Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2ef9e0e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2ef9e0e2
编写于
12月 09, 2020
作者:
S
ShenLiang
提交者:
GitHub
12月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rebuild group automatically in dynamic graph distributed (#29255)
* add tensor_indices in AssignGroupBySize * add rebuild group in reducer
上级
3a055833
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
318 addition
and
118 deletion
+318
-118
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+183
-58
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+31
-53
paddle/fluid/imperative/tests/CMakeLists.txt
paddle/fluid/imperative/tests/CMakeLists.txt
+4
-0
paddle/fluid/imperative/tests/test_group.cc
paddle/fluid/imperative/tests/test_group.cc
+66
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+5
-2
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+0
-1
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+5
-4
python/paddle/fluid/tests/unittests/test_imperative_group.py
python/paddle/fluid/tests/unittests/test_imperative_group.py
+24
-0
未找到文件。
paddle/fluid/imperative/reducer.cc
浏览文件 @
2ef9e0e2
...
...
@@ -20,47 +20,98 @@ namespace imperative {
#if defined(PADDLE_WITH_NCCL)
std
::
shared_ptr
<
Reducer
>
Reducer
::
s_instance_
=
NULL
;
// context is used to select the stream for concat
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
ConcatTensorsForAllReduce
<
float
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
ConcatTensorsForAllReduce
<
double
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it concats tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
}
}
// context is used to select the stream for split
void
Group
::
SplitTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
SplitTensorsForAllReduce
<
platform
::
float16
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
SplitTensorsForAllReduce
<
float
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
SplitTensorsForAllReduce
<
double
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
}
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
Group
&
group
)
{
const
auto
&
vars
=
group
.
variable_indices_
;
out
<<
"numul: "
<<
group
.
all_length_
<<
" ;is_sparse: "
<<
group
.
is_sparse_
<<
" ;var number: "
<<
vars
.
size
()
<<
"
\n
"
;
auto
begin
=
vars
.
begin
();
auto
end
=
vars
.
end
();
out
<<
"["
;
for
(
int
i
=
0
;
begin
!=
end
&&
i
<
100
;
++
i
,
++
begin
)
{
if
(
i
>
0
)
out
<<
' '
;
out
<<
*
begin
;
}
if
(
begin
!=
end
)
{
out
<<
" ..."
;
}
out
<<
"]
\n
"
;
return
out
;
}
Reducer
::
Reducer
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
)
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limits
)
:
vars_
(
vars
),
group_indices_
(
group_indices
),
is_sparse_gradient_
(
is_sparse_gradient
),
parallel_ctx_
(
parallel_ctx
)
{
parallel_ctx_
(
parallel_ctx
),
group_size_limits_
(
group_size_limits
)
{
VLOG
(
3
)
<<
"Start construct the Reducer ..."
;
// initialize groups
InitializeGroups
(
group_indices
);
{
for
(
size_t
group_index
=
0
;
group_index
<
group_indices
.
size
();
++
group_index
)
{
for
(
size_t
var_index
=
0
;
var_index
<
group_indices
[
group_index
].
size
();
++
var_index
)
{
size_t
global_var_index
=
group_indices
[
group_index
][
var_index
];
const
auto
variable_index
=
VariableIndex
{
.
group_index
=
group_index
,
.
inside_group_index
=
var_index
,
};
VLOG
(
3
)
<<
"add hook for var["
<<
vars_
[
global_var_index
]
->
GradVarName
()
<<
"], it's in group ["
<<
group_index
<<
"]"
;
for
(
size_t
global_var_index
=
0
;
global_var_index
<
vars_
.
size
();
++
global_var_index
)
{
vars_
[
global_var_index
]
->
SharedVar
()
->
AddGradVarLeafBackwardHook
(
std
::
unique_ptr
<
LambdaGradAccumulatorPostHook
>
(
new
LambdaGradAccumulatorPostHook
([
=
](
VariableWrapper
*
grad
)
{
this
->
AddDistHook
(
grad
,
variable
_index
);
this
->
AddDistHook
(
grad
,
global_var
_index
);
})));
}
}
}
// create streams
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
))
->
stream
();
comm_stream_
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
0
,
place_
)
->
stream
();
events_
.
resize
(
group_indices
.
size
());
for
(
auto
&
event
:
events_
)
{
event
=
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
);
}
// create events
CreateGroupEvents
(
group_indices
.
size
());
comm_enent_
=
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
);
...
