Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3099a8f3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3099a8f3
编写于
10月 23, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/paddle
into add-reshape-reuse-input
test=develop
上级
6447b69a
96e9b658
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
289 addition
and
251 deletion
+289
-251
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+5
-11
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+12
-3
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+17
-16
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+38
-27
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+5
-3
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+187
-168
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+17
-14
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+2
-2
python/paddle/fluid/tests/unittests/test_slice_var.py
python/paddle/fluid/tests/unittests/test_slice_var.py
+0
-1
未找到文件。
paddle/fluid/framework/op_desc.cc
浏览文件 @
3099a8f3
...
...
@@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
}
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
// There are a few places that var type can be set.
// When VarDesc is created, default set to LOD_TENSOR.
// When output variable is created, default is defaut set to LOD_TENSOR.
// We limit here to be the only place that operator defines its customized
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
}
else
{
// all output type is LoDTensor by default
VLOG
(
10
)
<<
this
->
Type
()
<<
" has not registered InferVarType. Set output variables to "
"LOD_TENSOR"
;
for
(
auto
&
out_pair
:
this
->
outputs_
)
{
for
(
auto
&
out_var_name
:
out_pair
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
}
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
3099a8f3
...
...
@@ -324,10 +324,19 @@ class LayerHelper(object):
raise
ValueError
(
"no Parameter name %s found"
%
name
)
return
param
def
create_tmp_variable
(
self
,
dtype
,
stop_gradient
=
False
):
def
create_variable_for_type_inference
(
self
,
dtype
,
stop_gradient
=
False
):
"""Create a temporary variable that should be type inferred layer.
Note:
The default type will be set to LOD_TENSOR. However, when
the var is used as operator output, its type will be updated
based on operator's `VarTypeInference` implementation in
infer_var_type.
"""
return
self
.
main_program
.
current_block
().
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
'tmp'
])),
dtype
=
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
stop_gradient
)
...
...
@@ -388,7 +397,7 @@ class LayerHelper(object):
b
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
input_var
],
...
...
@@ -414,7 +423,7 @@ class LayerHelper(object):
tmp
=
input_var
# NOTE(dzhwinter): some activation support inplace compution.
if
not
core
.
IsInplace
(
act_type
):
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
3099a8f3
...
...
@@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0):
"""
helper
=
LayerHelper
(
'split_lod_tensor'
,
**
locals
())
out_true
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_true
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'split_lod_tensor'
,
inputs
=
{
...
...
@@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
"""
helper
=
LayerHelper
(
'merge_lod_tensor'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
in_true
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
in_true
.
dtype
)
helper
.
append_op
(
type
=
'merge_lod_tensor'
,
inputs
=
{
'X'
:
x
,
...
...
@@ -524,7 +524,7 @@ class StaticRNN(object):
if
not
isinstance
(
o
,
Variable
):
raise
TypeError
(
"step output takes a Variable"
)
tmp_o
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
o
.
dtype
)
tmp_o
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
o
.
dtype
)
self
.
helper
.
append_op
(
type
=
'rnn_memory_helper'
,
inputs
=
{
'X'
:
[
o
]},
...
...
@@ -606,7 +606,8 @@ class StaticRNN(object):
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
assert
isinstance
(
mem_var
,
Variable
)
new_mem
=
self
.
helper
.
create_tmp_variable
(
dtype
=
mem_var
.
dtype
)
new_mem
=
self
.
helper
.
create_variable_for_type_inference
(
dtype
=
mem_var
.
dtype
)
rnn_block
.
append_op
(
type
=
'rnn_memory_helper'
,
...
...
@@ -813,7 +814,7 @@ def max_sequence_len(rank_table):
${out_comment}.
"""
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
res
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
res
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"max_sequence_len"
,
inputs
=
{
"RankTable"
:
rank_table
},
...
...
@@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table):
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
"""
helper
=
LayerHelper
(
"array_to_lod_tensor"
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"array_to_lod_tensor"
,
inputs
=
{
'X'
:
x
,
...
...
@@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True):
"""
helper
=
LayerHelper
(
"increment"
,
**
locals
())
if
not
in_place
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
x
helper
.
append_op
(
...
...
@@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored):
"""
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
attrs
=
dict
()
...
...
@@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored):
"""
helper
=
LayerHelper
(
"equal"
,
**
locals
())
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
helper
.
append_op
(
...
...
@@ -1098,7 +1099,7 @@ def array_read(array, i):
array
,
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
raise
TypeError
(
"array should be tensor array vairable"
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
array
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
array
.
dtype
)
helper
.
append_op
(
type
=
'read_from_array'
,
inputs
=
{
'X'
:
[
array
],
...
...
@@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table):
usage.
"""
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'shrink_rnn_memory'
,
inputs
=
{
'X'
:
[
x
],
...
...
@@ -1170,7 +1171,7 @@ def array_length(array):
"""
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int64'
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int64'
)
tmp
.
stop_gradient
=
True
helper
.
append_op
(
type
=
'lod_array_length'
,
inputs
=
{
'X'
:
[
array
]},
outputs
=
{
'Out'
:
[
tmp
]})
...
...
@@ -1590,7 +1591,7 @@ class DynamicRNN(object):
self
.
mem_dict
=
dict
()
self
.
output_array
=
[]
self
.
outputs
=
[]
self
.
cond
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
self
.
cond
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
self
.
cond
.
stop_gradient
=
False
self
.
while_op
=
While
(
self
.
cond
)
self
.
input_array
=
[]
...
