未验证 提交 2f5fb031 编写于 作者: Z zhangkaihuo 提交者: GitHub

Restructure sparse conv (#40570)

restructure conv
上级 3898080e
...@@ -93,7 +93,7 @@ inline HOSTDEVICE void IndexToPoint( ...@@ -93,7 +93,7 @@ inline HOSTDEVICE void IndexToPoint(
} }
inline void GetOutShape(const DDim& x_dims, inline void GetOutShape(const DDim& x_dims,
const DDim& kernel_dims, const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
...@@ -102,17 +102,17 @@ inline void GetOutShape(const DDim& x_dims, ...@@ -102,17 +102,17 @@ inline void GetOutShape(const DDim& x_dims,
x_dims.size(), x_dims.size(),
5, 5,
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)")); phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
PADDLE_ENFORCE_EQ(kernel_dims.size(), PADDLE_ENFORCE_EQ(kernel_sizes.size(),
5, 5,
phi::errors::InvalidArgument( phi::errors::InvalidArgument(
"the shape of kernel should be (D, H, W, C, OC)")); "the shape of kernel should be (D, H, W, C, OC)"));
// infer out shape // infer out shape
(*out_dims)[0] = x_dims[0]; (*out_dims)[0] = x_dims[0];
(*out_dims)[4] = kernel_dims[4]; (*out_dims)[4] = kernel_sizes[4];
for (int i = 1; i < 4; i++) { for (int i = 1; i < 4; i++) {
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] - (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) / dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
strides[i - 1] + strides[i - 1] +
1; 1;
} }
...@@ -131,7 +131,7 @@ template <typename T, typename Context> ...@@ -131,7 +131,7 @@ template <typename T, typename Context>
inline void SubmPreProcess(const Context& dev_ctx, inline void SubmPreProcess(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& kernel, const DenseTensor& kernel,
const SparseCooTensor& out_grad, const DenseTensor& out_grad,
const int in_channels, const int in_channels,
const int out_channels, const int out_channels,
const int half_kernel_size, const int half_kernel_size,
...@@ -142,11 +142,11 @@ inline void SubmPreProcess(const Context& dev_ctx, ...@@ -142,11 +142,11 @@ inline void SubmPreProcess(const Context& dev_ctx,
blas.GEMM(CblasTrans, blas.GEMM(CblasTrans,
CblasNoTrans, CblasNoTrans,
x.non_zero_elements().dims()[1], x.non_zero_elements().dims()[1],
out_grad.non_zero_elements().dims()[1], out_grad.dims()[1],
x.non_zero_elements().dims()[0], x.non_zero_elements().dims()[0],
static_cast<T>(1), static_cast<T>(1),
x.non_zero_elements().data<T>(), x.non_zero_elements().data<T>(),
out_grad.non_zero_elements().data<T>(), out_grad.data<T>(),
static_cast<T>(0), static_cast<T>(0),
d_kernel_ptr + half_kernel_size * in_channels * out_channels); d_kernel_ptr + half_kernel_size * in_channels * out_channels);
...@@ -155,11 +155,11 @@ inline void SubmPreProcess(const Context& dev_ctx, ...@@ -155,11 +155,11 @@ inline void SubmPreProcess(const Context& dev_ctx,
T* x_grad_ptr = x_grad->data<T>(); T* x_grad_ptr = x_grad->data<T>();
blas.GEMM(CblasNoTrans, blas.GEMM(CblasNoTrans,
CblasTrans, CblasTrans,
out_grad.non_zero_elements().dims()[0], out_grad.dims()[0],
in_channels, in_channels,
out_grad.non_zero_elements().dims()[1], out_grad.dims()[1],
static_cast<T>(1), static_cast<T>(1),
out_grad.non_zero_elements().data<T>(), out_grad.data<T>(),
kernel.data<T>() + half_kernel_size * in_channels * out_channels, kernel.data<T>() + half_kernel_size * in_channels * out_channels,
static_cast<T>(0), static_cast<T>(0),
x_grad_ptr); x_grad_ptr);
......
...@@ -27,7 +27,7 @@ void Conv3dGradKernel(const Context& dev_ctx, ...@@ -27,7 +27,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& rulebook, const DenseTensor& rulebook,
const DenseTensor& kernel, const DenseTensor& kernel,
const SparseCooTensor& out_grad, const DenseTensor& out_grad,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
...@@ -41,7 +41,7 @@ std::vector<DenseTensor> Conv3dGrad(const Context& dev_ctx, ...@@ -41,7 +41,7 @@ std::vector<DenseTensor> Conv3dGrad(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& rulebook, const DenseTensor& rulebook,
const DenseTensor& kernel, const DenseTensor& kernel,
const SparseCooTensor& out_grad, const DenseTensor& out_grad,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
......