...
@@ -76,7 +127,20 @@ void Reducer::ReleaseReducer() {
comm_enent_
.
reset
();
}
int64_t
Reducer
::
InitializeDenseGroups
(
void
Reducer
::
CreateGroupEvents
(
int
group_num
)
{
// release old events
for
(
auto
&
event
:
events_
)
{
event
.
reset
();
}
events_
.
clear
();
events_
.
resize
(
group_num
);
for
(
auto
&
event
:
events_
)
{
event
=
platform
::
CudaEventResourcePool
::
Instance
().
New
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
place_
).
device
);
}
}
void
Reducer
::
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>
&
variable_indices_
,
Group
*
p_group
)
{
int64_t
all_length
=
0
;
for
(
size_t
index
=
0
;
index
<
variable_indices_
.
size
();
++
index
)
{
...
...
@@ -85,18 +149,18 @@ int64_t Reducer::InitializeDenseGroups(
const
auto
var_name
=
var
->
Name
();
PADDLE_ENFORCE_EQ
(
is_sparse_gradient_
[
variable_index
],
false
,
platform
::
errors
::
PreconditionNotMet
(
"Tensor
`%s`
's GRAD must be LoDTensor, but received "
"Tensor
%s
's GRAD must be LoDTensor, but received "
"GRAD is SelectedRows"
,
var_name
));
auto
lod_tensor
=
var
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
lod_tensor
->
IsInitialized
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"Tensor
`%s`
is not initialized."
,
var_name
));
"Tensor
%s
is not initialized."
,
var_name
));
auto
size
=
lod_tensor
->
numel
();
PADDLE_ENFORCE_GT
(
size
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"The number of tensor
`%s`
's elements is 0."
,
var_name
));
"The number of tensor
%s
's elements is 0."
,
var_name
));
all_length
+=
size
;
p_group
->
length_
.
push_back
(
size
);
...
...
@@ -124,7 +188,7 @@ int64_t Reducer::InitializeDenseGroups(
place_
=
place
;
}
}
return
all_length
;
p_group
->
all_length_
=
all_length
;
}
// Each parameter will be initialized according to the group information.
...
...
@@ -137,6 +201,8 @@ void Reducer::InitializeGroups(
// clear the group
groups_
.
clear
();
groups_
.
reserve
(
group_indices
.
size
());
variable_locators_
.
clear
();
variable_locators_
.
resize
(
vars_
.
size
());
auto
group_nums
=
group_indices
.
size
();
for
(
size_t
group_index
=
0
;
group_index
<
group_nums
;
++
group_index
)
{
...
...
@@ -144,10 +210,8 @@ void Reducer::InitializeGroups(
PADDLE_ENFORCE_GT
(
variable_indices_
.
size
(),
0
,
platform
::
errors
::
PreconditionNotMet
(
"The number of group
_index[`%d`
]'s elements is 0."
,
group_index
));
"The number of group
[%d
]'s elements is 0."
,
group_index
));
Group
group
;
group
.
variable_indices_
=
variable_indices_
;
int64_t
all_length
=
0
;
// It's just for check the sparse or dense
auto
first_varbase
=
vars_
[
variable_indices_
.
front
()];
...
...
@@ -159,17 +223,27 @@ void Reducer::InitializeGroups(
group
.
is_sparse_
=
true
;
}
else
{
// process the dense gradient.
all_length
=
InitializeDenseGroups
(
variable_indices_
,
&
group
);
InitializeDenseGroups
(
variable_indices_
,
&
group
);
// Alloc the continuous space
auto
tensor
=
group
.