...
@@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
helper
.
is_instance
(
'x'
,
Variable
)
helper
.
is_instance
(
'rank_table'
,
Variable
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'reorder_lod_tensor_by_rank'
,
inputs
=
{
'X'
:
[
x
],
...
...
@@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored):
"""
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
elif
not
isinstance
(
cond
,
Variable
):
raise
TypeError
(
"cond takes a variable"
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
3099a8f3
...
...
@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
# Assign target label to anchors
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_bbox
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
loc_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
score_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_label
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_bbox
=
helper
.
create_variable_for_type_inference
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
type
=
"rpn_target_assign"
,
inputs
=
{
...
...
@@ -282,7 +283,8 @@ def detection_output(loc,
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
.
stop_gradient
=
True
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
nmsed_outs
=
helper
.
create_variable_for_type_inference
(
dtype
=
decoded_box
.
dtype
)
helper
.
append_op
(
type
=
"multiclass_nms"
,
inputs
=
{
'Scores'
:
scores
,
...
...
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
"""
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -351,7 +353,8 @@ def box_coder(prior_box,
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
if
name
is
None
:
output_box
=
helper
.
create_tmp_variable
(
dtype
=
prior_box
.
dtype
)
output_box
=
helper
.
create_variable_for_type_inference
(
dtype
=
prior_box
.
dtype
)
else
:
output_box
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
...
...
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
"""
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
if
name
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
else
:
output
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
...
...
@@ -450,7 +453,7 @@ def detection_map(detect_res,
helper
=
LayerHelper
(
"detection_map"
,
**
locals
())
def
__create_var
(
type
):
return
helper
.
create_
tmp_variabl
e
(
dtype
=
type
)
return
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
type
)
map_out
=
__create_var
(
'float32'
)
accum_pos_count_out
=
out_states
[
0
]
if
out_states
else
__create_var
(
'int32'
)
...
...
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
"""
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_tmp_variable
(
dtype
=
dist_matrix
.
dtype
)
match_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_variable_for_type_inference
(
dtype
=
dist_matrix
.
dtype
)
helper
.
append_op
(
type
=
'bipartite_match'
,
inputs
=
{
'DistMat'
:
dist_matrix
},
...
...
@@ -644,8 +648,8 @@ def target_assign(input,
gt, matched_indices, mismatch_value=0)
"""
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_weight
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'float32'
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_weight
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'float32'
)
helper
.
append_op
(
type
=
'target_assign'
,
inputs
=
{
...
...
@@ -816,9 +820,10 @@ def ssd_loss(location,
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
neg_indices
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
updated_matched_indices
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
updated_matched_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'mine_hard_examples'
,
inputs
=
{
...
...
@@ -998,8 +1003,8 @@ def prior_box(input,
max_sizes
=
[
max_sizes
]
attrs
[
'max_sizes'
]
=
max_sizes
box
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
box
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
...
...
@@ -1337,8 +1342,8 @@ def anchor_generator(input,
'offset'
:
offset
}
anchor
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
anchor
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"anchor_generator"
,
inputs
=
{
"Input"
:
input
},
...
...
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
"""
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"roi_perspective_transform"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
helper
=
LayerHelper
(
'generate_proposal_labels'
,
**
locals
())
rois
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
labels_int32
=
helper
.
create_tmp_variable
(
dtype
=
gt_classes
.
dtype
)
bbox_targets
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
bbox_inside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
bbox_outside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
rois
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
labels_int32
=
helper
.
create_variable_for_type_inference
(
dtype
=
gt_classes
.
dtype
)
bbox_targets
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
bbox_inside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
bbox_outside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
helper
.
append_op
(
type
=
"generate_proposal_labels"
,
...
...
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
"""
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
rpn_rois
=
helper
.
create_tmp_variable
(
dtype
=
bbox_deltas
.
dtype
)
rpn_roi_probs
=
helper
.
create_tmp_variable
(
dtype
=
scores
.
dtype
)
rpn_rois
=
helper
.
create_variable_for_type_inference
(
dtype
=
bbox_deltas
.
dtype
)
rpn_roi_probs
=
helper
.
create_variable_for_type_inference
(
dtype
=
scores
.
dtype
)
helper
.
append_op
(
type
=
"generate_proposals"
,
inputs
=
{
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
3099a8f3
...
...
@@ -954,7 +954,7 @@ def read_file(reader):
"""
helper
=
LayerHelper
(
'read_file'
)
out
=
[
helper
.
create_
tmp_variabl
e
(
helper
.
create_
variable_for_type_inferenc
e
(
stop_gradient
=
True
,
dtype
=
'float32'
)
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
]
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
3099a8f3
...
...
@@ -202,10 +202,12 @@ def generate_layer_fn(op_type):
out_var
=
out
[
0
]
if
(
isinstance
(
out
,
list
)
or
isinstance
(
out
,
tuple
))
else
out
else
:
out_var
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out_var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
outputs
[
o_name
]
=
[
out_var
]
for
name
in
intermediate_output_names
:
outputs
[
name
]
=
[
helper
.
create_tmp_variable
(
dtype
=
dtype
)]
outputs
[
name
]
=
[
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
]
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
return
helper
.
append_activation
(
out_var
)
...
...
@@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type):
def
func
(
x
,
name
=
None
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
return
output
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
3099a8f3
...
...
