "y": w})[0]
y
=
paddle
.
distributed
.
shard_op
(
paddle
.
matmul
,
y
=
paddle
.
distributed
.
shard_op
(
paddle
.
matmul
,
dist_attr
=
{
"process_mesh"
:
process_mesh
,
x
:
{
...
...
@@ -261,7 +264,7 @@ class TestMLPReshard(unittest.TestCase):
w
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
}
})(
x
,
w
)[
0
]
})(
x
,
w
)
rank_id
=
0
dist_context
=
DistributedContext
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录