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length
}))
tensor
->
Resize
(
framework
::
make_ddim
({
group
.
all_length_
}))
.
mutable_data
(
place_
,
group
.
dtype_
);
}
// Debug Message For Reducer
VLOG
(
3
)
<<
"the groups_["
<<
group_index
<<
"] basic message:"
;
VLOG
(
3
)
<<
"numul: "
<<
all_length
<<
" ;is_sparse: "
<<
group
.
is_sparse_
<<
" ;var number: "
<<
group
.
variable_indices_
.
size
();
// map variables to this group by VariableLocator
size_t
inside_group_index
=
0
;
for
(
const
auto
var_index
:
group_indices
[
group_index
])
{
variable_locators_
[
var_index
]
=
VariableLocator
{
.
group_index
=
group_index
,
.
inside_group_index
=
inside_group_index
++
,
};
}
group
.
variable_indices_
=
std
::
move
(
variable_indices_
);
groups_
.
emplace_back
(
std
::
move
(
group
));
// Debug Message For Reducer
VLOG
(
3
)
<<
"The Group["
<<
group_index
<<
"]:"
;
VLOG
(
3
)
<<
groups_
.
back
();
}
}
...
...
@@ -192,11 +266,16 @@ void Reducer::PrepareForBackward() {
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
void
Reducer
::
AddDistHook
(
VariableWrapper
*
var_warpper
,
const
VariableIndex
&
var_index
)
{
auto
group_index
=
var_
index
.
group_index
;
void
Reducer
::
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_
locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
if
(
!
has_rebuilt_group_
)
{
rebuild_vars_
.
push_back
(
vars_
[
var_index
]);
rebuild_var_indices_
.
push_back
(
var_index
);
}
if
(
!
group
.
is_sparse_
)
{
// Only dense_contents_ need memory copy
MarkVariableReady
(
var_index
,
var_warpper
);
...
...
@@ -211,21 +290,22 @@ void Reducer::AddDistHook(VariableWrapper *var_warpper,
}
}
void
Reducer
::
MarkVariableReady
(
const
VariableIndex
&
var_index
,
void
Reducer
::
MarkVariableReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
)
{
auto
group_index
=
var_index
.
group_index
;
auto
variable_index
=
var_index
.
inside_group_index
;
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
&
group
=
groups_
[
group_index
];
auto
length
=
group
.
length_
[
variable
_index
];
auto
length
=
group
.
length_
[
inside_group
_index
];
auto
tensor
=
var_warpper
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
group
.
dense_tensors_
[
variable
_index
].
ShareDataWith
(
*
tensor
).
Resize
(
group
.
dense_tensors_
[
inside_group
_index
].
ShareDataWith
(
*
tensor
).
Resize
(
{
static_cast
<
int64_t
>
(
length
)});
}
void
Reducer
::
MarkGroupReady
(
size_t
group_index
)
{
if
(
group_index
>
next_group_
)
{
VLOG
(
3
)
<<
"
Maybe it need adjust the order of group
"
;
VLOG
(
3
)
<<
"
It will adjust the order of group in next batch automatically
"
;
return
;
}
...
...
@@ -257,10 +337,31 @@ void Reducer::MarkGroupReady(size_t group_index) {
}
}
std
::
vector
<
std
::
vector
<
size_t
>>
Reducer
::
RebuildGruops
()
{
std
::
reverse
(
rebuild_vars_
.
begin
(),
rebuild_vars_
.
end
());
std
::
reverse
(
rebuild_var_indices_
.
begin
(),
rebuild_var_indices_
.
end
());
auto
rebuild_group_indices
=
AssignGroupBySize
(
rebuild_vars_
,
is_sparse_gradient_
,
group_size_limits_
,
rebuild_var_indices_
);
has_rebuilt_group_
=
true
;
rebuild_vars_
.