@@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None):
"""
helper
=
LayerHelper
(
"accuracy"
,
**
locals
())
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
acc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float32"
)
acc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float32"
)
if
correct
is
None
:
correct
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
correct
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
if
total
is
None
:
total
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
total
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"accuracy"
,
inputs
=
{
...
...
@@ -124,8 +124,8 @@ def auc(input,
auc_out=fluid.layers.auc(input=prediction, label=label)
"""
helper
=
LayerHelper
(
"auc"
,
**
locals
())
auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# for batch auc
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
3099a8f3
...
...
@@ -242,7 +242,7 @@ def fc(input,
w
=
helper
.
create_parameter
(
attr
=
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input_var
,
...
...
@@ -255,7 +255,7 @@ def fc(input,
if
len
(
mul_results
)
==
1
:
pre_bias
=
mul_results
[
0
]
else
:
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
mul_results
},
...
...
@@ -314,7 +314,7 @@ def embedding(input,
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
w
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
padding_idx
=
-
1
if
padding_idx
is
None
else
padding_idx
if
padding_idx
>=
0
else
(
size
[
0
]
+
padding_idx
)
helper
.
append_op
(
...
...
@@ -418,10 +418,10 @@ def dynamic_lstm(input,
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
hidden
=
helper
.
create_
tmp_variabl
e
(
dtype
)
cell
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_gate
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_cell_pre_act
=
helper
.
create_
tmp_variabl
e
(
dtype
)
hidden
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
cell
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_gate
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_cell_pre_act
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
...
...
@@ -621,12 +621,12 @@ def dynamic_lstmp(input,
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
projection
=
helper
.
create_
tmp_variabl
e
(
dtype
)
cell
=
helper
.
create_
tmp_variabl
e
(
dtype
)
ordered_proj0
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_hidden
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_gate
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_cell_pre_act
=
helper
.
create_
tmp_variabl
e
(
dtype
)
projection
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
cell
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
ordered_proj0
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_hidden
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_gate
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_cell_pre_act
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'lstmp'
,
...
...
@@ -751,10 +751,10 @@ def dynamic_gru(input,
),
'The shape of h0 should be(batch_size, %d)'
%
size
inputs
[
'H0'
]
=
h_0
hidden
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_gate
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_reset_hidden_prev
=
helper
.
create_
tmp_variabl
e
(
dtype
)
batch_hidden
=
helper
.
create_
tmp_variabl
e
(
dtype
)
hidden
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_gate
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_reset_hidden_prev
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
batch_hidden
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'gru'
,
...
...
@@ -844,9 +844,9 @@ def gru_unit(input,
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
3
*
size
],
dtype
=
dtype
)
gate
=
helper
.
create_
tmp_variabl
e
(
dtype
)
reset_hidden_pre
=
helper
.
create_
tmp_variabl
e
(
dtype
)
updated_hidden
=
helper
.
create_
tmp_variabl
e
(
dtype
)
gate
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
reset_hidden_pre
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
updated_hidden
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
inputs
=
{
'Input'
:
input
,
'HiddenPrev'
:
hidden
,
'Weight'
:
weight
}
# create bias
if
helper
.
bias_attr
:
...
...
@@ -896,10 +896,14 @@ def linear_chain_crf(input, label, param_attr=None):
attr
=
helper
.
param_attr
,
shape
=
[
size
+
2
,
size
],
dtype
=
helper
.
input_dtype
())
alpha
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
emission_exps
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
transition_exps
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
log_likelihood
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
alpha
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
emission_exps
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
transition_exps
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
log_likelihood
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'linear_chain_crf'
,
inputs
=
{
"Emission"
:
[
input
],
...
...
@@ -938,7 +942,8 @@ def crf_decoding(input, param_attr, label=None):
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
...
...
@@ -962,9 +967,9 @@ def cos_sim(X, Y):
Variable: the output of cosine(X, Y).
"""
helper
=
LayerHelper
(
'cos_sim'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
X
.
dtype
)
xnorm
=
helper
.
create_
tmp_variabl
e
(
dtype
=
X
.
dtype
)
ynorm
=
helper
.
create_
tmp_variabl
e
(
dtype
=
X
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
X
.
dtype
)
xnorm
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
X
.
dtype
)
ynorm
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
X
.
dtype
)
helper
.
append_op
(
type
=
'cos_sim'
,
inputs
=
{
'X'
:
[
X
],
...
...
@@ -1008,8 +1013,9 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
"""
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
if
(
seed
is
None
or
seed
==
0
)
and
helper
.
main_program
.
random_seed
!=
0
:
seed
=
helper
.
main_program
.
random_seed
...
...
@@ -1094,7 +1100,7 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100):
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
helper
=
LayerHelper
(
'cross_entropy'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'cross_entropy'
,
inputs
=
{
'X'
:
[
input
],
...
...
@@ -1141,14 +1147,14 @@ def square_error_cost(input, label):
"""
helper
=
LayerHelper
(
'square_error_cost'
,
**
locals
())
minus_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
minus_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'elementwise_sub'
,
inputs
=
{
'X'
:
[
input
],
'Y'
:
[
label
]},
outputs
=
{
'Out'
:
[
minus_out
]})
square_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
square_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Out'
:
[
square_out
]})
...
...