...@@ -34,7 +34,7 @@ using Dims4D = phi::funcs::sparse::Dims4D; ...@@ -34,7 +34,7 @@ using Dims4D = phi::funcs::sparse::Dims4D;
template <typename T, typename Context> template <typename T, typename Context>
void ProductRuleBook(const Context& dev_ctx, void ProductRuleBook(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& kernel, const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
...@@ -42,19 +42,19 @@ void ProductRuleBook(const Context& dev_ctx, ...@@ -42,19 +42,19 @@ void ProductRuleBook(const Context& dev_ctx,
const bool subm, const bool subm,
DenseTensor* rulebook, DenseTensor* rulebook,
DenseTensor* counter_per_kernel) { DenseTensor* counter_per_kernel) {
const auto& kernel_dims = kernel.dims();
const int64_t non_zero_num = x.nnz(); const int64_t non_zero_num = x.nnz();
const auto& non_zero_indices = x.non_zero_indices(); const auto& non_zero_indices = x.non_zero_indices();
const int* indices_ptr = non_zero_indices.data<int>(); const int* indices_ptr = non_zero_indices.data<int>();
int* counter_ptr = counter_per_kernel->data<int>(); int* counter_ptr = counter_per_kernel->data<int>();
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2]; int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
memset(counter_ptr, 0, kernel_size * sizeof(int)); memset(counter_ptr, 0, kernel_size * sizeof(int));
int rulebook_len = 0; int rulebook_len = 0;
// calc the rulebook_len // calc the rulebook_len
const auto& x_dims = x.dims(); const auto& x_dims = x.dims();
const Dims4D c_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]); const Dims4D c_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
const Dims4D c_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]); const Dims4D c_kernel_dims(
1, kernel_sizes[2], kernel_sizes[1], kernel_sizes[0]);
const Dims4D c_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]); const Dims4D c_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
const Dims4D c_paddings(1, paddings[2], paddings[1], paddings[0]); const Dims4D c_paddings(1, paddings[2], paddings[1], paddings[0]);
const Dims4D c_strides(1, strides[2], strides[1], strides[0]); const Dims4D c_strides(1, strides[2], strides[1], strides[0]);
...@@ -75,9 +75,9 @@ void ProductRuleBook(const Context& dev_ctx, ...@@ -75,9 +75,9 @@ void ProductRuleBook(const Context& dev_ctx,
auto f_calc_rulebook = [&](int* rulebook_ptr) { auto f_calc_rulebook = [&](int* rulebook_ptr) {
int kernel_index = 0, rulebook_index = 0; int kernel_index = 0, rulebook_index = 0;
for (int kz = 0; kz < kernel_dims[0]; kz++) { for (int kz = 0; kz < kernel_sizes[0]; kz++) {
for (int ky = 0; ky < kernel_dims[1]; ky++) { for (int ky = 0; ky < kernel_sizes[1]; ky++) {
for (int kx = 0; kx < kernel_dims[2]; kx++) { for (int kx = 0; kx < kernel_sizes[2]; kx++) {
++kernel_index; ++kernel_index;
for (int64_t i = 0; i < non_zero_num; i++) { for (int64_t i = 0; i < non_zero_num; i++) {
int batch = indices_ptr[i]; int batch = indices_ptr[i];
......
...@@ -33,7 +33,7 @@ void Conv3dGradKernel(const Context& dev_ctx, ...@@ -33,7 +33,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& rulebook, const DenseTensor& rulebook,
const DenseTensor& kernel, const DenseTensor& kernel,
const SparseCooTensor& out_grad, const DenseTensor& out_grad,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
...@@ -113,7 +113,7 @@ void Conv3dGradKernel(const Context& dev_ctx, ...@@ -113,7 +113,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
rulebook_len, rulebook_len,
in_channels, in_channels,
in_features_ptr); in_features_ptr);
Gather<T>(out_grad.non_zero_elements().data<T>(), Gather<T>(out_grad.data<T>(),
rulebook_ptr + rulebook_len * 2, rulebook_ptr + rulebook_len * 2,
rulebook_len, rulebook_len,
out_channels, out_channels,
......
...@@ -44,8 +44,13 @@ void Conv3dKernel(const Context& dev_ctx, ...@@ -44,8 +44,13 @@ void Conv3dKernel(const Context& dev_ctx,
const auto& kernel_dims = kernel.dims(); const auto& kernel_dims = kernel.dims();
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2]; int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
DDim out_dims = {1, 1, 1, 1, 1}; DDim out_dims = {1, 1, 1, 1, 1};
std::vector<int> kernel_sizes(kernel_dims.size());
for (int i = 0; i < kernel_dims.size(); i++) {
kernel_sizes[i] = kernel_dims[i];
}
phi::funcs::sparse::GetOutShape( phi::funcs::sparse::GetOutShape(
x_dims, kernel_dims, paddings, dilations, strides, &out_dims); x_dims, kernel_sizes, paddings, dilations, strides, &out_dims);
const int in_channels = kernel_dims[3]; const int in_channels = kernel_dims[3];
const int out_channels = kernel_dims[4]; const int out_channels = kernel_dims[4];
...@@ -63,7 +68,7 @@ void Conv3dKernel(const Context& dev_ctx, ...@@ -63,7 +68,7 @@ void Conv3dKernel(const Context& dev_ctx,
ProductRuleBook<T, Context>(dev_ctx, ProductRuleBook<T, Context>(dev_ctx,
x, x,
kernel, kernel_sizes,
subm_paddings, subm_paddings,
dilations, dilations,
subm_strides, subm_strides,
......