clear
();
rebuild_var_indices_
.
clear
();
std
::
reverse
(
rebuild_group_indices
.
begin
(),
rebuild_group_indices
.
end
());
return
rebuild_group_indices
;
}
void
Reducer
::
FinalizeBackward
()
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
comm_enent_
.
get
(),
comm_stream_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
compute_stream_
,
comm_enent_
.
get
(),
0
));
if
(
!
has_rebuilt_group_
)
{
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
group_indices_
=
std
::
move
(
rebuild_group_indices
);
CreateGroupEvents
(
rebuild_group_number
);
InitializeGroups
(
group_indices_
);
}
VLOG
(
3
)
<<
"In the batch, Reducer is finished..."
;
}
...
...
@@ -274,12 +375,28 @@ void Reducer::FinalizeBackward() {
std
::
vector
<
std
::
vector
<
size_t
>>
AssignGroupBySize
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
const
std
::
vector
<
size_t
>
&
group_size_limits
)
{
const
std
::
vector
<
size_t
>
&
group_size_limits
,
const
std
::
vector
<
int64_t
>
&
tensor_indices
)
{
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
is_sparse_gradient
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"vars len must be equal to is_sparse_gradient len, but "
"[%lu] != [%lu]"
,
vars
.
size
(),
is_sparse_gradient
.
size
()));
auto
check_perm
=
[](
const
std
::
vector
<
int64_t
>
&
x
)
->
bool
{
size_t
len
=
x
.
size
();
std
::
vector
<
size_t
>
cnt
(
len
,
0
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
if
(
x
[
i
]
>=
static_cast
<
int64_t
>
(
len
)
||
x
[
i
]
<
0
||
cnt
[
x
[
i
]])
{
return
false
;
}
cnt
[
x
[
i
]]
++
;
}
return
true
;
};
PADDLE_ENFORCE_EQ
(
true
,
check_perm
(
tensor_indices
),
platform
::
errors
::
PreconditionNotMet
(
"tensor_indices must be a permutation from 0 to %lu"
,
tensor_indices
.
size
()));
// the return vector
std
::
vector
<
std
::
vector
<
size_t
>>
res
;
...
...
@@ -294,9 +411,15 @@ std::vector<std::vector<size_t>> AssignGroupBySize(
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
const
auto
&
var
=
vars
[
i
];
if
(
is_sparse_gradient
[
i
])
{
size_t
tensor_real_index
=
i
;
if
(
!
tensor_indices
.
empty
())
{
tensor_real_index
=
tensor_indices
[
i
];
}
if
(
is_sparse_gradient
[
tensor_real_index
])
{
// we keep sparse var a single group
res
.
push_back
({
i
});
res
.
push_back
({
tensor_real_index
});
continue
;
}
...
...
@@ -313,7 +436,7 @@ std::vector<std::vector<size_t>> AssignGroupBySize(
<<
" is not tensor or selected_rows, so skip it"
;
continue
;
}
group_info
.
first
.
push_back
(
i
);
group_info
.
first
.
push_back
(
tensor_real_index
);
group_info
.
second
+=
framework
::
SizeOfType
(
var_dtype
)
*
var_size
;
if
(
group_limit_index
.
find
(
var_dtype_str
)
==
group_limit_index
.
end
())
{
...
...
@@ -344,10 +467,12 @@ std::vector<std::vector<size_t>> AssignGroupBySize(
platform
::
errors
::
PreconditionNotMet
(
"AssignGroupBySize construct empty group, please check."
));
}
if
(
tensor_indices
.
empty
())
{
std
::
sort
(
res
.
begin
(),
res
.
end
(),
[](
const
std
::
vector
<
size_t
>
&
x
,
const
std
::
vector
<
size_t
>
&
y
)
{
return
x
.
front
()
<
y
.
front
();
});
}
return
res
;
}
#endif
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
2ef9e0e2
...