@@ -1254,12 +1260,13 @@ def chunk_eval(input,
helper
=
LayerHelper
(
"chunk_eval"
,
**
locals
())
# prepare output
precision
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
recall
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
f1_score
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
num_infer_chunks
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
num_label_chunks
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
num_correct_chunks
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
precision
=
helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
recall
=
helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
f1_score
=
helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
num_infer_chunks
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
num_label_chunks
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
num_correct_chunks
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"chunk_eval"
,
...
...
@@ -1326,7 +1333,7 @@ def sequence_conv(input,
filter_shape
=
[
filter_size
*
input
.
shape
[
1
],
num_filters
]
filter_param
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
)
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'sequence_conv'
,
...
...
@@ -1382,7 +1389,7 @@ def sequence_softmax(input, use_cudnn=False, name=None):
"""
helper
=
LayerHelper
(
'sequence_softmax'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
softmax_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
softmax_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"sequence_softmax"
,
inputs
=
{
"X"
:
input
},
...
...
@@ -1436,7 +1443,7 @@ def softmax(input, use_cudnn=True, name=None):
"""
helper
=
LayerHelper
(
'softmax'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
softmax_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
softmax_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"softmax"
,
inputs
=
{
"X"
:
input
},
...
...
@@ -1599,7 +1606,7 @@ def conv2d(input,
dtype
=
dtype
,
default_initializer
=
_get_default_param_initializer
())
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
...
...
@@ -1770,7 +1777,7 @@ def conv3d(input,
dtype
=
dtype
,
default_initializer
=
_get_default_param_initializer
())
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
...
...
@@ -1849,8 +1856,8 @@ def sequence_pool(input, pool_type):
"""
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
max_index
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pool_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
max_index
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"sequence_pool"
,
...
...
@@ -1886,7 +1893,7 @@ def sequence_concat(input, name=None):
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
"""
helper
=
LayerHelper
(
'sequence_concat'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sequence_concat'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
[
out
]})
return
out
...
...
@@ -2013,7 +2020,7 @@ def sequence_slice(input, offset, length, name=None):
"""
helper
=
LayerHelper
(
"sequence_slice"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
offset
.
stop_gradient
=
True
length
.
stop_gradient
=
True
...
...
@@ -2099,7 +2106,7 @@ def pool2d(input,
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pool_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
...
...
@@ -2167,7 +2174,7 @@ def pool3d(input,
l_type
=
"pool3d"
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pool_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
l_type
,
...
...
@@ -2310,10 +2317,13 @@ def batch_norm(input,
mean_out
=
mean
# variance and variance out share the same memory
variance_out
=
variance
saved_mean
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
saved_variance
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
saved_mean
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
stop_gradient
=
True
)
saved_variance
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
stop_gradient
=
True
)
batch_norm_out
=
input
if
in_place
else
helper
.
create_tmp_variable
(
dtype
)
batch_norm_out
=
input
if
in_place
else
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"batch_norm"
,
...
...
@@ -2430,9 +2440,11 @@ def layer_norm(input,
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
layer_norm_out
=
helper
.
create_tmp_variable
(
dtype
)
mean_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
stop_gradient
=
True
)
layer_norm_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"layer_norm"
,
...
...
@@ -2619,7 +2631,7 @@ def conv2d_transpose(input,
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'Input'
:
[
input
],
...
...
@@ -2797,7 +2809,7 @@ def conv3d_transpose(input,
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
pre_bias
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
pre_bias
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
'Input'
:
[
input
],
...
...
@@ -2876,7 +2888,7 @@ def sequence_expand(x, y, ref_level=-1, name=None):
"""
helper
=
LayerHelper
(
'sequence_expand'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'sequence_expand'
,
inputs
=
{
'X'
:
x
,
...
...
@@ -2942,7 +2954,7 @@ def sequence_expand_as(x, y, name=None):
"""
helper
=
LayerHelper
(
'sequence_expand_as'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'sequence_expand_as'
,
inputs
=
{
'X'
:
x
,
...
...
@@ -2987,8 +2999,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
helper
=
LayerHelper
(
'sequence_pad'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
length
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
length
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
pad_value
.
stop_gradient
=
True
length
.
stop_gradient
=
True
...
...
@@ -3053,7 +3065,7 @@ def sequence_unpad(x, length, name=None):
helper
=
LayerHelper
(
'sequence_unpad'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
length
.
stop_gradient
=
True
...
...
@@ -3152,8 +3164,9 @@ def beam_search(pre_ids,
score_type
=
scores
.
dtype
id_type
=
ids
.
dtype
selected_scores
=
helper
.
create_tmp_variable
(
dtype
=
score_type
)
selected_ids
=
helper
.
create_tmp_variable
(
dtype
=
id_type
)
selected_scores
=
helper
.
create_variable_for_type_inference
(
dtype
=
score_type
)
selected_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
id_type
)
helper
.
append_op
(
type
=
'beam_search'
,
...
...
@@ -3210,8 +3223,8 @@ def beam_search_decode(ids, scores, beam_size, end_id, name=None):
ids, scores, beam_size=5, end_id=0)
"""
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
sentence_ids
=
helper
.
create_
tmp_variabl
e
(
dtype
=
ids
.
dtype
)
sentence_scores
=
helper
.
create_
tmp_variabl
e
(
dtype
=
ids
.
dtype
)
sentence_ids
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
ids
.
dtype
)
sentence_scores
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
ids
.
dtype
)
helper
.
append_op
(
type
=
"beam_search_decode"
,
...
...
