Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2f5fb031
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2f5fb031
编写于
3月 16, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
3月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Restructure sparse conv (#40570)
restructure conv
上级
3898080e
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
555 addition
and
552 deletion
+555
-552
paddle/phi/kernels/funcs/sparse/convolution.h
paddle/phi/kernels/funcs/sparse/convolution.h
+10
-10
paddle/phi/kernels/sparse/convolution_grad_kernel.h
paddle/phi/kernels/sparse/convolution_grad_kernel.h
+2
-2
paddle/phi/kernels/sparse/cpu/convolution.h
paddle/phi/kernels/sparse/cpu/convolution.h
+7
-7
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
+2
-2
paddle/phi/kernels/sparse/cpu/convolution_kernel.cc
paddle/phi/kernels/sparse/cpu/convolution_kernel.cc
+7
-2
paddle/phi/kernels/sparse/gpu/convolution.cu.h
paddle/phi/kernels/sparse/gpu/convolution.cu.h
+493
-0
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
+6
-7
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
+6
-502
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
+22
-20
未找到文件。
paddle/phi/kernels/funcs/sparse/convolution.h
浏览文件 @
2f5fb031
...
...
@@ -93,7 +93,7 @@ inline HOSTDEVICE void IndexToPoint(
}
inline
void
GetOutShape
(
const
DDim
&
x_dims
,
const
DDim
&
kernel_dim
s
,
const
std
::
vector
<
int
>&
kernel_size
s
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -102,17 +102,17 @@ inline void GetOutShape(const DDim& x_dims,
x_dims
.
size
(),
5
,
phi
::
errors
::
InvalidArgument
(
"the shape of x should be (N, D, H, W, C)"
));
PADDLE_ENFORCE_EQ
(
kernel_
dim
s
.
size
(),
PADDLE_ENFORCE_EQ
(
kernel_
size
s
.
size
(),
5
,
phi
::
errors
::
InvalidArgument
(
"the shape of kernel should be (D, H, W, C, OC)"
));
// infer out shape
(
*
out_dims
)[
0
]
=
x_dims
[
0
];
(
*
out_dims
)[
4
]
=
kernel_
dim
s
[
4
];
(
*
out_dims
)[
4
]
=
kernel_
size
s
[
4
];
for
(
int
i
=
1
;
i
<
4
;
i
++
)
{
(
*
out_dims
)[
i
]
=
(
x_dims
[
i
]
+
2
*
paddings
[
i
-
1
]
-
dilations
[
i
-
1
]
*
(
kernel_
dim
s
[
i
-
1
]
-
1
)
-
1
)
/
dilations
[
i
-
1
]
*
(
kernel_
size
s
[
i
-
1
]
-
1
)
-
1
)
/
strides
[
i
-
1
]
+
1
;
}
...
...
@@ -131,7 +131,7 @@ template <typename T, typename Context>
inline
void
SubmPreProcess
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
kernel
,
const
SparseCoo
Tensor
&
out_grad
,
const
Dense
Tensor
&
out_grad
,
const
int
in_channels
,
const
int
out_channels
,
const
int
half_kernel_size
,
...
...
@@ -142,11 +142,11 @@ inline void SubmPreProcess(const Context& dev_ctx,
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x
.
non_zero_elements
().
dims
()[
1
],
out_grad
.
non_zero_elements
().
dims
()[
1
],
out_grad
.
dims
()[
1
],
x
.
non_zero_elements
().
dims
()[
0
],
static_cast
<
T
>
(
1
),
x
.
non_zero_elements
().
data
<
T
>
(),
out_grad
.
non_zero_elements
().
data
<
T
>
(),
out_grad
.
data
<
T
>
(),
static_cast
<
T
>
(
0
),
d_kernel_ptr
+
half_kernel_size
*
in_channels
*
out_channels
);
...
...
@@ -155,11 +155,11 @@ inline void SubmPreProcess(const Context& dev_ctx,
T
*
x_grad_ptr
=
x_grad
->
data
<
T
>
();
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
out_grad
.
non_zero_elements
().
dims
()[
0
],
out_grad
.
dims
()[
0
],
in_channels
,
out_grad
.
non_zero_elements
().
dims
()[
1
],
out_grad
.
dims
()[
1
],
static_cast
<
T
>
(
1
),
out_grad
.
non_zero_elements
().
data
<
T
>
(),
out_grad
.
data
<
T
>
(),
kernel
.
data
<
T
>
()
+
half_kernel_size
*
in_channels
*
out_channels
,
static_cast
<
T
>
(
0
),
x_grad_ptr
);
...
...
paddle/phi/kernels/sparse/convolution_grad_kernel.h
浏览文件 @
2f5fb031
...
...
@@ -27,7 +27,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCoo
Tensor
&
out_grad
,
const
Dense
Tensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -41,7 +41,7 @@ std::vector<DenseTensor> Conv3dGrad(const Context& dev_ctx,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCoo
Tensor
&
out_grad
,
const
Dense
Tensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
paddle/phi/kernels/sparse/cpu/convolution.h
浏览文件 @
2f5fb031
...
...
