Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30b66f03
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30b66f03
编写于
8月 05, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
8月 05, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conflict (#44891)
上级
247002ec
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
458 addition
and
456 deletion
+458
-456
python/paddle/distributed/auto_parallel/dist_op.py
python/paddle/distributed/auto_parallel/dist_op.py
+3
-3
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
.../paddle/fluid/tests/unittests/auto_parallel/engine_api.py
+30
-27
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
...n/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
+339
-343
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
.../fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
+86
-83
未找到文件。
python/paddle/distributed/auto_parallel/dist_op.py
浏览文件 @
30b66f03
...
@@ -26,6 +26,7 @@ from .dist_attribute import get_op_dist_attr_field_keys
...
@@ -26,6 +26,7 @@ from .dist_attribute import get_op_dist_attr_field_keys
class
DistributedOperator
:
class
DistributedOperator
:
def
__init__
(
self
,
serial_op
,
dist_attr
=
None
):
def
__init__
(
self
,
serial_op
,
dist_attr
=
None
):
self
.
_serial_op
=
serial_op
self
.
_serial_op
=
serial_op
self
.
_serial_inputs
=
{}
self
.
_serial_inputs
=
{}
...
@@ -248,6 +249,7 @@ class DistributedOperator:
...
@@ -248,6 +249,7 @@ class DistributedOperator:
class
DistributedModule
:
class
DistributedModule
:
def
__init__
(
self
,
serial_module
,
dist_attr
=
None
):
def
__init__
(
self
,
serial_module
,
dist_attr
=
None
):
self
.
_serial_module
=
serial_module
self
.
_serial_module
=
serial_module
self
.
_dist_attr
=
dist_attr
self
.
_dist_attr
=
dist_attr
...
@@ -265,6 +267,4 @@ class DistributedModule:
...
@@ -265,6 +267,4 @@ class DistributedModule:
dist_op
=
DistributedOperator
(
op
,
self
.
_dist_attr
)
dist_op
=
DistributedOperator
(
op
,
self
.
_dist_attr
)
dist_op
.
dist_attr
.
mark_annotated_as
(
self
.
_dist_attr
)
dist_op
.
dist_attr
.
mark_annotated_as
(
self
.
_dist_attr
)
default_dist_ctx
.
add_dist_op_for_program
(
dist_op
)
default_dist_ctx
.
add_dist_op_for_program
(
dist_op
)
if
isinstance
(
output
,
Variable
):
return
output
output
=
[
output
]
return
list
(
output
)
python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py
浏览文件 @
30b66f03
...
@@ -47,6 +47,7 @@ paddle.seed(44)
...
@@ -47,6 +47,7 @@ paddle.seed(44)
class
MyDataset
(
Dataset
):
class
MyDataset
(
Dataset
):
def
__init__
(
self
,
num_samples
):
def
__init__
(
self
,
num_samples
):
super
(
MyDataset
,
self
).
__init__
()
super
(
MyDataset
,
self
).
__init__
()
self
.
num_samples
=
num_samples
self
.
num_samples
=
num_samples
...
@@ -61,6 +62,7 @@ class MyDataset(Dataset):
...
@@ -61,6 +62,7 @@ class MyDataset(Dataset):
class
MLPLayer
(
nn
.
Layer
):
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
hidden_size
=
1024
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
intermediate_size
=
4
*
1024
,
...
@@ -69,43 +71,45 @@ class MLPLayer(nn.Layer):
...
@@ -69,43 +71,45 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
weight_attr
=
paddle
.
ParamAttr
(
mean
=
0.0
,
std
=
initializer_range
))
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
bias_attr
=
None
self
.
linear0
=
nn
.
Linear
(
self
.
linear0
=
nn
.
Linear
(
d_model
,
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
dim_feedforward
,
self
.
linear1
=
nn
.
Linear
(
weight_attr
,
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout
=
nn
.
Dropout
(
dropout_ratio
,
mode
=
"upscale_in_train"
)
self
.
dropout
=
nn
.
Dropout
(
dropout_ratio
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
out
=
auto
.
shard_op
(
out
=
auto
.
shard_op
(
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
self
.
norm
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
})(
input
)[
0
]
PP_MESH_0
})(
input
)
out
=
self
.
linear0
(
inp
ut
)
out
=
self
.
linear0
(
o
ut
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
auto
.
shard_op
(
out
=
auto
.
shard_op
(
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
self
.
linear1
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
})(
out
)[
0
]
PP_MESH_1
})(
out
)
out
=
self
.
dropout
(
out
)
out
=
self
.
dropout
(
out
)
out
=
self
.
linear2
(
out
)
out
=
self
.
linear2
(
out
)
return
out
return
out
def
train
():
def
train
():
mlp
=
MLPLayer
(
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
initializer_range
=
0.02
)
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.00001
,
learning_rate
=
0.00001
,
beta1
=
0.9
,
beta1
=
0.9
,
beta2
=
0.999
,
beta2
=
0.999
,
epsilon
=
1e-08
,
epsilon
=
1e-08
,
grad_clip
=
None
)
grad_clip
=
None
)
dataset
=
MyDataset
(
batch_num
*
batch_size
)
dataset
=
MyDataset
(
batch_num
*
batch_size
)
inputs_spec
=
InputSpec
([
batch_size
,
hidden_size
],
'float32'
,
'x'
)
inputs_spec
=
InputSpec
([
batch_size
,
hidden_size
],
'float32'
,
'x'
)
...