...@@ -23,11 +23,15 @@ limitations under the License. */ ...@@ -23,11 +23,15 @@ limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h" #include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h" #include "paddle/phi/kernels/sparse/convolution_kernel.h"
namespace phi { namespace phi {
namespace sparse { namespace sparse {
using Dims4D = phi::funcs::sparse::Dims4D;
// TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace // TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace
// this kernel with phi::GatherCUDAKernel; // this kernel with phi::GatherCUDAKernel;
// Vectorization can be used to improve read and write bandwidth // Vectorization can be used to improve read and write bandwidth
...@@ -139,5 +143,494 @@ inline int* SortedAndUniqueIndex(const Context& dev_ctx, ...@@ -139,5 +143,494 @@ inline int* SortedAndUniqueIndex(const Context& dev_ctx,
return new_end.first; return new_end.first;
} }
template <typename T>
__global__ void SetFlagAndUpdateCounterKernel(const int* indexs,
const int n,
const int rulebook_len,
const int kernel_size,
T* rulebook_ptr,
int* counter_ptr) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
extern __shared__ int cache_count[]; // kernel_size
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
cache_count[i] = 0;
}
__syncthreads();
for (int i = tid; i < n; i += gridDim.x * blockDim.x) {
int index = indexs[i];
int kernel_index = rulebook_ptr[index];
rulebook_ptr[index + rulebook_len] = -1;
rulebook_ptr[index + 2 * rulebook_len] = -1;
rulebook_ptr[index] = -1;
atomicAdd(&cache_count[kernel_index], 1);
}
__syncthreads();
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
atomicSub(&counter_ptr[i], cache_count[i]);
}
}
/**
* @brief: update the out index and indices
* unique_keys: save the index of the output feature list
* unique_values: indiates the index of key before deduplication
* out_indexs: indicates the position of the output index in the rulebook
* rulebook_len: indicates the length of rulebook
* out_dims: indicates the output dims
* out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
* rulebook_out_indexs: the output index in rulebook
**/
template <typename T>
__global__ void UpdateIndexKernel(const int* unique_keys,
const int* unique_values,
const int* out_indexs,
const int non_zero_num,
const int rulebook_len,
const Dims4D out_dims,
T* out_indices,
T* rulebook_out_indexs) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
const int index = unique_keys[i];
int batch, x, y, z;
phi::funcs::sparse::IndexToPoint<Dims4D>(
index, out_dims, &batch, &x, &y, &z);
// get out indices
out_indices[i] = batch;
out_indices[i + non_zero_num] = z;
out_indices[i + non_zero_num * 2] = y;
out_indices[i + non_zero_num * 3] = x;
// update rulebook
int start = unique_values[i];
int end = i == non_zero_num - 1 ? rulebook_len : unique_values[i + 1];
// max(end-start) = kernel_size
for (int j = start; j < end; j++) {
rulebook_out_indexs[out_indexs[j]] = i;
}
}
}
// brief: calculation the distance between start and end
template <typename T>
__global__ void DistanceKernel(const T* start, const T* end, int* distance) {
if (threadIdx.x == 0) {
*distance = end - start;
}
}
/**
* @brief product rulebook
* for input_i in x_indices:
* if input_i participate in the convolution calculation:
* infer the output_i by input_i and kernel_i
* save output_i
*
* x_indices: the indices of input features
* x_dims: the input dims
* kernel_dims: the kernel dims
* out_dims: the output dims
* non_zero_num: the number of input features
* rulebook: the rulebook to save the kernel index, input index and output index
* counter: save the number of times each location in the kernel participates in
*the caculation
**/
template <typename T>
__global__ void ProductRuleBookKernel(const T* x_indices,
const Dims4D x_dims,
const Dims4D kernel_dims,
const Dims4D out_dims,
const int64_t non_zero_num,
const Dims4D paddings,
const Dims4D dilations,
const Dims4D strides,
const bool subm,
T* rulebook,
int* counter,
int* in_indexs) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
extern __shared__ int counter_buf[]; // kernel_size
const int kernel_size = kernel_dims[3] * kernel_dims[2] * kernel_dims[1];
const int offset = kernel_size * non_zero_num;
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
counter_buf[i] = 0;
}
__syncthreads();
for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
int kernel_index = 0;
int batch = x_indices[i];
int in_z = x_indices[i + non_zero_num];
int in_y = x_indices[i + 2 * non_zero_num];
int in_x = x_indices[i + 3 * non_zero_num];
if (subm) {
in_indexs[i] = PointToIndex(batch, in_x, in_y, in_z, x_dims);
}
for (int kz = 0; kz < kernel_dims[1]; kz++) {
for (int ky = 0; ky < kernel_dims[2]; ky++) {
for (int kx = 0; kx < kernel_dims[3]; kx++) {
int in_i = -1, out_index = -1, kernel_i = -1;
if (phi::funcs::sparse::Check(x_dims,
kernel_dims,
paddings,
dilations,
strides,
in_x,
in_y,
in_z,
kx,
ky,
kz)) {
int out_z = (in_z + paddings[1] - kz * dilations[1]) / strides[1];
int out_y = (in_y + paddings[2] - ky * dilations[2]) / strides[2];
int out_x = (in_x + paddings[3] - kx * dilations[3]) / strides[3];
in_i = i;
out_index = phi::funcs::sparse::PointToIndex<Dims4D>(
batch, out_x, out_y, out_z, out_dims);
atomicAdd(&counter_buf[kernel_index], 1);
kernel_i = kernel_index;
}
rulebook[kernel_index * non_zero_num + i] = kernel_i;
rulebook[kernel_index * non_zero_num + offset + i] = in_i;
rulebook[kernel_index * non_zero_num + offset * 2 + i] = out_index;
++kernel_index;
}
}
}
}
__syncthreads();
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
atomicAdd(&counter[i], counter_buf[i]);
}
}
// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
// the kernel_index: 0, 0, 0, 1, 1, 1, 2, 2, ....
