Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2fd728a9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
2fd728a9
编写于
4月 12, 2020
作者:
L
liuwei1031
提交者:
GitHub
4月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new dot op(#23418)
上级
cdbe5707
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
527 addition
and
5 deletion
+527
-5
paddle/fluid/framework/ddim.cc
paddle/fluid/framework/ddim.cc
+10
-0
paddle/fluid/framework/ddim.h
paddle/fluid/framework/ddim.h
+3
-0
paddle/fluid/operators/dot_op.cc
paddle/fluid/operators/dot_op.cc
+160
-0
paddle/fluid/operators/dot_op.cu
paddle/fluid/operators/dot_op.cu
+28
-0
paddle/fluid/operators/dot_op.h
paddle/fluid/operators/dot_op.h
+168
-0
python/paddle/__init__.py
python/paddle/__init__.py
+1
-1
python/paddle/fluid/tests/unittests/test_dot_op.py
python/paddle/fluid/tests/unittests/test_dot_op.py
+105
-0
python/paddle/fluid/tests/unittests/white_list/no_grad_set_white_list.py
...luid/tests/unittests/white_list/no_grad_set_white_list.py
+1
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-2
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+50
-2
未找到文件。
paddle/fluid/framework/ddim.cc
浏览文件 @
2fd728a9
...
...
@@ -48,6 +48,16 @@ bool DDim::operator==(const DDim& d) const {
bool
DDim
::
operator
!=
(
const
DDim
&
d
)
const
{
return
!
(
*
this
==
d
);
}
std
::
string
DDim
::
to_str
()
const
{
std
::
stringstream
ss
;
ss
<<
'['
;
if
(
rank_
>
0
)
ss
<<
dim_
[
0
];
for
(
int
i
=
1
;
i
<
rank_
;
++
i
)
ss
<<
", "
<<
dim_
[
i
];
ss
<<
']'
;
return
ss
.
str
();
}
struct
ProductVisitor
{
template
<
int
D
>
inline
int64_t
operator
()(
const
Dim
<
D
>&
dim
)
{
...
...
paddle/fluid/framework/ddim.h
浏览文件 @
2fd728a9
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <initializer_list>
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/fluid/framework/dim.h"
...
...
@@ -123,6 +124,8 @@ class DDim {
inline
int
size
()
const
{
return
rank_
;
}
std
::
string
to_str
()
const
;
private:
template
<
int
D
>
inline
Dim
<
D
>&
UnsafeCast
()
{
...
...
paddle/fluid/operators/dot_op.cc
0 → 100644
浏览文件 @
2fd728a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/dot_op.h"
namespace
paddle
{
namespace
operators
{
class
DotOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasInput
(
"X"
),
platform
::
errors
::
PreconditionNotMet
(
"Input(X) of DotOp should not be null."
));
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasInput
(
"Y"
),
platform
::
errors
::
PreconditionNotMet
(
"Input(Y) of DotOp should not be null."
));
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasOutput
(
"Out"
),
platform
::
errors
::
PreconditionNotMet
(
"Output(Out) of DotOp should not be null."
));
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_rank
=
(
size_t
)
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
true
,
1
==
x_rank
||
2
==
x_rank
,
platform
::
errors
::
PreconditionNotMet
(
"ShapeError: The dimensions of input tensor X (%s) "
"should be 1 or 2"
,
x_dims
.
to_str
()));
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
true
,
x_rank
==
(
size_t
)
y_dims
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"ShapeError: The shape of input tensor Y: %s should match with "
"input tenosr X: %s"
,
y_dims
.
to_str
(),
x_dims
.
to_str
()));
bool
shape_match
=
true
;
for
(
size_t
i
=
0
;
i
<
x_rank
;
++
i
)
{
if
(
x_dims
[
i
]
!=
y_dims
[
i
])
{
shape_match
=
false
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
true
,
shape_match
,
platform
::
errors
::
PreconditionNotMet
(
"ShapeError: The shape of input tensor X: %s should "
"be exactly the same "
"with input tensor Y: %s"
,
x_dims
.
to_str
(),
y_dims
.
to_str
()));
auto
dims
=
vectorize
(
x_dims
);
dims
[
dims
.
size
()
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dims
));
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
DotOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
final
{
AddInput
(
"X"
,
"(Tensor) The first input tensor. "
);
AddInput
(
"Y"
,
"(Tensor) The second input tensor. "
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
""
);
}
};
class
DotGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasInput
(
"X"
),
platform
::
errors
::
PreconditionNotMet
(
"Input(X) should not be null."