@@ -119,11 +123,10 @@ def train():
...
@@ -119,11 +123,10 @@ def train():
dist_strategy
.
semi_auto
=
True
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
engine
=
Engine
(
engine
=
Engine
(
mlp
,
mlp
,
inputs_spec
=
inputs_spec
,
inputs_spec
=
inputs_spec
,
labels_spec
=
labels_spec
,
labels_spec
=
labels_spec
,
strategy
=
dist_strategy
)
strategy
=
dist_strategy
)
engine
.
prepare
(
optimizer
,
loss
)
engine
.
prepare
(
optimizer
,
loss
)
engine
.
fit
(
dataset
,
engine
.
fit
(
dataset
,
batch_size
=
batch_size
,
batch_size
=
batch_size
,
...
...
python/paddle/fluid/tests/unittests/auto_parallel_gpt_model.py
浏览文件 @
30b66f03
...
@@ -76,26 +76,27 @@ class MultiHeadAttention(nn.Layer):
...
@@ -76,26 +76,27 @@ class MultiHeadAttention(nn.Layer):
if
self
.
fuse
:
if
self
.
fuse
:
assert
self
.
kdim
==
embed_dim
assert
self
.
kdim
==
embed_dim
assert
self
.
vdim
==
embed_dim
assert
self
.
vdim
==
embed_dim
self
.
qkv_proj
=
nn
.
Linear
(
self
.
qkv_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
3
*
embed_dim
,
weight_attr
,
bias_attr
=
bias_attr
)
3
*
embed_dim
,
weight_attr
,
bias_attr
=
bias_attr
)
else
:
else
:
self
.
q_proj
=
nn
.
Linear
(
self
.
q_proj
=
nn
.
Linear
(
embed_dim
,
embed_dim
,
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
bias_attr
=
bias_attr
)
self
.
k_proj
=
nn
.
Linear
(
self
.
kdim
,
self
.
k_proj
=
nn
.
Linear
(
embed_dim
,
self
.
kdim
,
weight_attr
=
weight_attr
,
embed_dim
,
bias_attr
=
bias_attr
)
weight_attr
=
weight_attr
,
self
.
v_proj
=
nn
.
Linear
(
self
.
vdim
,
bias_attr
=
bias_attr
)
embed_dim
,
self
.
v_proj
=
nn
.
Linear
(
weight_attr
=
weight_attr
,
self
.
vdim
,
bias_attr
=
bias_attr
)
embed_dim
,
self
.
out_proj
=
nn
.
Linear
(
embed_dim
,
weight_attr
=
weight_attr
,
embed_dim
,
bias_attr
=
bias_attr
)
weight_attr
=
weight_attr
,
self
.
out_proj
=
nn
.
Linear
(
bias_attr
=
bias_attr
)
embed_dim
,
embed_dim
,
weight_attr
=
weight_attr
,
bias_attr
=
bias_attr
)
def
_fuse_prepare_qkv
(
self
,
query
):
def
_fuse_prepare_qkv
(
self
,
query
):
mix_layer
=
self
.
qkv_proj
(
query
)
mix_layer
=
self
.
qkv_proj
(
query
)
...
@@ -113,33 +114,30 @@ class MultiHeadAttention(nn.Layer):
...
@@ -113,33 +114,30 @@ class MultiHeadAttention(nn.Layer):
"""
"""
q
=
self
.
q_proj
(
query
)
q
=
self
.
q_proj
(
query
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
self
.
q_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
self
.
q_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
self
.
q_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
q_proj
.
weight
,
self
.
q_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
if
isinstance
(
cache
,
self
.
StaticCache
):
if
isinstance
(
cache
,
self
.
StaticCache
):
...
@@ -167,62 +165,56 @@ class MultiHeadAttention(nn.Layer):
...
@@ -167,62 +165,56 @@ class MultiHeadAttention(nn.Layer):
"""
"""
k
=
self
.
k_proj
(
key
)
k
=
self
.
k_proj
(
key
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
self
.
k_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
self
.
k_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
self
.
k_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
k_proj
.
weight
,
self
.
k_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
v
=
self
.
v_proj
(
value
)
v
=
self
.
v_proj
(
value
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
self
.
v_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
self
.
v_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
self
.
v_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
v_proj
.
weight
,
self
.
v_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
...