@@ -3341,8 +3354,8 @@ def lstm_unit(x_t,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
dtype
=
x_t
.
dtype
c
=
helper
.
create_
tmp_variabl
e
(
dtype
)
h
=
helper
.
create_
tmp_variabl
e
(
dtype
)
c
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
h
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'lstm_unit'
,
...
...
@@ -3396,7 +3409,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
"""
helper
=
LayerHelper
(
'reduce_sum'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
helper
.
append_op
(
...
...
@@ -3453,7 +3466,7 @@ def reduce_mean(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
"""
helper
=
LayerHelper
(
'reduce_mean'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
helper
.
append_op
(
...
...
@@ -3508,7 +3521,7 @@ def reduce_max(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
"""
helper
=
LayerHelper
(
'reduce_max'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
helper
.
append_op
(
...
...
@@ -3563,7 +3576,7 @@ def reduce_min(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
"""
helper
=
LayerHelper
(
'reduce_min'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
helper
.
append_op
(
...
...
@@ -3619,7 +3632,7 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
"""
helper
=
LayerHelper
(
'reduce_prod'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
if
dim
is
not
None
and
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
helper
.
append_op
(
...
...
@@ -3679,7 +3692,7 @@ def split(input, num_or_sections, dim=-1, name=None):
dim
],
'len(num_or_sections) must not be more than input.shape[dim].'
num
=
len
(
num_or_sections
)
outs
=
[
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
for
i
in
range
(
num
)
]
helper
.
append_op
(
...
...
@@ -3736,8 +3749,8 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
axis
=
0
helper
=
LayerHelper
(
"l2_normalize"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
norm
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
norm
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"norm"
,
inputs
=
{
"X"
:
x
},
...
...
@@ -3846,7 +3859,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
__check_input
(
x
,
y
)
helper
=
LayerHelper
(
'matmul'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'matmul'
,
inputs
=
{
'X'
:
x
,
...
...
@@ -3917,8 +3930,8 @@ def topk(input, k, name=None):
top5_values, top5_indices = layers.topk(input, k=5)
"""
helper
=
LayerHelper
(
"top_k"
,
**
locals
())
values
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
indices
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
values
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
indices
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"top_k"
,
inputs
=
{
"X"
:
[
input
]},
...
...
@@ -3976,8 +3989,8 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
# remove some tokens from input and labels
if
ignored_tokens
is
not
None
and
len
(
ignored_tokens
)
>
0
:
erased_input
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
erased_label
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
erased_input
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
erased_label
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"sequence_erase"
,
...
...
@@ -3994,8 +4007,8 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None):
label
=
erased_label
# edit distance op
edit_distance_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
sequence_num
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
edit_distance_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
sequence_num
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"edit_distance"
,
inputs
=
{
"Hyps"
:
[
input
],
...
...
@@ -4070,7 +4083,7 @@ def ctc_greedy_decoder(input, blank, name=None):
_
,
topk_indices
=
topk
(
input
,
k
=
1
)
# ctc align op
ctc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
ctc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
type
=
"ctc_align"
,
inputs
=
{
"Input"
:
[
topk_indices
]},
...
...
@@ -4120,8 +4133,8 @@ def warpctc(input, label, blank=0, norm_by_times=False):
"""
helper
=
LayerHelper
(
'warpctc'
,
**
locals
())
loss_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
grad_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
loss_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
grad_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'warpctc'
,
inputs
=
{
'Logits'
:
[
input
],
...
...
@@ -4182,7 +4195,7 @@ def sequence_reshape(input, new_dim):
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
"""
helper
=
LayerHelper
(
'sequence_reshape'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sequence_reshape'
,
inputs
=
{
'X'
:
[
input
]},
...
...
@@ -4279,9 +4292,9 @@ def nce(input,
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
b
cost
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
sample_logits
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
sample_labels
=
helper
.
create_
tmp_variabl
e
(
dtype
=
label
.
dtype
)
cost
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
sample_logits
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
sample_labels
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
label
.
dtype
)
if
num_neg_samples
is
None
:
num_neg_samples
=
10
...
...
@@ -4357,8 +4370,8 @@ def hsigmoid(input,
helper
=
LayerHelper
(
'hierarchical_sigmoid'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
pre_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
pre_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must not be less than 2."
)
...
...
@@ -4418,8 +4431,8 @@ def transpose(x, perm, name=None):
(
idx
,
perm
[
idx
],
len
(
x
.
shape
)))
helper
=
LayerHelper
(
'transpose'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
x
.
dtype
)
x_shape
=
helper
.
create_
tmp_variabl
e
(
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
)
x_shape
=
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
)
helper
.
append_op
(
type
=
'transpose2'
,
inputs
=
{
'X'
:
[
x
]},
...
...
@@ -4561,7 +4574,7 @@ def im2sequence(input,
inputs
[
"Y"
]
=
input_image_size
attrs
[
"out_stride"
]
=
out_stride
helper
=
LayerHelper
(
'im2sequence'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'im2sequence'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
...
...
@@ -4594,7 +4607,7 @@ def row_conv(input, future_context_size, param_attr=None, act=None):
filter_shape
=
[
future_context_size
+
1
,
input
.
shape
[
1
]]
filter_param
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'row_conv'
,
inputs
=
{
'X'
:
[
input
],
...
...
@@ -4627,7 +4640,7 @@ def multiplex(inputs, index):
raise
ValueError
(
"inputs should be a list object and contains at least "
"2 elements."