// the out_index(key): 20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value): 0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
// unique_key: 20, 25, 30, 33
// unique_values: 0, 2, 3, 5
// the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
// the new out_index: 0, 2, 3, 2, 3, 0, 1
template <typename T, typename Context>
int ProductRuleBook(const Context& dev_ctx,
const SparseCooTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const DDim& out_dims,
const bool subm,
DenseTensor* rulebook,
DenseTensor* counter_per_kernel,
DenseTensor* offsets_per_kernel,
DenseTensor* out_index,
DenseTensor* unique_key,
DenseTensor* unique_value,
SparseCooTensor* out,
std::vector<int>* h_counter,
std::vector<int>* h_offsets) {
const int64_t non_zero_num = x.nnz();
const auto& non_zero_indices = x.non_zero_indices();
const int* indices_ptr = non_zero_indices.data<int>();
DenseTensor in_indexs = phi::Empty<Context>(
dev_ctx, DenseTensorMeta(DataType::INT32, {x.nnz()}, DataLayout::NCHW));
int* counter_ptr = counter_per_kernel->data<int>();
int* offsets_ptr = offsets_per_kernel->data<int>();
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const int rulebook_rows = 3;
const int rulebook_cols = kernel_size * non_zero_num;
rulebook->ResizeAndAllocate({rulebook_rows, rulebook_cols});
int* rulebook_ptr = rulebook->data<int>();
const auto x_dims = x.dims();
Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
Dims4D d_kernel_dims(1, kernel_sizes[2], kernel_sizes[1], kernel_sizes[0]);
Dims4D d_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
Dims4D d_paddings(1, paddings[2], paddings[1], paddings[0]);
Dims4D d_strides(1, strides[2], strides[1], strides[0]);
Dims4D d_dilations(1, dilations[2], dilations[1], dilations[0]);
// 1. product rule book
phi::funcs::SetConstant<Context, int> set_zero;
set_zero(dev_ctx, counter_per_kernel, 0);
auto config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
ProductRuleBookKernel<int><<<config.block_per_grid.x,
config.thread_per_block.x,
kernel_size * sizeof(int),
dev_ctx.stream()>>>(indices_ptr,
d_x_dims,
d_kernel_dims,
d_out_dims,
non_zero_num,
d_paddings,
d_dilations,
d_strides,
subm,
rulebook_ptr,
counter_ptr,
in_indexs.data<int>());
// 2. remove -1
#ifdef PADDLE_WITH_HIP
int* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
int* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
rulebook_ptr,
rulebook_ptr + rulebook_rows * rulebook_cols,
-1);
DistanceKernel<int><<<1, 1, 0, dev_ctx.stream()>>>(
rulebook_ptr, last, rulebook_ptr + 3 * kernel_size * non_zero_num - 1);
int rulebook_len = 0;
phi::backends::gpu::GpuMemcpyAsync(
&rulebook_len,
rulebook_ptr + 3 * kernel_size * non_zero_num - 1,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
rulebook_len /= 3;
dev_ctx.Wait();
if (subm) {
// At present, hashtable is not used to map the input and output indexes.
// At present, the intermediate output index is generated by normal
// convolution,
// and then the intermediate output index is subtracted from the input index
// to obain the rulebook.
// get difference
int32_t* A_key_ptr = rulebook_ptr + 2 * rulebook_len;
int32_t* B_key_ptr = in_indexs.data<int>();
DenseTensor A_val = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len}, DataLayout::NCHW));
DenseTensor B_val = phi::Empty<Context>(
dev_ctx, DenseTensorMeta(DataType::INT32, {x.nnz()}, DataLayout::NCHW));
phi::IndexKernel<int, kps::IdentityFunctor<int>>(
dev_ctx, &A_val, kps::IdentityFunctor<int>());
phi::IndexKernel<int, kps::IdentityFunctor<int>>(
dev_ctx, &B_val, kps::IdentityFunctor<int>());
DenseTensor key_result = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len + 1}, DataLayout::NCHW));
DenseTensor val_result = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len}, DataLayout::NCHW));
#ifdef PADDLE_WITH_HIP
thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
counter_ptr,
counter_ptr + kernel_size,
offsets_ptr);
std::vector<int> offsets(kernel_size, 0);
// TODO(zhangkaihuo): used unified memcpy interface
phi::backends::gpu::GpuMemcpyAsync(offsets.data(),
offsets_ptr,
kernel_size * sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
thrust::pair<int*, int*> end;
// Because set_diff does not support duplicate data, set_diff is performed
// separately for each segment of data.
// TODO(zhangkaihuo): Using hashtable here may get better performance,
// further tests ared needed.
for (int i = 0; i < kernel_size; i++) {
int start = offsets[i];
int stop = i == kernel_size - 1 ? rulebook_len : offsets[i + 1];
int* key_result_start = (i == 0 ? key_result.data<int>() : end.first);
int* val_result_start = i == 0 ? val_result.data<int>() : end.second;
end =
#ifdef PADDLE_WITH_HIP
thrust::set_difference_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::set_difference_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
A_key_ptr + start,
A_key_ptr + stop,
B_key_ptr,
B_key_ptr + x.nnz(),
A_val.data<int>() + start,
B_val.data<int>(),
key_result_start,