@@ -276,17 +268,18 @@ class MultiHeadAttention(nn.Layer):
...
@@ -276,17 +268,18 @@ class MultiHeadAttention(nn.Layer):
else
:
else
:
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
use_cache
,
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
use_cache
,
cache
)
cache
)
product
=
layers
.
matmul
(
product
=
layers
.
matmul
(
x
=
q
,
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
if
attn_mask
is
not
None
:
product
=
product
+
attn_mask
product
=
product
+
attn_mask
weights
=
F
.
softmax
(
product
)
weights
=
F
.
softmax
(
product
)
if
self
.
dropout
:
if
self
.
dropout
:
weights
=
F
.
dropout
(
weights
=
F
.
dropout
(
weights
,
weights
,
self
.
dropout
,
self
.
dropout
,
training
=
self
.
training
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
mode
=
"upscale_in_train"
)
out
=
tensor
.
matmul
(
weights
,
v
)
out
=
tensor
.
matmul
(
weights
,
v
)
# combine heads
# combine heads
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
...
@@ -294,33 +287,30 @@ class MultiHeadAttention(nn.Layer):
...
@@ -294,33 +287,30 @@ class MultiHeadAttention(nn.Layer):
# project to output
# project to output
out
=
self
.
out_proj
(
out
)
out
=
self
.
out_proj
(
out
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
self
.
out_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
self
.
out_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
self
.
out_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
out_proj
.
weight
,
self
.
out_proj
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
outs
=
[
out
]
outs
=
[
out
]
if
self
.
need_weights
:
if
self
.
need_weights
:
outs
.
append
(
weights
)
outs
.
append
(
weights
)
...
@@ -362,36 +352,37 @@ class TransformerDecoder(nn.Layer):
...
@@ -362,36 +352,37 @@ class TransformerDecoder(nn.Layer):
new_caches
=
[]
new_caches
=
[]
self
.
checkpoints
=
[]
self
.
checkpoints
=
[]
if
_global_parallel_strategy
==
"pp"
:
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
PP_MESH_LIST
[
0
],
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
"dims_mapping"
:
})
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
if
_global_parallel_strategy
==
"mp_pp"
:
if
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
"dims_mapping"
:
[
-
1
]
+
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
for
i
,
mod
in
enumerate
(
self
.
layers
):
for
i
,
mod
in
enumerate
(
self
.
layers
):
if
cache
is
None
:
if
cache
is
None
:
if
use_cache
:
if
use_cache
:
...
@@ -400,11 +391,12 @@ class TransformerDecoder(nn.Layer):
...
@@ -400,11 +391,12 @@ class TransformerDecoder(nn.Layer):
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
})
...
@@ -413,11 +405,12 @@ class TransformerDecoder(nn.Layer):
...
@@ -413,11 +405,12 @@ class TransformerDecoder(nn.Layer):
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -426,11 +419,12 @@ class TransformerDecoder(nn.Layer):
...
@@ -426,11 +419,12 @@ class TransformerDecoder(nn.Layer):
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -439,11 +433,12 @@ class TransformerDecoder(nn.Layer):
...
@@ -439,11 +433,12 @@ class TransformerDecoder(nn.Layer):
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -456,41 +451,47 @@ class TransformerDecoder(nn.Layer):
...
@@ -456,41 +451,47 @@ class TransformerDecoder(nn.Layer):
new_caches
.
append
(
new_cache
)
new_caches
.
append
(
new_cache
)
else
:
else
:
if
_global_parallel_strategy
==
"pp"
:
if
_global_parallel_strategy
==
"pp"
:
output
=
auto
.
shard_op
(
output
=
auto
.
shard_op
(
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
PP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
[
-
1
for
i
in
range
(
len
(
output
.
shape
))]
})
})
elif
_global_parallel_strategy
==
"dp_pp"
:
elif
_global_parallel_strategy
==
"dp_pp"
:
output
=
auto
.
shard_op
(
output
=
auto
.
shard_op
(
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
DPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
output
=
auto
.
shard_op
(
output
=
auto
.
shard_op
(
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
MPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
-
1
]
+
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -499,11 +500,12 @@ class TransformerDecoder(nn.Layer):
...
@@ -499,11 +500,12 @@ class TransformerDecoder(nn.Layer):
mod
,
mod
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
[
0
]
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
[
0
]
+
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -517,8 +519,9 @@ class TransformerDecoder(nn.Layer):
...
@@ -517,8 +519,9 @@ class TransformerDecoder(nn.Layer):
if
_global_parallel_strategy
==
"pp"
:
if
_global_parallel_strategy
==
"pp"
:
output
,
new_cache
=
auto
.
shard_op
(
output
,
new_cache
=
auto
.
shard_op
(
mod
,
mod
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]})(
dist_attr
=
{
"process_mesh"
:
PP_MESH_LIST
[
mod
.
mesh_idx
]
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
})(
output
,
memory
,
tgt_mask
,
use_cache
,
cache
)
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
...