@@ -34,7 +34,7 @@ using Dims4D = phi::funcs::sparse::Dims4D;
template
<
typename
T
,
typename
Context
>
void
ProductRuleBook
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
kernel
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -42,19 +42,19 @@ void ProductRuleBook(const Context& dev_ctx,
const
bool
subm
,
DenseTensor
*
rulebook
,
DenseTensor
*
counter_per_kernel
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int64_t
non_zero_num
=
x
.
nnz
();
const
auto
&
non_zero_indices
=
x
.
non_zero_indices
();
const
int
*
indices_ptr
=
non_zero_indices
.
data
<
int
>
();
int
*
counter_ptr
=
counter_per_kernel
->
data
<
int
>
();
int
kernel_size
=
kernel_
dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dim
s
[
2
];
int
kernel_size
=
kernel_
sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_size
s
[
2
];
memset
(
counter_ptr
,
0
,
kernel_size
*
sizeof
(
int
));
int
rulebook_len
=
0
;
// calc the rulebook_len
const
auto
&
x_dims
=
x
.
dims
();
const
Dims4D
c_x_dims
(
x_dims
[
0
],
x_dims
[
3
],
x_dims
[
2
],
x_dims
[
1
]);
const
Dims4D
c_kernel_dims
(
1
,
kernel_dims
[
2
],
kernel_dims
[
1
],
kernel_dims
[
0
]);
const
Dims4D
c_kernel_dims
(
1
,
kernel_sizes
[
2
],
kernel_sizes
[
1
],
kernel_sizes
[
0
]);
const
Dims4D
c_out_dims
(
out_dims
[
0
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
1
]);
const
Dims4D
c_paddings
(
1
,
paddings
[
2
],
paddings
[
1
],
paddings
[
0
]);
const
Dims4D
c_strides
(
1
,
strides
[
2
],
strides
[
1
],
strides
[
0
]);
...
...
@@ -75,9 +75,9 @@ void ProductRuleBook(const Context& dev_ctx,
auto
f_calc_rulebook
=
[
&
](
int
*
rulebook_ptr
)
{
int
kernel_index
=
0
,
rulebook_index
=
0
;
for
(
int
kz
=
0
;
kz
<
kernel_
dim
s
[
0
];
kz
++
)
{
for
(
int
ky
=
0
;
ky
<
kernel_
dim
s
[
1
];
ky
++
)
{
for
(
int
kx
=
0
;
kx
<
kernel_
dim
s
[
2
];
kx
++
)
{
for
(
int
kz
=
0
;
kz
<
kernel_
size
s
[
0
];
kz
++
)
{
for
(
int
ky
=
0
;
ky
<
kernel_
size
s
[
1
];
ky
++
)
{
for
(
int
kx
=
0
;
kx
<
kernel_
size
s
[
2
];
kx
++
)
{
++
kernel_index
;
for
(
int64_t
i
=
0
;
i
<
non_zero_num
;
i
++
)
{
int
batch
=
indices_ptr
[
i
];
...
...
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
浏览文件 @
2f5fb031
...
...
@@ -33,7 +33,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCoo
Tensor
&
out_grad
,
const
Dense
Tensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -113,7 +113,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
rulebook_len
,
in_channels
,
in_features_ptr
);
Gather
<
T
>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
Gather
<
T
>
(
out_grad
.
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
rulebook_len
,
out_channels
,
...
...
paddle/phi/kernels/sparse/cpu/convolution_kernel.cc
浏览文件 @
2f5fb031
...
...
@@ -44,8 +44,13 @@ void Conv3dKernel(const Context& dev_ctx,
const
auto
&
kernel_dims
=
kernel
.
dims
();
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
DDim
out_dims
=
{
1
,
1
,
1
,
1
,
1
};
std
::
vector
<
int
>
kernel_sizes
(
kernel_dims
.
size
());
for
(
int
i
=
0
;
i
<
kernel_dims
.
size
();
i
++
)
{
kernel_sizes
[
i
]
=
kernel_dims
[
i
];
}
phi
::
funcs
::
sparse
::
GetOutShape
(
x_dims
,
kernel_
dim
s
,
paddings
,
dilations
,
strides
,
&
out_dims
);
x_dims
,
kernel_
size
s
,
paddings
,
dilations
,
strides
,
&
out_dims
);
const
int
in_channels
=
kernel_dims
[
3
];
const
int
out_channels
=
kernel_dims
[
4
];
...
...
@@ -63,7 +68,7 @@ void Conv3dKernel(const Context& dev_ctx,
ProductRuleBook
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
kernel
_sizes
,
subm_paddings
,
dilations
,
subm_strides
,
...
...
paddle/phi/kernels/sparse/gpu/convolution.cu.h
浏览文件 @
2f5fb031
...
...
@@ -23,11 +23,15 @@ limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
namespace
phi
{
namespace
sparse
{
using
Dims4D
=
phi
::
funcs
::
sparse
::
Dims4D
;
// TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace
// this kernel with phi::GatherCUDAKernel;
// Vectorization can be used to improve read and write bandwidth
...
...
@@ -139,5 +143,494 @@ inline int* SortedAndUniqueIndex(const Context& dev_ctx,
return
new_end
.
first
;
}
template
<
typename
T
>
__global__
void
SetFlagAndUpdateCounterKernel
(
const
int
*
indexs
,
const
int
n
,
const
int
rulebook_len
,
const
int
kernel_size
,
T
*
rulebook_ptr
,
int
*
counter_ptr
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
extern
__shared__
int
cache_count
[];
// kernel_size
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
cache_count
[
i
]
=
0
;
}
__syncthreads
();
for
(
int
i
=
tid
;
i
<
n
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
index
=
indexs
[
i
];
int
kernel_index
=
rulebook_ptr
[
index
];
rulebook_ptr
[
index
+
rulebook_len
]
=
-
1
;
rulebook_ptr
[
index
+
2
*
rulebook_len
]
=
-
1
;
rulebook_ptr
[
index
]
=
-
1
;
atomicAdd
(
&
cache_count
[
kernel_index
],
1
);
}
__syncthreads
();
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
atomicSub
(
&
counter_ptr
[
i
],
cache_count
[
i
]);
}
}
/**
* @brief: update the out index and indices
* unique_keys: save the index of the output feature list
* unique_values: indiates the index of key before deduplication
* out_indexs: indicates the position of the output index in the rulebook
* rulebook_len: indicates the length of rulebook
* out_dims: indicates the output dims
* out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
* rulebook_out_indexs: the output index in rulebook
**/
template
<
typename
T
>
__global__
void
UpdateIndexKernel
(
const
int
*
unique_keys
,
const
int
*
unique_values
,
const
int
*
out_indexs
,
const
int
non_zero_num
,
const
int
rulebook_len
,
const
Dims4D
out_dims
,
T
*
out_indices
,
T
*
rulebook_out_indexs
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
for
(
int
i
=
tid
;
i
<
non_zero_num
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
const
int
index
=
unique_keys
[
i
];
int
batch
,
x
,
y
,
z
;
phi
::
funcs
::
sparse
::
IndexToPoint
<
Dims4D
>
(
index
,
out_dims
,
&
batch
,
&
x
,
&
y
,
&
z
);
// get out indices
out_indices
[
i
]
=
batch
;
out_indices
[
i
+
non_zero_num
]
=
z
;
out_indices
[
i
+
non_zero_num
*
2
]
=
y
;
out_indices
[
i
+
non_zero_num
*
3
]
=
x
;
// update rulebook
int
start
=
unique_values
[
i
];
int
end
=
i
==
non_zero_num
-
1
?