val_result_start);
}
DistanceKernel<int><<<1, 1, 0, dev_ctx.stream()>>>(
key_result.data<int>(),
end.first,
key_result.data<int>() + rulebook_len);
int len = 0;
phi::backends::gpu::GpuMemcpyAsync(&len,
key_result.data<int>() + rulebook_len,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
// set the diff value = -1, and update counter
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, len, 1);
SetFlagAndUpdateCounterKernel<int><<<config.block_per_grid.x,
config.thread_per_block,
kernel_size * sizeof(int),
dev_ctx.stream()>>>(
val_result.data<int>(),
len,
rulebook_len,
kernel_size,
rulebook_ptr,
counter_ptr);
// remove -1
#ifdef PADDLE_WITH_HIP
int* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
int* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
rulebook_ptr,
rulebook_ptr + 3 * rulebook_len,
-1);
DistanceKernel<int><<<1, 1, 0, dev_ctx.stream()>>>(
rulebook_ptr, last, key_result.data<int>() + rulebook_len);
phi::backends::gpu::GpuMemcpyAsync(&rulebook_len,
key_result.data<int>() + rulebook_len,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
rulebook_len /= 3;
}
#ifdef PADDLE_WITH_HIP
thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
counter_ptr,
counter_ptr + kernel_size,
offsets_ptr);
#ifdef PADDLE_WITH_HIP
phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
counter_ptr,
kernel_size * sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
offsets_ptr,
kernel_size * sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
#else
phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
counter_ptr,
kernel_size * sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
offsets_ptr,
kernel_size * sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
#endif
rulebook->Resize({rulebook_rows, rulebook_len});
// 3. sorted or merge the out index
out_index->ResizeAndAllocate({rulebook_len});
unique_value->ResizeAndAllocate({rulebook_len});
unique_key->ResizeAndAllocate({rulebook_len});
int* out_index_ptr = out_index->data<int>();
int* unique_value_ptr = unique_value->data<int>();
int* unique_key_ptr = unique_key->data<int>();
int* new_end = SortedAndUniqueIndex(dev_ctx,
rulebook_ptr + 2 * rulebook_len,
rulebook_len,
out_index,
unique_key,
unique_value);
// thrust::distance doesn't support stream parameters
// const int out_non_zero_num = thrust::distance(unique_key_ptr,
// new_end.first);
DistanceKernel<int><<<1, 1>>>(
unique_key_ptr,
new_end,
rulebook_ptr + rulebook_rows * rulebook_cols - 1);
int out_non_zero_num = 0;
#ifdef PADDLE_WITH_HIP
phi::backends::gpu::GpuMemcpyAsync(
&out_non_zero_num,
rulebook_ptr + rulebook_rows * rulebook_cols - 1,
sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
#else
phi::backends::gpu::GpuMemcpyAsync(
&out_non_zero_num,
rulebook_ptr + rulebook_rows * rulebook_cols - 1,
sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
#endif
dev_ctx.Wait();
// 5. update out_indices and rulebook by unique_value_ptr
const int64_t sparse_dim = 4;
DenseTensorMeta indices_meta(
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(
x.dtype(), {out_non_zero_num, kernel_sizes[4]}, x.layout());
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
int* out_indices_ptr = out_indices.data<int>();
config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_non_zero_num, 1);
UpdateIndexKernel<int><<<config.block_per_grid.x,
config.thread_per_block.x,
0,
dev_ctx.stream()>>>(unique_key_ptr,
unique_value_ptr,
out_index_ptr,
out_non_zero_num,
rulebook_len,
d_out_dims,
out_indices_ptr,
rulebook_ptr + 2 * rulebook_len);
out->SetMember(out_indices, out_values, out_dims, true);
return rulebook_len;
}
} // namespace sparse } // namespace sparse
} // namespace phi } // namespace phi
...@@ -38,7 +38,7 @@ void Conv3dGradKernel(const Context& dev_ctx, ...@@ -38,7 +38,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const SparseCooTensor& x, const SparseCooTensor& x,
const DenseTensor& rulebook, const DenseTensor& rulebook,
const DenseTensor& kernel, const DenseTensor& kernel,
const SparseCooTensor& out_grad, const DenseTensor& out_grad,
const std::vector<int>& paddings, const std::vector<int>& paddings,
const std::vector<int>& dilations, const std::vector<int>& dilations,
const std::vector<int>& strides, const std::vector<int>& strides,
...@@ -140,12 +140,11 @@ void Conv3dGradKernel(const Context& dev_ctx, ...@@ -140,12 +140,11 @@ void Conv3dGradKernel(const Context& dev_ctx,
GatherKernel<T, int><<<config.block_per_grid.x, GatherKernel<T, int><<<config.block_per_grid.x,
config.thread_per_block.x, config.thread_per_block.x,
0, 0,
dev_ctx.stream()>>>( dev_ctx.stream()>>>(out_grad.data<T>(),
out_grad.non_zero_elements().data<T>(), rulebook_ptr + rulebook_len * 2,
rulebook_ptr + rulebook_len * 2, out_grad_features_ptr,
out_grad_features_ptr, rulebook_len,
rulebook_len, out_channels);
out_channels);
const T* kernel_ptr = kernel.data<T>(); const T* kernel_ptr = kernel.data<T>();
for (int i = 0; i < kernel_size; i++) { for (int i = 0; i < kernel_size; i++) {
......
