Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3070dc8b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3070dc8b
编写于
9月 28, 2022
作者:
J
JZ-LIANG
提交者:
GitHub
9月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel] Generalize Amp Pass (#46519)
* support input mask
上级
526d963e
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
59 addition
and
13 deletion
+59
-13
python/paddle/distributed/auto_parallel/parallelizer.py
python/paddle/distributed/auto_parallel/parallelizer.py
+2
-0
python/paddle/distributed/auto_parallel/parallelizer_v2.py
python/paddle/distributed/auto_parallel/parallelizer_v2.py
+2
-0
python/paddle/distributed/auto_parallel/tuner/optimization_tuner.py
...dle/distributed/auto_parallel/tuner/optimization_tuner.py
+2
-0
python/paddle/distributed/passes/auto_parallel_amp.py
python/paddle/distributed/passes/auto_parallel_amp.py
+42
-9
python/paddle/distributed/passes/auto_parallel_fp16.py
python/paddle/distributed/passes/auto_parallel_fp16.py
+11
-4
未找到文件。
python/paddle/distributed/auto_parallel/parallelizer.py
浏览文件 @
3070dc8b
...
...
@@ -110,10 +110,12 @@ class AutoParallelizer:
auto_parallel_fp16_pass
=
new_pass
(
"auto_parallel_fp16"
,
config
)
auto_parallel_fp16_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_fp16_pass
.
get_loss
()
else
:
auto_parallel_amp_pass
=
new_pass
(
"auto_parallel_amp"
,
config
)
auto_parallel_amp_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_amp_pass
.
get_loss
()
# apply recompute pass
if
self
.
_dist_strategy
.
recompute
:
...
...
python/paddle/distributed/auto_parallel/parallelizer_v2.py
浏览文件 @
3070dc8b
...
...
@@ -192,10 +192,12 @@ class Parallelizer:
auto_parallel_fp16_pass
=
new_pass
(
"auto_parallel_fp16"
,
config
)
auto_parallel_fp16_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_fp16_pass
.
get_loss
()
else
:
auto_parallel_amp_pass
=
new_pass
(
"auto_parallel_amp"
,
config
)
auto_parallel_amp_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_pass_context
)
loss
=
auto_parallel_amp_pass
.
get_loss
()
# apply recompute pass
# recompute is then train-only optimization
...
...
python/paddle/distributed/auto_parallel/tuner/optimization_tuner.py
浏览文件 @
3070dc8b
...
...
@@ -271,10 +271,12 @@ class OptimizationTuner:
auto_parallel_fp16_pass
=
new_pass
(
"auto_parallel_fp16"
,
config
)
auto_parallel_fp16_pass
.
apply
([
main_program
],
[
startup_program
],
pass_context
)
dist_context
.
serial_loss
=
auto_parallel_fp16_pass
.
get_loss
()
else
:
auto_parallel_amp_pass
=
new_pass
(
"auto_parallel_amp"
,
config
)
auto_parallel_amp_pass
.
apply
([
main_program
],
[
startup_program
],
pass_context
)
dist_context
.
serial_loss
=
auto_parallel_amp_pass
.
get_loss
()
if
new_strategy
.
recompute
.
enable
:
config
=
copy
.
deepcopy
(
new_strategy
.
recompute
.
to_dict
())
...
...
python/paddle/distributed/passes/auto_parallel_amp.py
浏览文件 @
3070dc8b
...
...
@@ -614,21 +614,17 @@ class AMPPass(PassBase):
loss_op
)
if
loss
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
:
# cast loss here will change the effective loss tensor for the computation graph
# and therefore will effect all following passes whose logic is based on the loss tensor(Recompute & Gradient Merge),
# so we it is not allowed by now. fixed it in future.
raise
NotImplementedError
(
"Loss's generator op is not support in FP16 in Auto Parallel by now, please put that op into your black-list."
)
tmp_name
=
unique_name
.
generate
(
loss
.
name
+
".cast_fp32"
)
cast_loss
=
main_block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
cast_loss
=
main_block
.
create_var
(
name
=
tmp_name
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
)
loss_dist_attr
=
self
.
dist_context
.
get_tensor_dist_attr_for_program
(
loss
)
ref_mesh
=
loss_op_dist_attr
.
process_mesh
self
.
dist_context
.
set_tensor_dist_attr_for_program
(
cast_loss
,
loss_dist_attr
)
# forward
loss_op_idx
=
find_op_index
(
main_block
.
desc
,
loss_op
.
desc
)
cast_op
=
main_block
.