rulebook_len
:
unique_values
[
i
+
1
];
// max(end-start) = kernel_size
for
(
int
j
=
start
;
j
<
end
;
j
++
)
{
rulebook_out_indexs
[
out_indexs
[
j
]]
=
i
;
}
}
}
// brief: calculation the distance between start and end
template
<
typename
T
>
__global__
void
DistanceKernel
(
const
T
*
start
,
const
T
*
end
,
int
*
distance
)
{
if
(
threadIdx
.
x
==
0
)
{
*
distance
=
end
-
start
;
}
}
/**
* @brief product rulebook
* for input_i in x_indices:
* if input_i participate in the convolution calculation:
* infer the output_i by input_i and kernel_i
* save output_i
*
* x_indices: the indices of input features
* x_dims: the input dims
* kernel_dims: the kernel dims
* out_dims: the output dims
* non_zero_num: the number of input features
* rulebook: the rulebook to save the kernel index, input index and output index
* counter: save the number of times each location in the kernel participates in
*the caculation
**/
template
<
typename
T
>
__global__
void
ProductRuleBookKernel
(
const
T
*
x_indices
,
const
Dims4D
x_dims
,
const
Dims4D
kernel_dims
,
const
Dims4D
out_dims
,
const
int64_t
non_zero_num
,
const
Dims4D
paddings
,
const
Dims4D
dilations
,
const
Dims4D
strides
,
const
bool
subm
,
T
*
rulebook
,
int
*
counter
,
int
*
in_indexs
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
extern
__shared__
int
counter_buf
[];
// kernel_size
const
int
kernel_size
=
kernel_dims
[
3
]
*
kernel_dims
[
2
]
*
kernel_dims
[
1
];
const
int
offset
=
kernel_size
*
non_zero_num
;
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
counter_buf
[
i
]
=
0
;
}
__syncthreads
();
for
(
int
i
=
tid
;
i
<
non_zero_num
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
kernel_index
=
0
;
int
batch
=
x_indices
[
i
];
int
in_z
=
x_indices
[
i
+
non_zero_num
];
int
in_y
=
x_indices
[
i
+
2
*
non_zero_num
];
int
in_x
=
x_indices
[
i
+
3
*
non_zero_num
];
if
(
subm
)
{
in_indexs
[
i
]
=
PointToIndex
(
batch
,
in_x
,
in_y
,
in_z
,
x_dims
);
}
for
(
int
kz
=
0
;
kz
<
kernel_dims
[
1
];
kz
++
)
{
for
(
int
ky
=
0
;
ky
<
kernel_dims
[
2
];
ky
++
)
{
for
(
int
kx
=
0
;
kx
<
kernel_dims
[
3
];
kx
++
)
{
int
in_i
=
-
1
,
out_index
=
-
1
,
kernel_i
=
-
1
;
if
(
phi
::
funcs
::
sparse
::
Check
(
x_dims
,
kernel_dims
,
paddings
,
dilations
,
strides
,
in_x
,
in_y
,
in_z
,
kx
,
ky
,
kz
))
{
int
out_z
=
(
in_z
+
paddings
[
1
]
-
kz
*
dilations
[
1
])
/
strides
[
1
];
int
out_y
=
(
in_y
+
paddings
[
2
]
-
ky
*
dilations
[
2
])
/
strides
[
2
];
int
out_x
=
(
in_x
+
paddings
[
3
]
-
kx
*
dilations
[
3
])
/
strides
[
3
];
in_i
=
i
;
out_index
=
phi
::
funcs
::
sparse
::
PointToIndex
<
Dims4D
>
(
batch
,
out_x
,
out_y
,
out_z
,
out_dims
);
atomicAdd
(
&
counter_buf
[
kernel_index
],
1
);
kernel_i
=
kernel_index
;
}
rulebook
[
kernel_index
*
non_zero_num
+
i
]
=
kernel_i
;
rulebook
[
kernel_index
*
non_zero_num
+
offset
+
i
]
=
in_i
;
rulebook
[
kernel_index
*
non_zero_num
+
offset
*
2
+
i
]
=
out_index
;
++
kernel_index
;
}
}
}
}
__syncthreads
();
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
atomicAdd
(
&
counter
[
i
],
counter_buf
[
i
]);
}
}
// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
// the kernel_index: 0, 0, 0, 1, 1, 1, 2, 2, ....