...@@ -12,515 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,515 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h" #include "paddle/phi/kernels/sparse/convolution_kernel.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h" #include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
namespace phi { namespace phi {
namespace sparse { namespace sparse {
using Dims4D = phi::funcs::sparse::Dims4D;
__global__ void SetFlagAndUpdateCounterKernel(const int* indexs,
const int n,
const int rulebook_len,
const int kernel_size,
int* rulebook_ptr,
int* counter_ptr) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
extern __shared__ int cache_count[]; // kernel_size
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
cache_count[i] = 0;
}
__syncthreads();
for (int i = tid; i < n; i += gridDim.x * blockDim.x) {
int index = indexs[i];
int kernel_index = rulebook_ptr[index];
rulebook_ptr[index + rulebook_len] = -1;
rulebook_ptr[index + 2 * rulebook_len] = -1;
rulebook_ptr[index] = -1;
atomicAdd(&cache_count[kernel_index], 1);
}
__syncthreads();
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
atomicSub(&counter_ptr[i], cache_count[i]);
}
}
/**
* @brief: update the out index and indices
* unique_keys: save the index of the output feature list
* unique_values: indiates the index of key before deduplication
* out_indexs: indicates the position of the output index in the rulebook
* rulebook_len: indicates the length of rulebook
* out_dims: indicates the output dims
* out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
* rulebook_out_indexs: the output index in rulebook
**/
__global__ void UpdateIndexKernel(const int* unique_keys,
const int* unique_values,
const int* out_indexs,
const int non_zero_num,
const int rulebook_len,
const Dims4D out_dims,
int* out_indices,
int* rulebook_out_indexs) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
const int index = unique_keys[i];
int batch, x, y, z;
phi::funcs::sparse::IndexToPoint<Dims4D>(
index, out_dims, &batch, &x, &y, &z);
// get out indices
out_indices[i] = batch;
out_indices[i + non_zero_num] = z;
out_indices[i + non_zero_num * 2] = y;
out_indices[i + non_zero_num * 3] = x;
// update rulebook
int start = unique_values[i];
int end = i == non_zero_num - 1 ? rulebook_len : unique_values[i + 1];
// max(end-start) = kernel_size
for (int j = start; j < end; j++) {
rulebook_out_indexs[out_indexs[j]] = i;
}
}
}
/**
* @brief product rulebook
* for input_i in x_indices:
* if input_i participate in the convolution calculation:
* infer the output_i by input_i and kernel_i
* save output_i
*
* x_indices: the indices of input features
* x_dims: the input dims
* kernel_dims: the kernel dims
* out_dims: the output dims
* non_zero_num: the number of input features
* rulebook: the rulebook to save the kernel index, input index and output index
* counter: save the number of times each location in the kernel participates in
*the caculation
**/
__global__ void ProductRuleBookKernel(const int* x_indices,
const Dims4D x_dims,
const Dims4D kernel_dims,
const Dims4D out_dims,
const int64_t non_zero_num,
const Dims4D paddings,
const Dims4D dilations,
const Dims4D strides,
const bool subm,
int* rulebook,
int* counter,
int* in_indexs) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
extern __shared__ int counter_buf[]; // kernel_size
const int kernel_size = kernel_dims[3] * kernel_dims[2] * kernel_dims[1];
const int offset = kernel_size * non_zero_num;
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
counter_buf[i] = 0;
}
__syncthreads();
for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
int kernel_index = 0;
int batch = x_indices[i];
int in_z = x_indices[i + non_zero_num];
int in_y = x_indices[i + 2 * non_zero_num];
int in_x = x_indices[i + 3 * non_zero_num];
if (subm) {
in_indexs[i] = PointToIndex(batch, in_x, in_y, in_z, x_dims);
}
for (int kz = 0; kz < kernel_dims[1]; kz++) {
for (int ky = 0; ky < kernel_dims[2]; ky++) {
for (int kx = 0; kx < kernel_dims[3]; kx++) {
int in_i = -1, out_index = -1, kernel_i = -1;
if (phi::funcs::sparse::Check(x_dims,
kernel_dims,
paddings,
dilations,
strides,
in_x,
in_y,
in_z,
kx,
ky,
kz)) {
int out_z = (in_z + paddings[1] - kz * dilations[1]) / strides[1];
int out_y = (in_y + paddings[2] - ky * dilations[2]) / strides[2];
int out_x = (in_x + paddings[3] - kx * dilations[3]) / strides[3];
in_i = i;
out_index = phi::funcs::sparse::PointToIndex<Dims4D>(
batch, out_x, out_y, out_z, out_dims);
atomicAdd(&counter_buf[kernel_index], 1);
kernel_i = kernel_index;
}
rulebook[kernel_index * non_zero_num + i] = kernel_i;
rulebook[kernel_index * non_zero_num + offset + i] = in_i;
rulebook[kernel_index * non_zero_num + offset * 2 + i] = out_index;
++kernel_index;
}
}
}
}
__syncthreads();
for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
atomicAdd(&counter[i], counter_buf[i]);
}
}
// brief: calculation the distance between start and end
__global__ void DistanceKernel(const int* start,
const int* end,
int* distance) {
if (threadIdx.x == 0) {
*distance = end - start;
}
}
// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
// the kernel_index: 0, 0, 0, 1, 1, 1, 2, 2, ....
// the out_index(key): 20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value): 0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
// unique_key: 20, 25, 30, 33
// unique_values: 0, 2, 3, 5
// the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
// the new out_index: 0, 2, 3, 2, 3, 0, 1
template <typename T, typename Context>
int ProductRuleBook(const Context& dev_ctx,
const SparseCooTensor& x,
const DenseTensor& kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const DDim& out_dims,
const bool subm,
DenseTensor* rulebook,
DenseTensor* counter_per_kernel,
DenseTensor* offsets_per_kernel,
DenseTensor* out_index,
DenseTensor* unique_key,
DenseTensor* unique_value,
SparseCooTensor* out,
std::vector<int>* h_counter,
std::vector<int>* h_offsets) {
const auto& kernel_dims = kernel.dims();
const int64_t non_zero_num = x.nnz();
const auto& non_zero_indices = x.non_zero_indices();
const int* indices_ptr = non_zero_indices.data<int>();
DenseTensor in_indexs = phi::Empty<Context>(
dev_ctx, DenseTensorMeta(DataType::INT32, {x.nnz()}, DataLayout::NCHW));
int* counter_ptr = counter_per_kernel->data<int>();
int* offsets_ptr = offsets_per_kernel->data<int>();
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
const int rulebook_rows = 3;
const int rulebook_cols = kernel_size * non_zero_num;
rulebook->ResizeAndAllocate({rulebook_rows, rulebook_cols});
int* rulebook_ptr = rulebook->data<int>();
const auto x_dims = x.dims();
Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
Dims4D d_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]);
Dims4D d_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
Dims4D d_paddings(1, paddings[2], paddings[1], paddings[0]);
Dims4D d_strides(1, strides[2], strides[1], strides[0]);
Dims4D d_dilations(1, dilations[2], dilations[1], dilations[0]);
// 1. product rule book
phi::funcs::SetConstant<Context, int> set_zero;
set_zero(dev_ctx, counter_per_kernel, 0);
auto config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
ProductRuleBookKernel<<<config.block_per_grid.x,
config.thread_per_block.x,
kernel_size * sizeof(int),
dev_ctx.stream()>>>(indices_ptr,
d_x_dims,
d_kernel_dims,
d_out_dims,
non_zero_num,
d_paddings,
d_dilations,
d_strides,
subm,
rulebook_ptr,
counter_ptr,
in_indexs.data<int>());
// 2. remove -1
#ifdef PADDLE_WITH_HIP
int* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
int* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
rulebook_ptr,
rulebook_ptr + rulebook_rows * rulebook_cols,
-1);
DistanceKernel<<<1, 1, 0, dev_ctx.stream()>>>(
rulebook_ptr, last, rulebook_ptr + 3 * kernel_size * non_zero_num - 1);
int rulebook_len = 0;
phi::backends::gpu::GpuMemcpyAsync(
&rulebook_len,
rulebook_ptr + 3 * kernel_size * non_zero_num - 1,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
rulebook_len /= 3;
dev_ctx.Wait();
if (subm) {
// At present, hashtable is not used to map the input and output indexes.