@@ -535,7 +538,8 @@ class TransformerDecoder(nn.Layer):
...
@@ -535,7 +538,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -548,7 +552,8 @@ class TransformerDecoder(nn.Layer):
...
@@ -548,7 +552,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
"dims_mapping"
:
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
-
1
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -561,7 +566,8 @@ class TransformerDecoder(nn.Layer):
...
@@ -561,7 +566,8 @@ class TransformerDecoder(nn.Layer):
auto
.
shard_tensor
(
auto
.
shard_tensor
(
output
,
output
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
mod
.
mesh_idx
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
[
0
]
+
[
-
1
for
i
in
range
(
len
(
output
.
shape
)
-
1
)]
})
})
...
@@ -619,17 +625,20 @@ class TransformerDecoderLayer(nn.Layer):
...
@@ -619,17 +625,20 @@ class TransformerDecoderLayer(nn.Layer):
self
.
normalize_before
=
normalize_before
self
.
normalize_before
=
normalize_before
weight_attrs
=
_convert_param_attr_to_list
(
weight_attr
,
3
)
weight_attrs
=
_convert_param_attr_to_list
(
weight_attr
,
3
)
bias_attrs
=
_convert_param_attr_to_list
(
bias_attr
,
3
)
bias_attrs
=
_convert_param_attr_to_list
(
bias_attr
,
3
)
self
.
self_attn
=
MultiHeadAttention
(
self
.
self_attn
=
MultiHeadAttention
(
d_model
,
d_model
,
nhead
,
nhead
,
dropout
=
attn_dropout
,
dropout
=
attn_dropout
,
weight_attr
=
weight_attrs
[
0
],
weight_attr
=
weight_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
],
bias_attr
=
bias_attrs
[
0
],
mesh_idx
=
self
.
mesh_idx
)
mesh_idx
=
self
.
mesh_idx
)
self
.
linear1
=
nn
.
Linear
(
d_model
,
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
weight_attrs
[
2
],
self
.
linear2
=
nn
.
Linear
(
bias_attr
=
bias_attrs
[
2
])
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
norm1
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm1
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm2
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
norm2
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout1
=
nn
.
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout1
=
nn
.
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
...
@@ -652,72 +661,65 @@ class TransformerDecoderLayer(nn.Layer):
...
@@ -652,72 +661,65 @@ class TransformerDecoderLayer(nn.Layer):
if
self
.
normalize_before
:
if
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
tgt
=
self
.
norm2
(
tgt
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
self
.
linear1
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
self
.
linear1
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
self
.
linear1
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
0
]
"dims_mapping"
:
[
-
1
,
0
]
})
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
self
.
linear1
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
-
1
,
1
]
"dims_mapping"
:
[
-
1
,
1
]
})
})
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
self
.
linear2
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
self
.
linear2
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
self
.
linear2
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"process_mesh"
:
MPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
self
.
linear2
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
DPMPPP_MESH_LIST
[
self
.
mesh_idx
],
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
tgt
=
self
.
dropout2
(
tgt
=
self
.
dropout2
(
self
.
linear2
(
F
.
gelu
(
self
.
linear2
(
F
.
gelu
(
self
.
linear1
(
tgt
),
approximate
=
True
)))
self
.
linear1
(
tgt
),
approximate
=
True
)))
tgt
=
residual
+
tgt
tgt
=
residual
+
tgt
if
not
self
.
normalize_before
:
if
not
self
.
normalize_before
:
tgt
=
self
.
norm2
(
tgt
)
tgt
=
self
.
norm2
(
tgt
)
return
tgt
if
use_cache
is
False
else
(
tgt
,
incremental_cache
)
return
tgt
if
use_cache
is
False
else
(
tgt
,
incremental_cache
)
def
gen_cache
(
self
,
memory
):
def
gen_cache
(
self
,
memory
):
incremental_cache
=
self
.
self_attn
.
gen_cache
(
incremental_cache
=
self
.
self_attn
.
gen_cache
(
memory
,
memory
,
type
=
self
.
self_attn
.
Cache
)
type
=
self
.
self_attn
.
Cache
)
return
incremental_cache
return
incremental_cache
...
@@ -737,17 +739,15 @@ class GPTEmbeddings(nn.Layer):
...
@@ -737,17 +739,15 @@ class GPTEmbeddings(nn.Layer):
self
.
word_embeddings
=
nn
.
Embedding
(
self
.
word_embeddings
=
nn
.
Embedding
(
vocab_size
,
vocab_size
,
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
mean
=
0.0
,
std
=
initializer_range
)))
self
.
position_embeddings
=
nn
.
Embedding
(
self
.
position_embeddings
=
nn
.