// the out_index(key): 20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value): 0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
// unique_key: 20, 25, 30, 33
// unique_values: 0, 2, 3, 5
// the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
// the new out_index: 0, 2, 3, 2, 3, 0, 1
template
<
typename
T
,
typename
Context
>
int
ProductRuleBook
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
DDim
&
out_dims
,
const
bool
subm
,
DenseTensor
*
rulebook
,
DenseTensor
*
counter_per_kernel
,
DenseTensor
*
offsets_per_kernel
,
DenseTensor
*
out_index
,
DenseTensor
*
unique_key
,
DenseTensor
*
unique_value
,
SparseCooTensor
*
out
,
std
::
vector
<
int
>*
h_counter
,
std
::
vector
<
int
>*
h_offsets
)
{
const
int64_t
non_zero_num
=
x
.
nnz
();
const
auto
&
non_zero_indices
=
x
.
non_zero_indices
();
const
int
*
indices_ptr
=
non_zero_indices
.
data
<
int
>
();
DenseTensor
in_indexs
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
x
.
nnz
()},
DataLayout
::
NCHW
));
int
*
counter_ptr
=
counter_per_kernel
->
data
<
int
>
();
int
*
offsets_ptr
=
offsets_per_kernel
->
data
<
int
>
();
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
int
rulebook_rows
=
3
;
const
int
rulebook_cols
=
kernel_size
*
non_zero_num
;
rulebook
->
ResizeAndAllocate
({
rulebook_rows
,
rulebook_cols
});
int
*
rulebook_ptr
=
rulebook
->
data
<
int
>
();
const
auto
x_dims
=
x
.
dims
();
Dims4D
d_x_dims
(
x_dims
[
0
],
x_dims
[
3
],
x_dims
[
2
],
x_dims
[
1
]);
Dims4D
d_kernel_dims
(
1
,
kernel_sizes
[
2
],
kernel_sizes
[
1
],
kernel_sizes
[
0
]);
Dims4D
d_out_dims
(
out_dims
[
0
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
1
]);
Dims4D
d_paddings
(
1
,
paddings
[
2
],
paddings
[
1
],
paddings
[
0
]);
Dims4D
d_strides
(
1
,
strides
[
2
],
strides
[
1
],
strides
[
0
]);
Dims4D
d_dilations
(
1
,
dilations
[
2
],
dilations
[
1
],
dilations
[
0
]);
// 1. product rule book
phi
::
funcs
::
SetConstant
<
Context
,
int
>
set_zero
;
set_zero
(
dev_ctx
,
counter_per_kernel
,
0
);
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
non_zero_num
,
1
);
ProductRuleBookKernel
<
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
kernel_size
*
sizeof
(
int
),
dev_ctx
.
stream
()
>>>
(
indices_ptr
,
d_x_dims
,
d_kernel_dims
,
d_out_dims
,
non_zero_num
,
d_paddings
,
d_dilations
,
d_strides
,
subm
,
rulebook_ptr
,
counter_ptr
,
in_indexs
.
data
<
int
>
());
// 2. remove -1
#ifdef PADDLE_WITH_HIP
int
*
last
=
thrust
::
remove
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
int
*
last
=
thrust
::
remove
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
rulebook_ptr
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
,
-
1
);
DistanceKernel
<
int
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
rulebook_ptr
+
3
*
kernel_size
*
non_zero_num
-
1
);
int
rulebook_len
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
rulebook_len
,
rulebook_ptr
+
3
*
kernel_size
*
non_zero_num
-
1
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
rulebook_len
/=
3
;
dev_ctx
.
Wait
();
if
(
subm
)
{
// At present, hashtable is not used to map the input and output indexes.
// At present, the intermediate output index is generated by normal
// convolution,
// and then the intermediate output index is subtracted from the input index
// to obain the rulebook.
// get difference
int32_t
*
A_key_ptr
=
rulebook_ptr
+
2
*
rulebook_len
;
int32_t
*
B_key_ptr
=
in_indexs
.
data
<
int
>
();
DenseTensor
A_val
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
));
DenseTensor
B_val
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
x
.
nnz
()},
DataLayout
::
NCHW
));
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
A_val
,
kps
::
IdentityFunctor
<
int
>
());
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
B_val
,
kps
::
IdentityFunctor
<
int
>
());
DenseTensor
key_result
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
+
1
},
DataLayout
::
NCHW
));
DenseTensor
val_result
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
));
#ifdef PADDLE_WITH_HIP
thrust
::
exclusive_scan
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
exclusive_scan
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
counter_ptr
,
counter_ptr
+
kernel_size
,
offsets_ptr
);
std
::
vector
<
int
>
offsets
(
kernel_size
,
0
);
// TODO(zhangkaihuo): used unified memcpy interface
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
offsets
.
data
(),
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
thrust
::
pair
<
int
*
,
int
*>
end
;
// Because set_diff does not support duplicate data, set_diff is performed
// separately for each segment of data.
// TODO(zhangkaihuo): Using hashtable here may get better performance,
// further tests ared needed.
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
int
start
=
offsets
[
i
];
int
stop
=
i
==
kernel_size
-
1
?
rulebook_len
:
offsets
[
i
+
1
];
int
*
key_result_start
=
(
i
==
0
?
key_result
.
data
<
int
>
()
:
end
.
first
);
int
*
val_result_start
=
i
==
0
?
val_result
.
data
<
int
>
()
:
end
.
second
;
end
=
#ifdef PADDLE_WITH_HIP
thrust
::
set_difference_by_key
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
set_difference_by_key
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
A_key_ptr
+
start
,
A_key_ptr
+
stop
,
B_key_ptr
,
B_key_ptr
+
x
.
nnz
(),
A_val
.
data
<
int
>
()
+
start
,
B_val
.
data
<
int
>
(),
key_result_start
,
val_result_start
);
}
DistanceKernel
<
int
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
key_result
.
data
<
int
>
(),
end
.
first
,
key_result
.
data
<
int
>
()
+
rulebook_len
);
int
len
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
len
,
key_result
.
data
<
int
>
()
+
rulebook_len
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
// set the diff value = -1, and update counter
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
len
,
1
);
SetFlagAndUpdateCounterKernel
<
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
,
kernel_size
*
sizeof
(
int
),
dev_ctx
.
stream
()
>>>
(
val_result
.