));
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasInput
(
"Y"
),
platform
::
errors
::
PreconditionNotMet
(
"Input(Y) should not be null."
));
PADDLE_ENFORCE_EQ
(
true
,
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
platform
::
errors
::
PreconditionNotMet
(
"Input(Out@GRAD) should not be null."
));
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
ShareDim
(
"X"
,
/*->*/
x_grad_name
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
x_grad_name
);
}
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
ShareDim
(
"Y"
,
/*->*/
y_grad_name
);
ctx
->
ShareLoD
(
"Y"
,
/*->*/
y_grad_name
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
DotOpGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"dot_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Y"
,
this
->
Input
(
"Y"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Y"
),
this
->
InputGrad
(
"Y"
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
dot
,
ops
::
DotOp
,
ops
::
DotOpMaker
,
ops
::
DotOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
DotOpGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
dot_grad
,
ops
::
DotGradOp
);
REGISTER_OP_CPU_KERNEL
(
dot
,
ops
::
DotKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DotKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
DotKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
DotKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
dot_grad
,
ops
::
DotGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
DotGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
DotGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
DotGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/dot_op.cu
0 → 100644
浏览文件 @
2fd728a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/dot_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
dot
,
ops
::
DotKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
DotKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
DotKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
DotKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
dot_grad
,
ops
::
DotGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
DotGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
DotGradKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
DotGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/dot_op.h
0 → 100644
浏览文件 @
2fd728a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
DotKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
tensor_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
tensor_y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
tensor_out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
tensor_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
#ifdef __NVCC__
if
(
1
==
tensor_out
->
dims
().
size
())
{
auto
out
=
framework
::
EigenScalar
<
T
>::
From
(
*
tensor_out
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_x
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_y
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
out
.
device
(
dev
)
=
(
x
*
y
).
sum
();
}
else
{
auto
out
=
EigenMatrix
<
T
>::
From
(
*
tensor_out
);
auto
x
=
EigenMatrix
<
T
>::
From
(
*
tensor_x
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
tensor_y
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
out
.
device
(
dev
)
=
(
x
*
y
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
}
#else
const
auto
*
data_x
=
tensor_x
->
data
<
T
>
();
const
auto
*
data_y
=
tensor_y
->
data
<
T
>
();
auto
*
data_out
=
tensor_out
->
data
<
T
>
();
auto
x_dims
=
tensor_x
->
dims
();
auto
step
=
x_dims
[
x_dims
.
size
()
-
1
];
int
size
=
static_cast
<
int
>
(
framework
::
product
(
x_dims
));
for
(
int
ind
=
-
1
,
j
=
0
;
j
<
size
;
++
j
)
{
if
(
j
%
step
==
0
)
{
++
ind
;
data_out
[
ind
]
=
data_x
[
j
]
*
data_y
[
j
];
}
else
{
data_out
[
ind
]
+=
data_x
[
j
]
*
data_y
[
j
];
}
}
#endif
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
DotGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
tensor_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
tensor_y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
tensor_dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
tensor_dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
tensor_dy
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
tensor_dx
)
tensor_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
tensor_dy
)
tensor_dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
#ifdef __NVCC__
if
(
1
==
tensor_dout
->
dims
().
size
())
{
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_dout
);
if
(
tensor_dx
)
{
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_y
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_dx
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
size
(
tensor_dx
->
numel
());
dx
.
device
(
dev
)
=
y
*
dout
.
broadcast
(
size
);
}
if
(
tensor_dy
)
{
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_x
);
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor_dy
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
size
(
tensor_dy
->
numel
());
dy
.
device
(
dev
)
=
x
*
dout
.