_insert_op
(
loss_op_idx
+
1
,
...
...
@@ -645,7 +641,34 @@ class AMPPass(PassBase):
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
)
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_op
,
ref_mesh
,
[
-
1
],
self
.
dist_context
)
loss
=
loss
.
astype
(
'float32'
)
# backward
first_backward_op
=
main_block
.
ops
[
loss_op_idx
+
2
]
assert
first_backward_op
.
type
==
"fill_constant"
and
int
(
first_backward_op
.
all_attrs
()[
OP_ROLE_KEY
])
==
257
cast_loss_grad
=
main_block
.
create_var
(
name
=
unique_name
.
generate
(
tmp_name
+
"@GRAD"
),
shape
=
loss
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
persistable
=
loss
.
persistable
)
set_var_dist_attr
(
self
.
dist_context
,
cast_loss_grad
,
[
-
1
],
ref_mesh
)
pre_grad_name
=
first_backward_op
.
output_arg_names
[
0
]
first_backward_op
.
_rename_output
(
pre_grad_name
,
cast_loss_grad
.
name
)
cast_grad_op
=
main_block
.
_insert_op
(
loss_op_idx
+
3
,
type
=
'cast'
,
inputs
=
{
'X'
:
[
cast_loss_grad
]},
outputs
=
{
'Out'
:
[
pre_grad_name
]},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
,
})
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
cast_grad_op
,
ref_mesh
,
[
-
1
],
self
.
dist_context
)
loss_op
=
cast_op
loss
=
cast_loss
if
self
.
get_attr
(
"use_dynamic_loss_scaling"
)
or
self
.
get_attr
(
"init_loss_scaling"
)
!=
1.0
:
...
...
@@ -718,7 +741,7 @@ class AMPPass(PassBase):
else
:
self
.
_scaled_loss
=
loss
self
.
_loss
=
loss
main_block
.
_sync_with_cpp
()
def
_update_loss_scaling
(
self
,
grads
,
found_inf
):
...
...
@@ -782,3 +805,13 @@ class AMPPass(PassBase):
self
.
dist_context
.
set_op_dist_attr_for_program
(
new_op
,
new_op_dist_attr
)
main_block
.
_sync_with_cpp
()
def
get_loss
(
self
):
# the amp / fp16 might change the effective loss variable for network and
# therefore would affect the subsequent passes that rely on the loss.
# return the effective loss after amp / fp16 pass.
if
self
.
_loss
:
return
self
.
_loss
else
:
return
self
.
get_attr
(
"loss"
)
python/paddle/distributed/passes/auto_parallel_fp16.py
浏览文件 @
3070dc8b
...
...
@@ -368,6 +368,10 @@ class FP16State(object):
for
cast_name
,
src_name
,
dst_dtype
,
src_dtype
,
slot_name
in
self
.
forward_input_cast_ops
[
forward_op_id
]:
# some forward output is not need by backward computation, e.g. logit in softmax_with_cross_entropy
if
slot_name
not
in
op
.
input_names
:
continue
# rename input
assert
src_name
in
op
.
input
(
slot_name
),
"var: {} not in op's {}. {}"
.
format
(
...
...
@@ -379,12 +383,15 @@ class FP16State(object):
# create cast grad
grad_slot_name
=
slot_name
+
"@GRAD"
assert
grad_slot_name
in
op
.
output_names
assert
grad_slot_name
in
op
.
output_names
,
"[{}], Current Op: {}"
.
format
(
grad_slot_name
,
str
(
op
))
# some forward input maybe stop_gradient=True, e.g. input_mask
if
len
(
op
.
output
(
grad_slot_name
))
==
0
:
var
=
block
.
var
(
src_name
)
assert
var
.
stop_gradient
is
True
continue
assert
len
(
op
.
output
(
grad_slot_name
))
==
1
assert
len
(
op
.
output
(
grad_slot_name
))
==
1
,
"[{}], Current Op: {}"
.
format
(
grad_slot_name
,
str
(
op
))
grad_name
=
op
.
output
(
grad_slot_name
)[
0
]
grad
=
block
.
var
(
grad_name
)
grad_dist_attr
=
grad_op_attr
.
get_output_dist_attr
(
grad_name
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录