data
<
int
>
(),
len
,
rulebook_len
,
kernel_size
,
rulebook_ptr
,
counter_ptr
);
// remove -1
#ifdef PADDLE_WITH_HIP
int
*
last
=
thrust
::
remove
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
int
*
last
=
thrust
::
remove
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
rulebook_ptr
,
rulebook_ptr
+
3
*
rulebook_len
,
-
1
);
DistanceKernel
<
int
><<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
key_result
.
data
<
int
>
()
+
rulebook_len
);
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
rulebook_len
,
key_result
.
data
<
int
>
()
+
rulebook_len
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
rulebook_len
/=
3
;
}
#ifdef PADDLE_WITH_HIP
thrust
::
exclusive_scan
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
exclusive_scan
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
counter_ptr
,
counter_ptr
+
kernel_size
,
offsets_ptr
);
#ifdef PADDLE_WITH_HIP
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_counter
)[
0
],
counter_ptr
,
kernel_size
*
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_offsets
)[
0
],
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#else
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_counter
)[
0
],
counter_ptr
,
kernel_size
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_offsets
)[
0
],
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#endif
rulebook
->
Resize
({
rulebook_rows
,
rulebook_len
});
// 3. sorted or merge the out index
out_index
->
ResizeAndAllocate
({
rulebook_len
});
unique_value
->
ResizeAndAllocate
({
rulebook_len
});
unique_key
->
ResizeAndAllocate
({
rulebook_len
});
int
*
out_index_ptr
=
out_index
->
data
<
int
>
();
int
*
unique_value_ptr
=
unique_value
->
data
<
int
>
();
int
*
unique_key_ptr
=
unique_key
->
data
<
int
>
();
int
*
new_end
=
SortedAndUniqueIndex
(
dev_ctx
,
rulebook_ptr
+
2
*
rulebook_len
,
rulebook_len
,
out_index
,
unique_key
,
unique_value
);
// thrust::distance doesn't support stream parameters
// const int out_non_zero_num = thrust::distance(unique_key_ptr,
// new_end.first);
DistanceKernel
<
int
><<<
1
,
1
>>>
(
unique_key_ptr
,
new_end
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
);
int
out_non_zero_num
=
0
;
#ifdef PADDLE_WITH_HIP
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
out_non_zero_num
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
,
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#else
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
out_non_zero_num
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
,
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#endif
dev_ctx
.
Wait
();
// 5. update out_indices and rulebook by unique_value_ptr
const
int64_t
sparse_dim
=
4
;
DenseTensorMeta
indices_meta
(
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
out_non_zero_num
,
kernel_sizes
[
4
]},
x
.
layout
());
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
int
*
out_indices_ptr
=
out_indices
.
data
<
int
>
();
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
out_non_zero_num
,
1
);
UpdateIndexKernel
<
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
unique_key_ptr
,
unique_value_ptr
,
out_index_ptr
,
out_non_zero_num
,
rulebook_len
,
d_out_dims
,
out_indices_ptr
,
rulebook_ptr
+
2
*
rulebook_len
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
true
);
return
rulebook_len
;
}
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
浏览文件 @
2f5fb031
...
...
@@ -38,7 +38,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
SparseCoo
Tensor
&
out_grad
,
const
Dense
Tensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
...
...
@@ -140,12 +140,11 @@ void Conv3dGradKernel(const Context& dev_ctx,
GatherKernel
<
T
,
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
dev_ctx
.
stream
()
>>>
(
out_grad
.
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
...
...
paddle/phi/kernels/sparse/gpu/convolution_kernel.cu
浏览文件 @
2f5fb031
...
...
@@ -12,515 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
namespace
phi
{
namespace
sparse
{
using
Dims4D
=
phi
::
funcs
::
sparse
::
Dims4D
;
__global__
void
SetFlagAndUpdateCounterKernel
(
const
int
*
indexs
,
const
int
n
,
const
int
rulebook_len
,
const
int
kernel_size
,
int
*
rulebook_ptr
,
int
*
counter_ptr
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
extern
__shared__
int
cache_count
[];
// kernel_size
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
cache_count
[
i
]
=
0
;
}
__syncthreads
();
for
(
int
i
=
tid
;
i
<
n
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
index
=
indexs
[
i
];
int
kernel_index
=
rulebook_ptr
[
index
];
rulebook_ptr
[
index
+
rulebook_len
]
=
-
1
;
rulebook_ptr
[
index
+
2
*
rulebook_len
]
=
-
1
;
rulebook_ptr
[
index
]
=
-
1
;
atomicAdd
(
&
cache_count
[
kernel_index
],
1
);
}
__syncthreads
();
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
atomicSub
(
&
counter_ptr
[
i
],
cache_count
[
i
]);
}
}
/**
* @brief: update the out index and indices
* unique_keys: save the index of the output feature list
* unique_values: indiates the index of key before deduplication
* out_indexs: indicates the position of the output index in the rulebook
* rulebook_len: indicates the length of rulebook
* out_dims: indicates the output dims
* out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
* rulebook_out_indexs: the output index in rulebook
**/
__global__
void
UpdateIndexKernel
(
const
int
*
unique_keys
,
const
int
*
unique_values
,
const
int
*
out_indexs
,
const
int
non_zero_num
,
const
int
rulebook_len
,
const
Dims4D
out_dims
,
int
*
out_indices
,
int
*
rulebook_out_indexs
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
for
(
int
i
=
tid
;
i
<
non_zero_num
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
const
int
index
=
unique_keys
[
i
];
int
batch
,
x
,
y
,
z
;
phi
::
funcs
::
sparse
::
IndexToPoint
<
Dims4D
>
(
index
,
out_dims
,
&
batch
,
&
x
,
&
y
,
&
z
);
// get out indices
out_indices
[
i
]
=
batch
;
out_indices
[
i
+
non_zero_num
]
=
z
;
out_indices
[
i
+
non_zero_num
*
2
]
=
y
;
out_indices
[
i
+
non_zero_num
*
3
]
=
x
;
// update rulebook
int
start
=
unique_values
[
i
];
int
end
=
i
==
non_zero_num
-
1
?