broadcast
(
size
);
}
}
else
{
auto
dout
=
EigenMatrix
<
T
>::
From
(
*
tensor_dout
);
if
(
tensor_dx
)
{
tensor_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y
=
EigenMatrix
<
T
>::
From
(
*
tensor_y
);
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
tensor_dx
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
2
>
size
(
1
,
tensor_dx
->
dims
()[
1
]);
dx
.
device
(
dev
)
=
y
*
dout
.
broadcast
(
size
);
}
if
(
tensor_dy
)
{
tensor_dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x
=
EigenMatrix
<
T
>::
From
(
*
tensor_x
);
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
tensor_dy
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
2
>
size
(
1
,
tensor_dy
->
dims
()[
1
]);
dy
.
device
(
dev
)
=
x
*
dout
.
broadcast
(
size
);
}
}
#else
const
auto
*
data_dout
=
tensor_dout
->
data
<
T
>
();
if
(
tensor_dx
)
{
auto
*
data_dx
=
tensor_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
*
data_y
=
tensor_y
->
data
<
T
>
();
const
framework
::
DDim
&
dim
=
tensor_x
->
dims
();
size_t
N
=
static_cast
<
size_t
>
(
framework
::
product
(
dim
));
auto
step
=
dim
[
dim
.
size
()
-
1
];
int
s
=
-
1
;
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
if
(
0
==
i
%
step
)
++
s
;
data_dx
[
i
]
=
data_y
[
i
]
*
data_dout
[
s
];
}
}
if
(
tensor_dy
)
{
auto
*
data_dy
=
tensor_dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
*
data_x
=
tensor_x
->
data
<
T
>
();
const
framework
::
DDim
&
dim
=
tensor_y
->
dims
();
size_t
N
=
static_cast
<
size_t
>
(
framework
::
product
(
dim
));
auto
step
=
dim
[
dim
.
size
()
-
1
];
int
s
=
-
1
;
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
{
if
(
0
==
i
%
step
)
++
s
;
data_dy
[
i
]
=
data_x
[
i
]
*
data_dout
[
s
];
}
}
#endif
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/__init__.py
浏览文件 @
2fd728a9
...
...
@@ -148,7 +148,7 @@ from .tensor.math import addmm #DEFINE_ALIAS
# from .tensor.io import save #DEFINE_ALIAS
# from .tensor.io import load #DEFINE_ALIAS
from
.tensor.linalg
import
matmul
#DEFINE_ALIAS
# from .tensor.linalg import dot
#DEFINE_ALIAS
from
.tensor.linalg
import
dot
#DEFINE_ALIAS
# from .tensor.linalg import einsum #DEFINE_ALIAS
# from .tensor.linalg import morm #DEFINE_ALIAS
# from .tensor.linalg import transpose #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_dot_op.py
0 → 100644
浏览文件 @
2fd728a9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
,
skip_check_grad_ci
from
paddle.fluid.op
import
Operator
from
paddle.fluid
import
compiler
,
Program
,
program_guard
class
DotOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dot"
self
.
init_dtype
()
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
121
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
3
,
[
121
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
dot
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
class
DotOpBatch
(
DotOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
132
]).
astype
(
self
.
dtype
).
reshape
(
[
11
,
12
])
self
.
y
=
np
.
random
.
uniform
(
1
,
3
,
[
132
]).
astype
(
self
.
dtype
).
reshape
(
[
11
,
12
])
self
.
out
=
np
.
sum
(
self
.
x
*
self
.
y
,
axis
=
1
).
reshape
([
11
,
1
])
class
TestDotOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
# float16 only can be set on GPU place
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
120
],
dtype
=
"uint8"
)
y1
=
fluid
.
layers
.
data
(
name
=
'y1'
,
shape
=
[
120
],
dtype
=
"uint8"
)
self
.
assertRaises
(
Exception
,
paddle
.
dot
,
x1
,
y1
)
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
2
,
3
],
dtype
=
"float32"
)
y2
=
fluid
.
layers
.
data
(
name
=
'y2'
,
shape
=
[
2
,
3
],
dtype
=
"float32"
)
self
.
assertRaises
(
Exception
,
paddle
.