)
out
=
helper
.
create_
tmp_variabl
e
(
inputs
[
0
].
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
inputs
[
0
].
dtype
)
helper
.
append_op
(
type
=
'multiplex'
,
inputs
=
{
'X'
:
inputs
,
...
...
@@ -4698,8 +4711,8 @@ def softmax_with_cross_entropy(logits,
logits=fc, label=label)
"""
helper
=
LayerHelper
(
'softmax_with_cross_entropy'
,
**
locals
())
softmax
=
helper
.
create_
tmp_variabl
e
(
dtype
=
logits
.
dtype
)
loss
=
helper
.
create_
tmp_variabl
e
(
dtype
=
logits
.
dtype
)
softmax
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
logits
.
dtype
)
loss
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
logits
.
dtype
)
helper
.
append_op
(
type
=
'softmax_with_cross_entropy'
,
inputs
=
{
'Logits'
:
logits
,
...
...
@@ -4749,8 +4762,8 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
"""
helper
=
LayerHelper
(
'smooth_l1_loss'
,
**
locals
())
diff
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
loss
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
diff
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
loss
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'smooth_l1_loss'
,
inputs
=
{
...
...
@@ -4783,7 +4796,7 @@ def one_hot(input, depth):
one_hot_label = layers.one_hot(input=label, depth=10)
"""
helper
=
LayerHelper
(
"one_hot"
,
**
locals
())
one_hot_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'float32'
)
one_hot_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'float32'
)
helper
.
append_op
(
type
=
"one_hot"
,
inputs
=
{
'X'
:
input
},
...
...
@@ -4930,8 +4943,9 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
"except one unknown dimension."
)
helper
=
LayerHelper
(
"reshape2"
,
**
locals
())
x_shape
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
out
=
x
if
inplace
else
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
out
=
x
if
inplace
else
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
x_shape
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"reshape2"
,
inputs
=
inputs
,
...
...
@@ -4980,8 +4994,8 @@ def squeeze(input, axes, name=None):
y = layers.sequeeze(input=x, axes=[1])
"""
helper
=
LayerHelper
(
"squeeze"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
"squeeze2"
,
inputs
=
{
"X"
:
input
},
...
...
@@ -5017,8 +5031,8 @@ def unsqueeze(input, axes, name=None):
y = layers.unsequeeze(input=x, axes=[1])
"""
helper
=
LayerHelper
(
"unsqueeze"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
x_shape
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
"unsqueeze2"
,
inputs
=
{
"X"
:
input
},
...
...
@@ -5108,7 +5122,7 @@ def lod_reset(x, y=None, target_lod=None):
out = layers.lod_reset(x=x, y=y)
"""
helper
=
LayerHelper
(
"lod_reset"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
if
y
is
not
None
:
helper
.
append_op
(
type
=
"lod_reset"
,
inputs
=
{
'X'
:
x
,
...
...
@@ -5177,8 +5191,9 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
"dims of input must be 4(not %d), and it's order must be NCHW"
%
(
dims
))
mid_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
lrn_out
=
helper
.
create_tmp_variable
(
dtype
)
mid_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
,
stop_gradient
=
True
)
lrn_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"lrn"
,
inputs
=
{
"X"
:
input
},
...
...
@@ -5243,7 +5258,7 @@ def pad(x, paddings, pad_value=0., name=None):
"""
helper
=
LayerHelper
(
'pad'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'pad'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -5323,7 +5338,7 @@ def pad_constant_like(x, y, pad_value=0., name=None):
"""
helper
=
LayerHelper
(
'pad_constant_like'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'pad_constant_like'
,
inputs
=
{
'X'
:
x
,
...
...
@@ -5388,7 +5403,7 @@ def label_smooth(label,
raise
ValueError
(
"The value of epsilon must be between 0 and 1."
)
helper
=
LayerHelper
(
"label_smooth"
,
**
locals
())
label
.
stop_gradient
=
True
smooth_label
=
helper
.
create_
tmp_variabl
e
(
dtype
)
smooth_label
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"label_smooth"
,
inputs
=
{
"X"
:
label
,
...
...
@@ -5420,8 +5435,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
argmaxes
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
pool_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
argmaxes
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"roi_pool"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -5469,7 +5484,7 @@ def roi_align(input,
"""
helper
=
LayerHelper
(
'roi_align'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
align_out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
align_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"roi_align"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -5594,7 +5609,7 @@ def image_resize(input,
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
resample_methods
[
resample
],
inputs
=
inputs
,
...
...
@@ -5703,7 +5718,7 @@ def gather(input, index):
"""
helper
=
LayerHelper
(
'gather'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"gather"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -5743,7 +5758,7 @@ def scatter(input, index, updates, name=None):
"""
helper
=
LayerHelper
(
'scatter'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"scatter"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -5803,7 +5818,7 @@ def sequence_scatter(input, index, updates, name=None):
"""
helper
=
LayerHelper
(
'sequence_scatter'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"sequence_scatter"
,
inputs
=
{
"X"
:
input
,
...
...
@@ -5833,7 +5848,7 @@ def random_crop(x, shape, seed=None):
"""
helper
=
LayerHelper
(
"random_crop"
,
**
locals
())
dtype
=
x
.
dtype
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
if
seed
is
None
:
seed
=
np
.
random
.
randint
(
-
65536
,
65536
)
op_attrs
=
{
"shape"
:
shape
}
...
...