rulebook_len
:
unique_values
[
i
+
1
];
// max(end-start) = kernel_size
for
(
int
j
=
start
;
j
<
end
;
j
++
)
{
rulebook_out_indexs
[
out_indexs
[
j
]]
=
i
;
}
}
}
/**
* @brief product rulebook
* for input_i in x_indices:
* if input_i participate in the convolution calculation:
* infer the output_i by input_i and kernel_i
* save output_i
*
* x_indices: the indices of input features
* x_dims: the input dims
* kernel_dims: the kernel dims
* out_dims: the output dims
* non_zero_num: the number of input features
* rulebook: the rulebook to save the kernel index, input index and output index
* counter: save the number of times each location in the kernel participates in
*the caculation
**/
__global__
void
ProductRuleBookKernel
(
const
int
*
x_indices
,
const
Dims4D
x_dims
,
const
Dims4D
kernel_dims
,
const
Dims4D
out_dims
,
const
int64_t
non_zero_num
,
const
Dims4D
paddings
,
const
Dims4D
dilations
,
const
Dims4D
strides
,
const
bool
subm
,
int
*
rulebook
,
int
*
counter
,
int
*
in_indexs
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
extern
__shared__
int
counter_buf
[];
// kernel_size
const
int
kernel_size
=
kernel_dims
[
3
]
*
kernel_dims
[
2
]
*
kernel_dims
[
1
];
const
int
offset
=
kernel_size
*
non_zero_num
;
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
counter_buf
[
i
]
=
0
;
}
__syncthreads
();
for
(
int
i
=
tid
;
i
<
non_zero_num
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
int
kernel_index
=
0
;
int
batch
=
x_indices
[
i
];
int
in_z
=
x_indices
[
i
+
non_zero_num
];
int
in_y
=
x_indices
[
i
+
2
*
non_zero_num
];
int
in_x
=
x_indices
[
i
+
3
*
non_zero_num
];
if
(
subm
)
{
in_indexs
[
i
]
=
PointToIndex
(
batch
,
in_x
,
in_y
,
in_z
,
x_dims
);
}
for
(
int
kz
=
0
;
kz
<
kernel_dims
[
1
];
kz
++
)
{
for
(
int
ky
=
0
;
ky
<
kernel_dims
[
2
];
ky
++
)
{
for
(
int
kx
=
0
;
kx
<
kernel_dims
[
3
];
kx
++
)
{
int
in_i
=
-
1
,
out_index
=
-
1
,
kernel_i
=
-
1
;
if
(
phi
::
funcs
::
sparse
::
Check
(
x_dims
,
kernel_dims
,
paddings
,
dilations
,
strides
,
in_x
,
in_y
,
in_z
,
kx
,
ky
,
kz
))
{
int
out_z
=
(
in_z
+
paddings
[
1
]
-
kz
*
dilations
[
1
])
/
strides
[
1
];
int
out_y
=
(
in_y
+
paddings
[
2
]
-
ky
*
dilations
[
2
])
/
strides
[
2
];
int
out_x
=
(
in_x
+
paddings
[
3
]
-
kx
*
dilations
[
3
])
/
strides
[
3
];
in_i
=
i
;
out_index
=
phi
::
funcs
::
sparse
::
PointToIndex
<
Dims4D
>
(
batch
,
out_x
,
out_y
,
out_z
,
out_dims
);
atomicAdd
(
&
counter_buf
[
kernel_index
],
1
);
kernel_i
=
kernel_index
;
}
rulebook
[
kernel_index
*
non_zero_num
+
i
]
=
kernel_i
;
rulebook
[
kernel_index
*
non_zero_num
+
offset
+
i
]
=
in_i
;
rulebook
[
kernel_index
*
non_zero_num
+
offset
*
2
+
i
]
=
out_index
;
++
kernel_index
;
}
}
}
}
__syncthreads
();
for
(
int
i
=
threadIdx
.
x
;
i
<
kernel_size
;
i
+=
blockDim
.
x
)
{
atomicAdd
(
&
counter
[
i
],
counter_buf
[
i
]);
}
}
// brief: calculation the distance between start and end
__global__
void
DistanceKernel
(
const
int
*
start
,
const
int
*
end
,
int
*
distance
)
{
if
(
threadIdx
.
x
==
0
)
{
*
distance
=
end
-
start
;
}
}
// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
// the kernel_index: 0, 0, 0, 1, 1, 1, 2, 2, ....
// the out_index(key): 20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value): 0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
// unique_key: 20, 25, 30, 33
// unique_values: 0, 2, 3, 5
// the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
// the new out_index: 0, 2, 3, 2, 3, 0, 1
template
<
typename
T
,
typename
Context
>
int
ProductRuleBook
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
kernel
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
DDim
&
out_dims
,
const
bool
subm
,
DenseTensor
*
rulebook
,
DenseTensor
*
counter_per_kernel
,
DenseTensor
*
offsets_per_kernel
,
DenseTensor
*
out_index
,
DenseTensor
*
unique_key
,
DenseTensor
*
unique_value
,
SparseCooTensor
*
out
,
std
::
vector
<
int
>*
h_counter
,
std
::
vector
<
int
>*
h_offsets
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int64_t
non_zero_num
=
x
.
nnz
();
const
auto
&
non_zero_indices
=
x
.
non_zero_indices
();
const
int
*
indices_ptr
=
non_zero_indices
.
data
<
int
>
();
DenseTensor
in_indexs
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
x
.