// At present, the intermediate output index is generated by normal
// convolution,
// and then the intermediate output index is subtracted from the input index
// to obain the rulebook.
// get difference
int32_t* A_key_ptr = rulebook_ptr + 2 * rulebook_len;
int32_t* B_key_ptr = in_indexs.data<int>();
DenseTensor A_val = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len}, DataLayout::NCHW));
DenseTensor B_val = phi::Empty<Context>(
dev_ctx, DenseTensorMeta(DataType::INT32, {x.nnz()}, DataLayout::NCHW));
phi::IndexKernel<int, kps::IdentityFunctor<int>>(
dev_ctx, &A_val, kps::IdentityFunctor<int>());
phi::IndexKernel<int, kps::IdentityFunctor<int>>(
dev_ctx, &B_val, kps::IdentityFunctor<int>());
DenseTensor key_result = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len + 1}, DataLayout::NCHW));
DenseTensor val_result = phi::Empty<Context>(
dev_ctx,
DenseTensorMeta(DataType::INT32, {rulebook_len}, DataLayout::NCHW));
#ifdef PADDLE_WITH_HIP
thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
counter_ptr,
counter_ptr + kernel_size,
offsets_ptr);
std::vector<int> offsets(kernel_size, 0);
// TODO(zhangkaihuo): used unified memcpy interface
phi::backends::gpu::GpuMemcpyAsync(offsets.data(),
offsets_ptr,
kernel_size * sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
thrust::pair<int*, int*> end;
// Because set_diff does not support duplicate data, set_diff is performed
// separately for each segment of data.
// TODO(zhangkaihuo): Using hashtable here may get better performance,
// further tests ared needed.
for (int i = 0; i < kernel_size; i++) {
int start = offsets[i];
int stop = i == kernel_size - 1 ? rulebook_len : offsets[i + 1];
int* key_result_start = (i == 0 ? key_result.data<int>() : end.first);
int* val_result_start = i == 0 ? val_result.data<int>() : end.second;
end =
#ifdef PADDLE_WITH_HIP
thrust::set_difference_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::set_difference_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
A_key_ptr + start,
A_key_ptr + stop,
B_key_ptr,
B_key_ptr + x.nnz(),
A_val.data<int>() + start,
B_val.data<int>(),
key_result_start,
val_result_start);
}
DistanceKernel<<<1, 1, 0, dev_ctx.stream()>>>(
key_result.data<int>(),
end.first,
key_result.data<int>() + rulebook_len);
int len = 0;
phi::backends::gpu::GpuMemcpyAsync(&len,
key_result.data<int>() + rulebook_len,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
// set the diff value = -1, and update counter
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, len, 1);
SetFlagAndUpdateCounterKernel<<<config.block_per_grid.x,
config.thread_per_block,
kernel_size * sizeof(int),
dev_ctx.stream()>>>(val_result.data<int>(),
len,
rulebook_len,
kernel_size,
rulebook_ptr,
counter_ptr);
// remove -1
#ifdef PADDLE_WITH_HIP
int* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
int* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
rulebook_ptr,
rulebook_ptr + 3 * rulebook_len,
-1);
DistanceKernel<<<1, 1, 0, dev_ctx.stream()>>>(
rulebook_ptr, last, key_result.data<int>() + rulebook_len);
phi::backends::gpu::GpuMemcpyAsync(&rulebook_len,
key_result.data<int>() + rulebook_len,
sizeof(int),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost,
#else
cudaMemcpyDeviceToHost,
#endif
dev_ctx.stream());
dev_ctx.Wait();
rulebook_len /= 3;
}
#ifdef PADDLE_WITH_HIP
thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
counter_ptr,
counter_ptr + kernel_size,
offsets_ptr);
#ifdef PADDLE_WITH_HIP
phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
counter_ptr,
kernel_size * sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
offsets_ptr,
kernel_size * sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
#else
phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
counter_ptr,
kernel_size * sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
offsets_ptr,
kernel_size * sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
#endif
rulebook->Resize({rulebook_rows, rulebook_len});
// 3. sorted or merge the out index
out_index->ResizeAndAllocate({rulebook_len});
unique_value->ResizeAndAllocate({rulebook_len});
unique_key->ResizeAndAllocate({rulebook_len});
int* out_index_ptr = out_index->data<int>();
int* unique_value_ptr = unique_value->data<int>();
int* unique_key_ptr = unique_key->data<int>();
int* new_end = SortedAndUniqueIndex(dev_ctx,
rulebook_ptr + 2 * rulebook_len,
rulebook_len,
out_index,
unique_key,
unique_value);
// thrust::distance doesn't support stream parameters
// const int out_non_zero_num = thrust::distance(unique_key_ptr,