Embedding
(
max_position_embeddings
,
max_position_embeddings
,
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
paddle
.
ParamAttr
(
name
=
"pos_embeddings"
,
name
=
"pos_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
mean
=
0.0
,
std
=
initializer_range
)))
self
.
dropout
=
nn
.
Dropout
(
hidden_dropout_prob
)
self
.
dropout
=
nn
.
Dropout
(
hidden_dropout_prob
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
):
def
forward
(
self
,
input_ids
,
position_ids
=
None
):
...
@@ -757,33 +757,29 @@ class GPTEmbeddings(nn.Layer):
...
@@ -757,33 +757,29 @@ class GPTEmbeddings(nn.Layer):
position_ids
=
seq_length
-
ones
position_ids
=
seq_length
-
ones
input_embedings
=
self
.
word_embeddings
(
input_ids
)
input_embedings
=
self
.
word_embeddings
(
input_ids
)
if
_global_parallel_strategy
==
"mp"
:
if
_global_parallel_strategy
==
"mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
self
.
word_embeddings
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp"
:
elif
_global_parallel_strategy
==
"dp_mp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
self
.
word_embeddings
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"mp_pp"
:
elif
_global_parallel_strategy
==
"mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
self
.
word_embeddings
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"process_mesh"
:
MPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
elif
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
self
.
word_embeddings
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
[
1
,
-
1
]
"dims_mapping"
:
[
1
,
-
1
]
})
})
position_embeddings
=
self
.
position_embeddings
(
position_ids
)
position_embeddings
=
self
.
position_embeddings
(
position_ids
)
embeddings
=
input_embedings
+
position_embeddings
embeddings
=
input_embedings
+
position_embeddings
embeddings
=
self
.
dropout
(
embeddings
)
embeddings
=
self
.
dropout
(
embeddings
)
...
@@ -821,9 +817,10 @@ class GPTModel(nn.Layer):
...
@@ -821,9 +817,10 @@ class GPTModel(nn.Layer):
self
.
pipline_mode
=
(
pp_degree
is
not
None
and
pp_degree
>
1
)
self
.
pipline_mode
=
(
pp_degree
is
not
None
and
pp_degree
>
1
)
if
self
.
pipline_mode
:
if
self
.
pipline_mode
:
self
.
layer_per_stage
=
num_hidden_layers
//
pp_degree
self
.
layer_per_stage
=
num_hidden_layers
//
pp_degree
self
.
embeddings
=
GPTEmbeddings
(
self
.
embeddings
=
GPTEmbeddings
(
vocab_size
,
hidden_size
,
vocab_size
,
hidden_size
,
hidden_dropout_prob
,
hidden_dropout_prob
,
max_position_embeddings
,
type_vocab_size
,
self
.
initializer_range
)
max_position_embeddings
,
type_vocab_size
,
self
.
initializer_range
)
decoder_layers
=
nn
.
LayerList
()
decoder_layers
=
nn
.
LayerList
()
for
i
in
range
(
num_hidden_layers
):
for
i
in
range
(
num_hidden_layers
):
mesh_index
=
None
mesh_index
=
None
...
@@ -831,25 +828,23 @@ class GPTModel(nn.Layer):
...
@@ -831,25 +828,23 @@ class GPTModel(nn.Layer):
if
self
.
layer_per_stage
is
not
None
:
if
self
.
layer_per_stage
is
not
None
:
mesh_index
=
i
//
self
.
layer_per_stage
mesh_index
=
i
//
self
.
layer_per_stage
decoder_layers
.
append
(
decoder_layers
.
append
(
DecoderLayer
(
DecoderLayer
(
d_model
=
hidden_size
,
d_model
=
hidden_size
,
nhead
=
num_attention_heads
,
nhead
=
num_attention_heads
,
dim_feedforward
=
intermediate_size
,
dim_feedforward
=
intermediate_size
,
dropout
=
hidden_dropout_prob
,
dropout
=
hidden_dropout_prob
,
activation
=
hidden_act
,
activation
=
hidden_act
,
attn_dropout
=
attention_probs_dropout_prob
,
attn_dropout
=
attention_probs_dropout_prob
,
act_dropout
=
hidden_dropout_prob
,
act_dropout
=
hidden_dropout_prob
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
self
.
initializer_range
)),
mean
=
0.0
,
std
=
self
.
initializer_range
)),
bias_attr
=
None
,
bias_attr
=
None
,
mesh_idx
=
mesh_index
))
mesh_idx
=
mesh_index
))
Decoder
=
TransformerDecoder
Decoder
=
TransformerDecoder
self
.
decoder
=
Decoder
(
self
.
decoder
=
Decoder
(
decoder_layers
,
decoder_layers
,
num_hidden_layers
,
num_hidden_layers
,
norm
=
"LayerNorm"
,
norm
=
"LayerNorm"
,
hidden_size
=
hidden_size
)
hidden_size
=
hidden_size
)
self
.
checkpoints
=
[]
self
.
checkpoints
=
[]
def
forward
(
self
,
def
forward
(
self
,
...