nnz
()},
DataLayout
::
NCHW
));
int
*
counter_ptr
=
counter_per_kernel
->
data
<
int
>
();
int
*
offsets_ptr
=
offsets_per_kernel
->
data
<
int
>
();
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
const
int
rulebook_rows
=
3
;
const
int
rulebook_cols
=
kernel_size
*
non_zero_num
;
rulebook
->
ResizeAndAllocate
({
rulebook_rows
,
rulebook_cols
});
int
*
rulebook_ptr
=
rulebook
->
data
<
int
>
();
const
auto
x_dims
=
x
.
dims
();
Dims4D
d_x_dims
(
x_dims
[
0
],
x_dims
[
3
],
x_dims
[
2
],
x_dims
[
1
]);
Dims4D
d_kernel_dims
(
1
,
kernel_dims
[
2
],
kernel_dims
[
1
],
kernel_dims
[
0
]);
Dims4D
d_out_dims
(
out_dims
[
0
],
out_dims
[
3
],
out_dims
[
2
],
out_dims
[
1
]);
Dims4D
d_paddings
(
1
,
paddings
[
2
],
paddings
[
1
],
paddings
[
0
]);
Dims4D
d_strides
(
1
,
strides
[
2
],
strides
[
1
],
strides
[
0
]);
Dims4D
d_dilations
(
1
,
dilations
[
2
],
dilations
[
1
],
dilations
[
0
]);
// 1. product rule book
phi
::
funcs
::
SetConstant
<
Context
,
int
>
set_zero
;
set_zero
(
dev_ctx
,
counter_per_kernel
,
0
);
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
non_zero_num
,
1
);
ProductRuleBookKernel
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
kernel_size
*
sizeof
(
int
),
dev_ctx
.
stream
()
>>>
(
indices_ptr
,
d_x_dims
,
d_kernel_dims
,
d_out_dims
,
non_zero_num
,
d_paddings
,
d_dilations
,
d_strides
,
subm
,
rulebook_ptr
,
counter_ptr
,
in_indexs
.
data
<
int
>
());
// 2. remove -1
#ifdef PADDLE_WITH_HIP
int
*
last
=
thrust
::
remove
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
int
*
last
=
thrust
::
remove
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
rulebook_ptr
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
,
-
1
);
DistanceKernel
<<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
rulebook_ptr
+
3
*
kernel_size
*
non_zero_num
-
1
);
int
rulebook_len
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
rulebook_len
,
rulebook_ptr
+
3
*
kernel_size
*
non_zero_num
-
1
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
rulebook_len
/=
3
;
dev_ctx
.
Wait
();
if
(
subm
)
{
// At present, hashtable is not used to map the input and output indexes.
// At present, the intermediate output index is generated by normal
// convolution,
// and then the intermediate output index is subtracted from the input index
// to obain the rulebook.
// get difference
int32_t
*
A_key_ptr
=
rulebook_ptr
+
2
*
rulebook_len
;
int32_t
*
B_key_ptr
=
in_indexs
.
data
<
int
>
();
DenseTensor
A_val
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
));
DenseTensor
B_val
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
x
.
nnz
()},
DataLayout
::
NCHW
));
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
A_val
,
kps
::
IdentityFunctor
<
int
>
());
phi
::
IndexKernel
<
int
,
kps
::
IdentityFunctor
<
int
>>
(
dev_ctx
,
&
B_val
,
kps
::
IdentityFunctor
<
int
>
());
DenseTensor
key_result
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
+
1
},
DataLayout
::
NCHW
));
DenseTensor
val_result
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
));
#ifdef PADDLE_WITH_HIP
thrust
::
exclusive_scan
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
exclusive_scan
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
counter_ptr
,
counter_ptr
+
kernel_size
,
offsets_ptr
);
std
::
vector
<
int
>
offsets
(
kernel_size
,
0
);
// TODO(zhangkaihuo): used unified memcpy interface
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
offsets
.
data
(),
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
thrust
::
pair
<
int
*
,
int
*>
end
;
// Because set_diff does not support duplicate data, set_diff is performed
// separately for each segment of data.
// TODO(zhangkaihuo): Using hashtable here may get better performance,
// further tests ared needed.
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
int
start
=
offsets
[
i
];
int
stop
=
i
==
kernel_size
-
1
?
rulebook_len
:
offsets
[
i
+
1
];
int
*
key_result_start
=
(
i
==
0
?
key_result
.
data
<
int
>
()
:
end
.
first
);
int
*
val_result_start
=
i
==
0
?
val_result
.
data
<
int
>
()
:
end
.
second
;
end
=
#ifdef PADDLE_WITH_HIP
thrust
::
set_difference_by_key
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
set_difference_by_key
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
A_key_ptr
+
start
,
A_key_ptr
+
stop
,
B_key_ptr
,
B_key_ptr
+
x
.
nnz
(),
A_val
.
data
<
int
>
()
+
start
,
B_val
.
data
<
int
>
(),
key_result_start
,
val_result_start
);
}
DistanceKernel
<<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
key_result
.
data
<
int
>
(),
end
.
first
,
key_result
.
data
<
int
>
()
+
rulebook_len
);
int
len
=
0
;
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
len
,
key_result
.
data
<
int
>
()
+
rulebook_len
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
// set the diff value = -1, and update counter
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
len
,
1
);
SetFlagAndUpdateCounterKernel
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
,
kernel_size
*
sizeof
(
int
),
dev_ctx
.
stream
()
>>>
(
val_result
.
data
<
int
>
(),
len
,
rulebook_len
,
kernel_size
,
rulebook_ptr
,
counter_ptr
);
// remove -1
#ifdef PADDLE_WITH_HIP
int
*
last
=
thrust
::
remove
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
int
*
last
=
thrust
::
remove
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
rulebook_ptr
,
rulebook_ptr
+
3
*
rulebook_len
,
-
1
);
DistanceKernel
<<<
1
,
1
,
0
,
dev_ctx
.
stream
()
>>>
(
rulebook_ptr
,
last
,
key_result
.