// new_end.first);
DistanceKernel<<<1, 1>>>(unique_key_ptr,
new_end,
rulebook_ptr + rulebook_rows * rulebook_cols - 1);
int out_non_zero_num = 0;
#ifdef PADDLE_WITH_HIP
phi::backends::gpu::GpuMemcpyAsync(
&out_non_zero_num,
rulebook_ptr + rulebook_rows * rulebook_cols - 1,
sizeof(int),
hipMemcpyDeviceToHost,
dev_ctx.stream());
#else
phi::backends::gpu::GpuMemcpyAsync(
&out_non_zero_num,
rulebook_ptr + rulebook_rows * rulebook_cols - 1,
sizeof(int),
cudaMemcpyDeviceToHost,
dev_ctx.stream());
#endif
dev_ctx.Wait();
// 5. update out_indices and rulebook by unique_value_ptr
const int64_t sparse_dim = 4;
DenseTensorMeta indices_meta(
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(
x.dtype(), {out_non_zero_num, kernel_dims[4]}, x.layout());
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
int* out_indices_ptr = out_indices.data<int>();
config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_non_zero_num, 1);
UpdateIndexKernel<<<config.block_per_grid.x,
config.thread_per_block.x,
0,
dev_ctx.stream()>>>(unique_key_ptr,
unique_value_ptr,
out_index_ptr,
out_non_zero_num,
rulebook_len,
d_out_dims,
out_indices_ptr,
rulebook_ptr + 2 * rulebook_len);
out->SetMember(out_indices, out_values, out_dims, true);
return rulebook_len;
}
/** /**
* x: (N, D, H, W, C) * x: (N, D, H, W, C)
* kernel: (D, H, W, C, OC) * kernel: (D, H, W, C, OC)
...@@ -545,9 +46,12 @@ void Conv3dKernel(const Context& dev_ctx, ...@@ -545,9 +46,12 @@ void Conv3dKernel(const Context& dev_ctx,
const auto& kernel_dims = kernel.dims(); const auto& kernel_dims = kernel.dims();
int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2]; int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
DDim out_dims = {1, 1, 1, 1, 1}; DDim out_dims = {1, 1, 1, 1, 1};
std::vector<int> kernel_sizes(kernel_dims.size());
for (int i = 0; i < kernel_dims.size(); i++) {
kernel_sizes[i] = kernel_dims[i];
}
phi::funcs::sparse::GetOutShape( phi::funcs::sparse::GetOutShape(
x_dims, kernel_dims, paddings, dilations, strides, &out_dims); x_dims, kernel_sizes, paddings, dilations, strides, &out_dims);
out->set_dims(out_dims);
const int in_channels = kernel_dims[3]; const int in_channels = kernel_dims[3];
const int out_channels = kernel_dims[4]; const int out_channels = kernel_dims[4];
std::vector<int> offsets(kernel_size + 1), h_counter(kernel_size); std::vector<int> offsets(kernel_size + 1), h_counter(kernel_size);
...@@ -574,7 +78,7 @@ void Conv3dKernel(const Context& dev_ctx, ...@@ -574,7 +78,7 @@ void Conv3dKernel(const Context& dev_ctx,
int n = ProductRuleBook<T, Context>(dev_ctx, int n = ProductRuleBook<T, Context>(dev_ctx,
x, x,
kernel, kernel_sizes,
subm_paddings, subm_paddings,
dilations, dilations,
subm_strides, subm_strides,
......
...@@ -132,16 +132,17 @@ void TestConv3dBase(const std::vector<int>& indices, ...@@ -132,16 +132,17 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify(out.non_zero_elements().data<T>(), correct_out_features); f_verify(out.non_zero_elements().data<T>(), correct_out_features);
if (backward) { if (backward) {
std::vector<DenseTensor> grads = sparse::Conv3dGrad<T>(dev_ctx_cpu, std::vector<DenseTensor> grads =
x_tensor, sparse::Conv3dGrad<T>(dev_ctx_cpu,
rulebook, x_tensor,
kernel_tensor, rulebook,
out, kernel_tensor,
paddings, out.non_zero_elements(),
dilations, paddings,
strides, dilations,
1, strides,
subm); 1,
subm);
f_verify(grads[0].data<T>(), features_grad); f_verify(grads[0].data<T>(), features_grad);
f_verify(grads[1].data<T>(), kernel_grad); f_verify(grads[1].data<T>(), kernel_grad);
} }
...@@ -231,16 +232,17 @@ void TestConv3dBase(const std::vector<int>& indices, ...@@ -231,16 +232,17 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify(h_features_tensor.data<T>(), correct_out_features); f_verify(h_features_tensor.data<T>(), correct_out_features);
if (backward) { if (backward) {
std::vector<DenseTensor> grads = sparse::Conv3dGrad<T>(dev_ctx_gpu, std::vector<DenseTensor> grads =
d_x_tensor, sparse::Conv3dGrad<T>(dev_ctx_gpu,
d_rulebook, d_x_tensor,
d_kernel_tensor, d_rulebook,
d_out, d_kernel_tensor,
paddings, d_out.non_zero_elements(),
dilations, paddings,
strides, dilations,
1, strides,
subm); 1,
subm);
DenseTensor h_features_grad = phi::Empty( DenseTensor h_features_grad = phi::Empty(
dev_ctx_cpu, dev_ctx_cpu,
DenseTensorMeta(grads[0].dtype(), grads[0].dims(), grads[0].layout())); DenseTensorMeta(grads[0].dtype(), grads[0].dims(), grads[0].layout()));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册