dot
,
x2
,
y2
)
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
,
shape
=
[
3
],
dtype
=
"float32"
)
y3
=
fluid
.
layers
.
data
(
name
=
'y3'
,
shape
=
[
2
,
3
],
dtype
=
"float32"
)
self
.
assertRaises
(
Exception
,
paddle
.
dot
,
x2
,
y3
)
class
TestDygraph
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
with
fluid
.
dygraph
.
guard
():
x1
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
1
,
3
]).
astype
(
np
.
float32
))
y1
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
2
,
5
]).
astype
(
np
.
float32
))
self
.
assertTrue
(
np
.
allclose
(
paddle
.
dot
(
x1
,
y1
).
numpy
(),
np
.
array
([
17
])))
x1
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
1
,
3
],
[
3
,
5
]]).
astype
(
np
.
float32
))
y1
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([[
2
,
5
],
[
6
,
8
]]).
astype
(
np
.
float32
))
self
.
assertTrue
(
np
.
array_equal
(
paddle
.
dot
(
x1
,
y1
).
numpy
(),
np
.
array
([[
17
],
[
58
]])))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/white_list/no_grad_set_white_list.py
浏览文件 @
2fd728a9
...
...
@@ -34,6 +34,7 @@ NEED_TO_FIX_OP_LIST = [
'deformable_conv_v1'
,
'depthwise_conv2d'
,
'depthwise_conv2d_transpose'
,
'dot'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_max'
,
...
...
python/paddle/tensor/__init__.py
浏览文件 @
2fd728a9
...
...
@@ -123,7 +123,7 @@ from .math import addmm #DEFINE_ALIAS
# from .io import save #DEFINE_ALIAS
# from .io import load #DEFINE_ALIAS
from
.linalg
import
matmul
#DEFINE_ALIAS
# from .linalg import dot
#DEFINE_ALIAS
from
.linalg
import
dot
#DEFINE_ALIAS
# from .linalg import einsum #DEFINE_ALIAS
# from .linalg import morm #DEFINE_ALIAS
# from .linalg import transpose #DEFINE_ALIAS
...
...
@@ -131,7 +131,6 @@ from .linalg import dist #DEFINE_ALIAS
# from .linalg import t #DEFINE_ALIAS
# from .linalg import cross #DEFINE_ALIAS
# from .linalg import cholesky #DEFINE_ALIAS
# from .linalg import dot #DEFINE_ALIAS
# from .manipulation import cast #DEFINE_ALIAS
# from .manipulation import concat #DEFINE_ALIAS
# from .manipulation import expand #DEFINE_ALIAS
...
...
python/paddle/tensor/linalg.py
浏览文件 @
2fd728a9
...
...
@@ -16,10 +16,9 @@ from ..fluid.layer_helper import LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
from
..fluid.framework
import
in_dygraph_mode
# TODO: define functions of linear algebra
__all__
=
[
'matmul'
,
#
'dot',
'dot'
,
# 'einsum',
# 'morm',
# 'transpose',
...
...
@@ -234,3 +233,52 @@ def dist(x, y, p=2):
helper
.
append_op
(
type
=
'dist'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
def
dot
(
x
,
y
,
name
=
None
):
"""
This operator calculates inner product for vectors.
.. note::
Only support 1-d Tensor(vector).
Parameters:
x(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype should be ``float32``, ``float64``, ``int32``, ``int64``
y(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype soulde be ``float32``, ``float64``, ``int32``, ``int64``
name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(np.random.uniform(0.1, 1, [10]).astype(np.float32))
y = fluid.dygraph.to_variable(np.random.uniform(1, 3, [10]).astype(np.float32))
z = paddle.dot(x, y)
print(z.numpy())
"""
op_type
=
'dot'
assert
x
is
not
None
,
'x cannot be None in {}'
.
format
(
op_type
)
assert
y
is
not
None
,
'y cannot be None in {}'
.
format
(
op_type
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
op_type
)
check_variable_and_dtype
(
y
,
'y'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
op_type
)
helper
=
LayerHelper
(
op_type
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"dot"
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
attrs
=
{},
outputs
=
{
"Out"
:
out
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录