@@ -863,44 +858,44 @@ class GPTModel(nn.Layer):
...
@@ -863,44 +858,44 @@ class GPTModel(nn.Layer):
past_length
=
0
past_length
=
0
if
cache
is
not
None
:
if
cache
is
not
None
:
past_length
=
paddle
.
shape
(
cache
[
0
].
k
)[
-
2
]
past_length
=
paddle
.
shape
(
cache
[
0
].
k
)[
-
2
]
position_ids
=
paddle
.
arange
(
position_ids
=
paddle
.
arange
(
past_length
,
past_length
,
paddle
.
shape
(
input_ids
)[
-
1
]
+
paddle
.
shape
(
input_ids
)[
-
1
]
+
past_length
,
past_length
,
dtype
=
'int64'
)
dtype
=
'int64'
)
position_ids
=
position_ids
.
unsqueeze
(
0
)
position_ids
=
position_ids
.
unsqueeze
(
0
)
position_ids
=
paddle
.
fluid
.
layers
.
expand_as
(
position_ids
,
position_ids
=
paddle
.
fluid
.
layers
.
expand_as
(
input_ids
)
position_ids
,
input_ids
)
embedding_output
=
self
.
embeddings
(
embedding_output
=
self
.
embeddings
(
input_ids
=
input_ids
,
input_ids
=
input_ids
,
position_ids
=
position_ids
)
position_ids
=
position_ids
)
if
_global_parallel_strategy
==
"pp"
:
if
_global_parallel_strategy
==
"pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
input_ids
,
input_ids
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
PP_MESH_LIST
[
0
],
PP_MESH_LIST
[
0
],
"dims_mapping"
:
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
))]
"dims_mapping"
:
})
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
))]
})
if
_global_parallel_strategy
==
"dp_pp"
:
if
_global_parallel_strategy
==
"dp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
input_ids
,
input_ids
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPPP_MESH_LIST
[
0
],
DPPP_MESH_LIST
[
0
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
})
if
_global_parallel_strategy
==
"dp_mp_pp"
:
if
_global_parallel_strategy
==
"dp_mp_pp"
:
auto
.
shard_tensor
(
auto
.
shard_tensor
(
input_ids
,
input_ids
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
"process_mesh"
:
DPMPPP_MESH_LIST
[
0
],
DPMPPP_MESH_LIST
[
0
],
"dims_mapping"
:
"dims_mapping"
:
[
0
]
+
[
0
]
+
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
[
-
1
for
i
in
range
(
len
(
input_ids
.
shape
)
-
1
)]
})
})
encoder_outputs
=
self
.
decoder
(
encoder_outputs
=
self
.
decoder
(
embedding_output
,
embedding_output
,
memory
=
None
,
memory
=
None
,
tgt_mask
=
attention_mask
,
tgt_mask
=
attention_mask
,
use_cache
=
use_cache
,
use_cache
=
use_cache
,
cache
=
cache
)
cache
=
cache
)
self
.
checkpoints
.
extend
(
self
.
decoder
.
checkpoints
)
self
.
checkpoints
.
extend
(
self
.
decoder
.
checkpoints
)
return
encoder_outputs
return
encoder_outputs
...
@@ -912,19 +907,19 @@ class GPTForPretraining(nn.Layer):
...
@@ -912,19 +907,19 @@ class GPTForPretraining(nn.Layer):
"""
"""
def
__init__
(
def
__init__
(
self
,
self
,
gpt
,
gpt
,
vocab_size
=
50304
,
vocab_size
=
50304
,
hidden_size
=
768
,
hidden_size
=
768
,
initializer_range
=
0.02
,
):
initializer_range
=
0.02
,
):
super
(
GPTForPretraining
,
self
).
__init__
()
super
(
GPTForPretraining
,
self
).
__init__
()
self
.
output_embeddings
=
nn
.
Embedding
(
self
.
output_embeddings
=
nn
.
Embedding
(
vocab_size
,
vocab_size
,
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
paddle
.
ParamAttr
(
name
=
"output_embeddings"
,
name
=
"output_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
mean
=
0.0
,
std
=
initializer_range
)))
self
.
gpt
=
gpt
self
.
gpt
=
gpt
def
forward
(
self
,
def
forward
(
self
,
...
@@ -943,8 +938,9 @@ class GPTForPretraining(nn.Layer):
...