@@ -5879,7 +5894,7 @@ def log(x, name=None):
"""
helper
=
LayerHelper
(
'log'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"log"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
@@ -5910,7 +5925,7 @@ def relu(x, name=None):
"""
helper
=
LayerHelper
(
'relu'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"relu"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
@@ -5949,9 +5964,9 @@ def mean_iou(input, label, num_classes):
"""
helper
=
LayerHelper
(
'mean_iou'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out_mean_iou
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'float32'
)
out_wrong
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
out_correct
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
out_mean_iou
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'float32'
)
out_wrong
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
out_correct
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"mean_iou"
,
inputs
=
{
"Predictions"
:
input
,
...
...
@@ -6043,7 +6058,7 @@ def crop(x, shape=None, offsets=None, name=None):
if
offsets
is
None
:
offsets
=
[
0
]
*
len
(
x
.
shape
)
out
=
helper
.
create_
tmp_variabl
e
(
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
)
ipts
=
{
'X'
:
x
}
attrs
=
{}
if
isinstance
(
shape
,
Variable
):
...
...
@@ -6123,7 +6138,7 @@ def rank_loss(label, left, right, name=None):
if
not
(
isinstance
(
right
,
Variable
)):
raise
ValueError
(
"The right should be a Variable"
)
out
=
helper
.
create_
tmp_variabl
e
(
"float32"
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
"float32"
)
helper
.
append_op
(
type
=
'rank_loss'
,
...
...
@@ -6169,8 +6184,8 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None):
raise
ValueError
(
"The left should be a Variable."
)
if
not
isinstance
(
right
,
Variable
):
raise
ValueError
(
"The right should be a Variable."
)
out
=
helper
.
create_
tmp_variabl
e
(
left
.
dtype
)
act
=
helper
.
create_
tmp_variabl
e
(
left
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
left
.
dtype
)
act
=
helper
.
create_
variable_for_type_inferenc
e
(
left
.
dtype
)
helper
.
append_op
(
type
=
'margin_rank_loss'
,
inputs
=
{
"Label"
:
label
,
...
...
@@ -6255,7 +6270,7 @@ def pad2d(input,
helper
=
LayerHelper
(
'pad2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'input'
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'pad2d'
,
inputs
=
{
'X'
:
input
},
...
...
@@ -6284,7 +6299,7 @@ def elu(x, alpha=1.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'elu'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'elu'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6307,7 +6322,7 @@ def relu6(x, threshold=6.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'relu6'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'relu6'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6330,7 +6345,7 @@ def pow(x, factor=1.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'pow'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6354,7 +6369,7 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'stanh'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'stanh'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6379,7 +6394,7 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'hard_sigmoid'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_sigmoid'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6403,7 +6418,7 @@ def swish(x, beta=1.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'swish'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6455,7 +6470,7 @@ def prelu(x, mode, param_attr=None, name=None):
dtype
=
'float32'
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
...
...
@@ -6479,7 +6494,7 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'brelu'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'brelu'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6502,7 +6517,7 @@ def leaky_relu(x, alpha=0.02, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'leaky_relu'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'leaky_relu'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6524,7 +6539,7 @@ def soft_relu(x, threshold=40.0, name=None):
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'soft_relu'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'soft_relu'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6591,8 +6606,8 @@ def flatten(x, axis=1, name=None):
if
not
(
isinstance
(
axis
,
int
))
or
axis
>
len
(
x
.
shape
)
or
axis
<
0
:
raise
ValueError
(
"The axis should be a int, and in range [0, rank(x)]"
)
out
=
helper
.
create_
tmp_variabl
e
(
x
.
dtype
)
x_shape
=
helper
.
create_
tmp_variabl
e
(
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
)
x_shape
=
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
)
helper
.
append_op
(
type
=
'flatten2'
,
inputs
=
{
"X"
:
x
},
...
...
@@ -6638,7 +6653,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
helper
=
LayerHelper
(
'sequence_enumerate'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
(),
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
helper
.
input_dtype
(),
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'sequence_enumerate'
,
inputs
=
{
'X'
:
input
},
...
...
@@ -6678,9 +6694,9 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
helper
=
LayerHelper
(
'sequence_mask'
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
else
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
,
name
=
name
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
,
name
=
name
)
helper
.
append_op
(
type
=
'sequence_mask'
,
...
...
@@ -6723,7 +6739,7 @@ def stack(x, axis=0):
if
not
isinstance
(
x
,
list
)
and
not
isinstance
(
x
,
tuple
):
x
=
[
x
]
out
=
helper
.
create_
tmp_variabl
e
(
x
[
0
].
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
x
[
0
].
dtype
)
helper
.
append_op
(
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Y'
:
out
},
attrs
=
{
'axis'
:
axis
})
...
...
@@ -6761,7 +6777,7 @@ def unstack(x, axis=0, num=None):
outs
=
[]
for
_
in
num
:
outs
.
append
(
helper
.
create_
tmp_variabl
e
(
x
.
dtype
))
outs
.
append
(
helper
.
create_
variable_for_type_inferenc
e
(
x
.
dtype
))
helper
.
append_op
(
type
=
'unstack'
,
...
...
@@ -6813,7 +6829,7 @@ def expand(x, expand_times, name=None):
"""
helper
=
LayerHelper
(
'expand'
,
input
=
x
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'expand'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6852,7 +6868,7 @@ def uniform_random_batch_size_like(input,
"""
helper
=
LayerHelper
(
'uniform_random_batch_size_like'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'uniform_random_batch_size_like'
,
...