data
<
int
>
()
+
rulebook_len
);
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
rulebook_len
,
key_result
.
data
<
int
>
()
+
rulebook_len
,
sizeof
(
int
),
#ifdef PADDLE_WITH_HIP
hipMemcpyDeviceToHost
,
#else
cudaMemcpyDeviceToHost
,
#endif
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
rulebook_len
/=
3
;
}
#ifdef PADDLE_WITH_HIP
thrust
::
exclusive_scan
(
thrust
::
hip
::
par
.
on
(
dev_ctx
.
stream
()),
#else
thrust
::
exclusive_scan
(
thrust
::
cuda
::
par
.
on
(
dev_ctx
.
stream
()),
#endif
counter_ptr
,
counter_ptr
+
kernel_size
,
offsets_ptr
);
#ifdef PADDLE_WITH_HIP
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_counter
)[
0
],
counter_ptr
,
kernel_size
*
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_offsets
)[
0
],
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#else
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_counter
)[
0
],
counter_ptr
,
kernel_size
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
(
*
h_offsets
)[
0
],
offsets_ptr
,
kernel_size
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#endif
rulebook
->
Resize
({
rulebook_rows
,
rulebook_len
});
// 3. sorted or merge the out index
out_index
->
ResizeAndAllocate
({
rulebook_len
});
unique_value
->
ResizeAndAllocate
({
rulebook_len
});
unique_key
->
ResizeAndAllocate
({
rulebook_len
});
int
*
out_index_ptr
=
out_index
->
data
<
int
>
();
int
*
unique_value_ptr
=
unique_value
->
data
<
int
>
();
int
*
unique_key_ptr
=
unique_key
->
data
<
int
>
();
int
*
new_end
=
SortedAndUniqueIndex
(
dev_ctx
,
rulebook_ptr
+
2
*
rulebook_len
,
rulebook_len
,
out_index
,
unique_key
,
unique_value
);
// thrust::distance doesn't support stream parameters
// const int out_non_zero_num = thrust::distance(unique_key_ptr,
// new_end.first);
DistanceKernel
<<<
1
,
1
>>>
(
unique_key_ptr
,
new_end
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
);
int
out_non_zero_num
=
0
;
#ifdef PADDLE_WITH_HIP
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
out_non_zero_num
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
,
sizeof
(
int
),
hipMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#else
phi
::
backends
::
gpu
::
GpuMemcpyAsync
(
&
out_non_zero_num
,
rulebook_ptr
+
rulebook_rows
*
rulebook_cols
-
1
,
sizeof
(
int
),
cudaMemcpyDeviceToHost
,
dev_ctx
.
stream
());
#endif
dev_ctx
.
Wait
();
// 5. update out_indices and rulebook by unique_value_ptr
const
int64_t
sparse_dim
=
4
;
DenseTensorMeta
indices_meta
(
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
out_non_zero_num
,
kernel_dims
[
4
]},
x
.
layout
());
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
int
*
out_indices_ptr
=
out_indices
.
data
<
int
>
();
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
out_non_zero_num
,
1
);
UpdateIndexKernel
<<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
unique_key_ptr
,
unique_value_ptr
,
out_index_ptr
,
out_non_zero_num
,
rulebook_len
,
d_out_dims
,
out_indices_ptr
,
rulebook_ptr
+
2
*
rulebook_len
);
out
->
SetMember
(
out_indices
,
out_values
,
out_dims
,
true
);
return
rulebook_len
;
}
/**
* x: (N, D, H, W, C)
* kernel: (D, H, W, C, OC)
...
...
@@ -545,9 +46,12 @@ void Conv3dKernel(const Context& dev_ctx,
const
auto
&
kernel_dims
=
kernel
.
dims
();
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
DDim
out_dims
=
{
1
,
1
,
1
,
1
,
1
};
std
::
vector
<
int
>
kernel_sizes
(
kernel_dims
.
size
());
for
(
int
i
=
0
;
i
<
kernel_dims
.
size
();
i
++
)
{
kernel_sizes
[
i
]
=
kernel_dims
[
i
];
}
phi
::
funcs
::
sparse
::
GetOutShape
(
x_dims
,
kernel_dims
,
paddings
,
dilations
,
strides
,
&
out_dims
);
out
->
set_dims
(
out_dims
);
x_dims
,
kernel_sizes
,
paddings
,
dilations
,
strides
,
&
out_dims
);
const
int
in_channels
=
kernel_dims
[
3
];
const
int
out_channels
=
kernel_dims
[
4
];
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
h_counter
(
kernel_size
);
...
...
@@ -574,7 +78,7 @@ void Conv3dKernel(const Context& dev_ctx,
int
n
=
ProductRuleBook
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
kernel
_sizes
,
subm_paddings
,
dilations
,
subm_strides
,
...
...
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
浏览文件 @
2f5fb031
...
...
@@ -132,16 +132,17 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
out
.
non_zero_elements
().
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
kernel_tensor
,
out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
std
::
vector
<
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
kernel_tensor
,
out
.
non_zero_elements
(),
paddings
,
dilations
,
strides
,
1
,
subm
);
f_verify
(
grads
[
0
].
data
<
T
>
(),
features_grad
);
f_verify
(
grads
[
1
].
data
<
T
>
(),
kernel_grad
);
}
...
...
@@ -231,16 +232,17 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
h_features_tensor
.
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
d_rulebook
,
d_kernel_tensor
,
d_out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
std
::
vector
<
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
d_rulebook
,
d_kernel_tensor
,
d_out
.
non_zero_elements
(),
paddings
,
dilations
,
strides
,
1
,
subm
);
DenseTensor
h_features_grad
=
phi
::
Empty
(
dev_ctx_cpu
,
DenseTensorMeta
(
grads
[
0
].
dtype
(),
grads
[
0
].
dims
(),
grads
[
0
].
layout
()));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录