@@ -943,8 +938,9 @@ class GPTForPretraining(nn.Layer):
encoder_outputs
,
cached_kvs
=
outputs
[:
2
]
encoder_outputs
,
cached_kvs
=
outputs
[:
2
]
else
:
else
:
encoder_outputs
=
outputs
encoder_outputs
=
outputs
logits
=
paddle
.
matmul
(
logits
=
paddle
.
matmul
(
encoder_outputs
,
encoder_outputs
,
self
.
output_embeddings
.
weight
,
transpose_y
=
True
)
self
.
output_embeddings
.
weight
,
transpose_y
=
True
)
if
use_cache
:
if
use_cache
:
return
logits
,
cached_kvs
return
logits
,
cached_kvs
else
:
else
:
...
...
python/paddle/fluid/tests/unittests/test_auto_parallel_reshard_mppp.py
浏览文件 @
30b66f03
...
@@ -38,6 +38,7 @@ PP_MESH_1 = auto.ProcessMesh([2, 3])
...
@@ -38,6 +38,7 @@ PP_MESH_1 = auto.ProcessMesh([2, 3])
class
MLPLayer
(
nn
.
Layer
):
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
hidden_size
=
1024
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
intermediate_size
=
4
*
1024
,
...
@@ -45,42 +46,51 @@ class MLPLayer(nn.Layer):
...
@@ -45,42 +46,51 @@ class MLPLayer(nn.Layer):
super
(
MLPLayer
,
self
).
__init__
()
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
weight_attr
=
paddle
.
ParamAttr
(
mean
=
0.0
,
std
=
initializer_range
))
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
bias_attr
=
None
self
.
word_embeddings
=
nn
.
Embedding
(
self
.
word_embeddings
=
nn
.
Embedding
(
hidden_size
,
hidden_size
,
hidden_size
,
hidden_size
,
weight_attr
=
paddle
.
ParamAttr
(
weight_attr
=
paddle
.
ParamAttr
(
name
=
"word_embeddings"
,
name
=
"word_embeddings"
,
initializer
=
nn
.
initializer
.
Normal
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
)))
mean
=
0.0
,
std
=
initializer_range
)))
self
.
linear0
=
nn
.
Linear
(
d_model
,
self
.
linear0
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
weight_attr
,
self
.
linear1
=
nn
.
Linear
(
bias_attr
=
bias_attr
)
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
self
.
linear2
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear2
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
auto
.
shard_tensor
(
auto
.
shard_tensor
(
self
.
word_embeddings
.
weight
,
self
.
word_embeddings
.
weight
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
"process_mesh"
:
PP_MESH_0
,
"dims_mapping"
:
[
0
,
-
1
]})
"dims_mapping"
:
[
0
,
-
1
]
auto
.
shard_tensor
(
})
self
.
linear0
.
weight
,
auto
.
shard_tensor
(
self
.
linear0
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
dist_attr
=
{
"dims_mapping"
:
[
-
1
,
0
]})
"process_mesh"
:
PP_MESH_0
,
auto
.
shard_tensor
(
"dims_mapping"
:
[
-
1
,
0
]
self
.
linear1
.
weight
,
})
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
auto
.
shard_tensor
(
self
.
linear1
.
weight
,
"dims_mapping"
:
[
0
,
-
1
]})
dist_attr
=
{
auto
.
shard_tensor
(
"process_mesh"
:
PP_MESH_1
,
self
.
linear2
.
weight
,
"dims_mapping"
:
[
0
,
-
1
]
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
})
"dims_mapping"
:
[
0
,
-
1
]})
auto
.
shard_tensor
(
self
.
linear2
.
weight
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
"dims_mapping"
:
[
0
,
-
1
]
})
w_out
=
self
.
word_embeddings
(
input
)
w_out
=
self
.
word_embeddings
(
input
)
out
=
self
.
linear0
(
w_out
)
out
=
self
.
linear0
(
w_out
)
gelu_out
=
F
.
gelu
(
out
,
approximate
=
True
)
gelu_out
=
F
.
gelu
(
out
,
approximate
=
True
)
...
@@ -98,21 +108,24 @@ def mlp_forward(train_program, start_program):
...
@@ -98,21 +108,24 @@ def mlp_forward(train_program, start_program):
hidden_size
=
1024
hidden_size
=
1024
sequence_len
=
512
sequence_len
=
512
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
batch_size
],
dtype
=
'int32'
)
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
batch_size
],
dtype
=
'int32'
)
label
=
static
.
data
(
label
=
static
.
data
(
name
=
"label"
,
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
PP_MESH_0
,
auto
.
shard_tensor
(
input
,
"dims_mapping"
:
[
-
1
]})
dist_attr
=
{
auto
.
shard_tensor
(
"process_mesh"
:
PP_MESH_0
,
label
,
"dims_mapping"
:
[
-
1
]
dist_attr
=
{
"process_mesh"
:
PP_MESH_1
,
})
"dims_mapping"
:
[
-
1
,
-
1
]})
auto
.
shard_tensor
(
label
,
dist_attr
=
{
mlp
=
MLPLayer
(
"process_mesh"
:
PP_MESH_1
,
hidden_size
=
hidden_size
,
"dims_mapping"
:
[
-
1
,
-
1
]
intermediate_size
=
4
*
hidden_size
,
})
initializer_range
=
0.02
)
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
predict
=
mlp
(
input
)
predict
=
mlp
(
input
)
error_cost
=
paddle
.
nn
.
functional
.
square_error_cost
(
predict
,
label
)
error_cost
=
paddle
.
nn
.
functional
.
square_error_cost
(
predict
,
label
)
...