...
@@ -6889,7 +6905,7 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
"""
helper
=
LayerHelper
(
'gaussian_random'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'gaussian_random'
,
...
...
@@ -6924,7 +6940,7 @@ def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
"""
helper
=
LayerHelper
(
'sampling_id'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
type
=
'sampling_id'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -6963,7 +6979,7 @@ def gaussian_random_batch_size_like(input,
"""
helper
=
LayerHelper
(
'gaussian_random_batch_size_like'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'gaussian_random_batch_size_like'
,
...
...
@@ -6995,7 +7011,8 @@ def sum(x):
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
(
'x'
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(
'x'
))
helper
.
append_op
(
type
=
'sum'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -7022,7 +7039,8 @@ def slice(input, axes, starts, ends):
"""
helper
=
LayerHelper
(
'slice'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
(
'input'
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(
'input'
))
helper
.
append_op
(
type
=
'slice'
,
inputs
=
{
'Input'
:
input
},
...
...
@@ -7048,7 +7066,8 @@ def shape(input):
"""
helper
=
LayerHelper
(
'shape'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
(
'input'
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(
'input'
))
helper
.
append_op
(
type
=
'shape'
,
inputs
=
{
'Input'
:
input
},
outputs
=
{
'Out'
:
out
})
...
...
@@ -7065,7 +7084,7 @@ def _elementwise_op(helper):
use_mkldnn
=
helper
.
kwargs
.
get
(
'use_mkldnn'
,
False
)
name
=
helper
.
kwargs
.
get
(
'name'
,
None
)
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7099,7 +7118,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
helper
=
LayerHelper
(
'scale'
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7165,7 +7184,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
if
out
is
None
:
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7273,7 +7292,7 @@ def clip(x, min, max, name=None):
helper
=
LayerHelper
(
"clip"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7305,7 +7324,7 @@ def clip_by_norm(x, max_norm, name=None):
helper
=
LayerHelper
(
"clip_by_norm"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7335,7 +7354,7 @@ def mean(x, name=None):
helper
=
LayerHelper
(
"mean"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7365,7 +7384,7 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
helper
=
LayerHelper
(
"mul"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7399,7 +7418,7 @@ def sigmoid_cross_entropy_with_logits(x, label, name=None):
helper
=
LayerHelper
(
"sigmoid_cross_entropy_with_logits"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7429,7 +7448,7 @@ def maxout(x, groups, name=None):
helper
=
LayerHelper
(
"maxout"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
@@ -7468,7 +7487,7 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
helper
=
LayerHelper
(
"affine_channel"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
3099a8f3
...
...
@@ -152,7 +152,7 @@ def cast(x, dtype):
result = fluid.layers.cast(x=data, dtype='float64')
"""
helper
=
LayerHelper
(
'cast'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
[
x
]},
...
...
@@ -184,7 +184,7 @@ def concat(input, axis=0, name=None):
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
"""
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'concat'
,
inputs
=
{
'X'
:
input
},
...
...
@@ -221,7 +221,8 @@ def sums(input, out=None):
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
...
...
@@ -252,7 +253,7 @@ def assign(input, output=None):
"""
helper
=
LayerHelper
(
'assign'
,
**
locals
())
if
output
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
if
isinstance
(
input
,
Variable
):
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
...
...
@@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'fill_constant'
,
inputs
=
{},
...
...
@@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input,
${out_comment}.
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
inputs
=
{
'Input'
:
input
},
...
...
@@ -396,7 +397,7 @@ def argmin(x, axis=0):
out = fluid.layers.argmin(x=in, axis=-1)
"""
helper
=
LayerHelper
(
"arg_min"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -427,7 +428,7 @@ def argmax(x, axis=0):
out = fluid.layers.argmax(x=in, axis=-1)
"""
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
...
...
@@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None):
out, indices = fluid.layers.argsort(input, axis=0)
"""
helper
=
LayerHelper
(
"argsort"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
ids
=
helper
.
create_tmp_variable
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
ids
=
helper
.
create_variable_for_type_inference
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'argsort'
,
inputs
=
{
'X'
:
input
},
...
...
@@ -562,7 +565,7 @@ def reverse(x, axis):
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'reverse'
,
inputs
=
{
'Input'
:
x
},
...
...
@@ -654,7 +657,7 @@ def has_inf(x):
Variable: The tensor variable storing the output, only a bool value.
"""
helper
=
LayerHelper
(
"isinf"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isinf"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
@@ -670,7 +673,7 @@ def has_nan(x):
Variable: The tensor variable storing the output, only a bool value.
"""
helper
=
LayerHelper
(
"isnan"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isnan"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
...
...
@@ -687,6 +690,6 @@ def isfinite(x):
Variable: The tensor variable storing the output, contains a bool value.
"""
helper
=
LayerHelper
(
"isfinite"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isfinite"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
python/paddle/fluid/regularizer.py
浏览文件 @
3099a8f3
...
...
@@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
...
...
@@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_slice_var.py
浏览文件 @
3099a8f3
...
...
@@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase):
var
=
program
.
global_block
().
create_var
(
name
=
str
(
random
.
randint
(
10000
,
99999
)),
persistable
=
True
,
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape
=
shape
)
var_list
.
append
(
var
)
blocks
=
slice_variable
(
var_list
,
10
,
min_size
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录