From 2f5033822196dcea8513fc2116c2b13cc23f3c3c Mon Sep 17 00:00:00 2001 From: Yuanle Liu Date: Mon, 8 May 2023 11:34:24 +0800 Subject: [PATCH] add ut for lookup_table op trt converter (#53563) --- .../test_trt_convert_lookup_table_v2.py | 142 ++++++++++++++++++ test/ir/inference/test_trt_convert_p_norm.py | 2 +- 2 files changed, 143 insertions(+), 1 deletion(-) create mode 100644 test/ir/inference/test_trt_convert_lookup_table_v2.py diff --git a/test/ir/inference/test_trt_convert_lookup_table_v2.py b/test/ir/inference/test_trt_convert_lookup_table_v2.py new file mode 100644 index 00000000000..60bd6c6f267 --- /dev/null +++ b/test/ir/inference/test_trt_convert_lookup_table_v2.py @@ -0,0 +1,142 @@ +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +from functools import partial +from typing import Any, Dict, List + +import numpy as np +from program_config import ProgramConfig, TensorConfig +from trt_layer_auto_scan_test import TrtLayerAutoScanTest + +import paddle.inference as paddle_infer + + +class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest): + def sample_program_configs(self): + def generate_input1(dims, attrs: List[Dict[str, Any]]): + if dims == 1: + return np.array([32]).astype(np.int64) + elif dims == 2: + return np.array([[3, 16, 24], [6, 4, 47]]).astype(np.int64) + else: + return np.array( + [ + [[3, 16, 24], [30, 16, 14], [2, 6, 24]], + [[3, 26, 34], [3, 16, 24], [3, 6, 4]], + [[3, 16, 24], [53, 16, 54], [30, 1, 24]], + ] + ).astype(np.int64) + + def generate_input2(dims, attrs: List[Dict[str, Any]]): + return np.random.uniform(-1, 1, [64, 4]).astype('float32') + + for dims in [1, 2, 3]: + self.dims = dims + + ops_config = [ + { + "op_type": "lookup_table_v2", + "op_inputs": {"Ids": ["indices"], "W": ["data"]}, + "op_outputs": {"Out": ["out_data"]}, + "op_attrs": {}, + } + ] + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={ + "data": TensorConfig( + data_gen=partial(generate_input2, {}, {}) + ) + }, + inputs={ + "indices": TensorConfig( + data_gen=partial(generate_input1, dims, {}) + ) + }, + outputs=["out_data"], + ) + + yield program_config + + def sample_predictor_configs( + self, program_config + ) -> (paddle_infer.Config, List[int], float): + def generate_dynamic_shape(attrs): + if self.dims == 1: + self.dynamic_shape.min_input_shape = { + "indices": [1], + "data": [64, 4], + } + self.dynamic_shape.max_input_shape = { + "indices": [1], + "data": [64, 4], + } + self.dynamic_shape.opt_input_shape = { + "indices": [1], + "data": [64, 4], + } + elif self.dims == 2: + self.dynamic_shape.min_input_shape = { + "indices": [2, 3], + "data": [64, 4], + } + self.dynamic_shape.max_input_shape = { + "indices": [2, 3], + "data": [64, 4], + } + self.dynamic_shape.opt_input_shape = { + "indices": [2, 3], + "data": [64, 4], + } + else: + self.dynamic_shape.min_input_shape = { + "indices": [3, 3, 3], + "data": [64, 4], + } + self.dynamic_shape.max_input_shape = { + "indices": [3, 3, 3], + "data": [64, 4], + } + self.dynamic_shape.opt_input_shape = { + "indices": [3, 3, 3], + "data": [64, 4], + } + + def generate_trt_nodes_num(attrs, dynamic_shape): + return 1, 2 + + attrs = [ + program_config.ops[i].attrs for i in range(len(program_config.ops)) + ] + + # for dynamic_shape mode + generate_dynamic_shape(attrs) + self.trt_param.precision = paddle_infer.PrecisionType.Float32 + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, True + ), 1e-5 + self.trt_param.precision = paddle_infer.PrecisionType.Half + yield self.create_inference_config(), generate_trt_nodes_num( + attrs, True + ), (1e-3, 1e-3) + + def test(self): + self.run_test() + + +if __name__ == "__main__": + unittest.main() diff --git a/test/ir/inference/test_trt_convert_p_norm.py b/test/ir/inference/test_trt_convert_p_norm.py index 5aa48135a89..6fc8e5ec87c 100644 --- a/test/ir/inference/test_trt_convert_p_norm.py +++ b/test/ir/inference/test_trt_convert_p_norm.py @@ -23,7 +23,7 @@ from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer -class TrtConvertCeluTest(TrtLayerAutoScanTest): +class TrtConvertPNormTest(TrtLayerAutoScanTest): def sample_program_configs(self): def generate_input1(dims, attrs: List[Dict[str, Any]]): if dims == 1: -- GitLab