@@ -137,13 +150,12 @@ def get_dist_prog(train_program, startup_program, dist_context, rank_id):
...
@@ -137,13 +150,12 @@ def get_dist_prog(train_program, startup_program, dist_context, rank_id):
complete_train_program
=
completer
.
complete_forward_annotation
(
complete_train_program
=
completer
.
complete_forward_annotation
(
train_program
)
train_program
)
dist_context
.
block_state
.
parse_forward_blocks
(
complete_train_program
)
dist_context
.
block_state
.
parse_forward_blocks
(
complete_train_program
)
params_grads
=
parallelizer
.
_generate_backward
(
params_grads
=
parallelizer
.
_generate_backward
(
complete_train_program
,
complete_train_program
,
startup_program
,
startup_program
,
loss
,
loss
,
parameter_list
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
no_grad_set
=
None
,
callbacks
=
None
)
callbacks
=
None
)
# logical partition
# logical partition
partitioner
=
Partitioner
(
dist_context
,
rank_id
)
partitioner
=
Partitioner
(
dist_context
,
rank_id
)
...
@@ -171,8 +183,7 @@ def check_send_recv_result(dist_main_prog, rank_id):
...
@@ -171,8 +183,7 @@ def check_send_recv_result(dist_main_prog, rank_id):
if
op
.
type
==
"send_v2"
and
"gelu_0.tmp_0@GRAD"
in
op
.
input_arg_names
[
if
op
.
type
==
"send_v2"
and
"gelu_0.tmp_0@GRAD"
in
op
.
input_arg_names
[
0
]:
0
]:
send_result
=
True
send_result
=
True
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
if
op
.
type
==
"recv_v2"
and
"gelu_0.tmp_0"
in
op
.
output_arg_names
[
0
]:
0
]:
recv_result
=
True
recv_result
=
True
return
send_result
and
recv_result
return
send_result
and
recv_result
...
@@ -206,6 +217,7 @@ def check_allgather(dist_main_program):
...
@@ -206,6 +217,7 @@ def check_allgather(dist_main_program):
class
TestMLPReshard
(
unittest
.
TestCase
):
class
TestMLPReshard
(
unittest
.
TestCase
):
def
test_mlp_mppp
(
self
):
def
test_mlp_mppp
(
self
):
train_program
=
paddle
.
static
.
Program
()
train_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
...
@@ -230,38 +242,29 @@ class TestMLPReshard(unittest.TestCase):
...
@@ -230,38 +242,29 @@ class TestMLPReshard(unittest.TestCase):
process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
3
])
process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
3
])
with
static
.
program_guard
(
train_program
,
startup_program
):
with
static
.
program_guard
(
train_program
,
startup_program
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
x
=
auto
.
shard_tensor
(
x
=
auto
.
shard_tensor
(
x
,
x
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
"dims_mapping"
:
[
0
,
-
1
]
})
})
w
=
paddle
.
static
.
data
(
name
=
"w"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
w
=
paddle
.
static
.
data
(
name
=
"w"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
w
=
auto
.
shard_tensor
(
w
=
auto
.
shard_tensor
(
w
,
w
,
dist_attr
=
{
dist_attr
=
{
"process_mesh"
:
process_mesh
,
"process_mesh"
:
process_mesh
,
"dims_mapping"
:
[
-
1
,
-
1
]
"dims_mapping"
:
[
-
1
,
-
1
]
})
})
y
=
paddle
.
distributed
.
shard_op
(
paddle
.
matmul
,
# y = paddle.distributed.shard_op(paddle.matmul, process_mesh, {
dist_attr
=
{
# x.name: [-1, -1],
"process_mesh"
:
process_mesh
,
# w.name: [-1, -1]
x
:
{
# }, **{"x": x,
"dims_mapping"
:
[
-
1
,
-
1
]
# "y": w})[0]
},
w
:
{
y
=
paddle
.
distributed
.
shard_op
(
"dims_mapping"
:
[
-
1
,
-
1
]
paddle
.
matmul
,
}
dist_attr
=
{
})(
x
,
w
)
"process_mesh"
:
process_mesh
,
x
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
},
w
:
{
"dims_mapping"
:
[
-
1
,
-
1
]
}
})(
x
,
w
)[
0
]
rank_id
=
0
rank_id
=
0
dist_context
=
DistributedContext
()
dist_context
=
DistributedContext
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录