...
@@ -86,6 +86,8 @@ class Group {
std
::
vector
<
framework
::
Tensor
>
dense_tensors_
;
std
::
vector
<
size_t
>
length_
;
int64_t
all_length_
{
0
};
// Global indices of participating variables in the group
std
::
vector
<
size_t
>
variable_indices_
;
...
...
@@ -97,53 +99,15 @@ class Group {
framework
::
proto
::
VarType
::
Type
dtype_
;
// context is used to select the stream for concat
void
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
ConcatTensorsForAllReduce
<
float
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
ConcatTensorsForAllReduce
<
double
>
(
context
,
dense_tensors_
,
&
dense_contents_
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it concats tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
}
}
void
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
);
// context is used to select the stream for split
void
SplitTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
SplitTensorsForAllReduce
<
platform
::
float16
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
case
framework
::
proto
::
VarType
::
FP32
:
SplitTensorsForAllReduce
<
float
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
case
framework
::
proto
::
VarType
::
FP64
:
SplitTensorsForAllReduce
<
double
>
(
context
,
&
dense_contents_
,
&
dense_tensors_
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allreduce."
,
framework
::
DataTypeToString
(
dtype_
)));
}
}
void
SplitTensors
(
const
platform
::
CUDADeviceContext
&
context
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Group
&
);
};
struct
Variable
Index
{
struct
Variable
Locator
{
// record the index in groups_
size_t
group_index
;
size_t
inside_group_index
;
...
...
@@ -155,22 +119,21 @@ class Reducer {
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
);
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
);
virtual
~
Reducer
()
{}
void
InitializeGroups
(
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
);
int64_t
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>&
variable_indices_
,
void
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>&
variable_indices_
,
Group
*
p_group
);
void
PrepareForBackward
();
void
AddDistHook
(
VariableWrapper
*
var_warpper
,
const
VariableIndex
&
var_index
);
void
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
);
void
MarkVariableReady
(
const
VariableIndex
&
var_index
,
VariableWrapper
*
var_warpper
);
void
MarkVariableReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
);
void
MarkGroupReady
(
size_t
group_index
);
...
...
@@ -178,15 +141,21 @@ class Reducer {
void
ReleaseReducer
();
std
::
vector
<
std
::
vector
<
size_t
>>
RebuildGruops
();
void
CreateGroupEvents
(
int
group_num
);
// Reducer Singleton
static
std
::
shared_ptr
<
Reducer
>
SetInstance
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
)
{
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
)
{
if
(
NULL
==
s_instance_
)
{
s_instance_
.
reset
(
new
paddle
::
imperative
::
Reducer
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
));
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limits
));
}
return
s_instance_
;
}
...
...
@@ -208,17 +177,26 @@ class Reducer {
std
::
once_flag
once_flag_
;
std
::
vector
<
bool
>
is_sparse_gradient_
;
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx_
;
std
::
vector
<
VariableLocator
>
variable_locators_
;
// Following variables are to help sync stream
std
::
vector
<
std
::
shared_ptr
<
platform
::
CudaEventObject
>>
events_
;
std
::
shared_ptr
<
platform
::
CudaEventObject
>
comm_enent_
;
cudaStream_t
compute_stream_
;
cudaStream_t
comm_stream_
;
// Following variables are to help rebuild group
bool
has_rebuilt_group_
{
false
};
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
rebuild_vars_
;
std
::
vector
<
int64_t
>
rebuild_var_indices_
;
const
std
::
vector
<
size_t
>
group_size_limits_
;
};
std
::
vector
<
std
::
vector
<
size_t
>>
AssignGroupBySize
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
tensors
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
const
std
::
vector
<
size_t
>&
group_size_limits
);
const
std
::
vector
<
size_t
>&
group_size_limits
,
const
std
::
vector
<
int64_t
>&
tensor_indices
=
{});
#endif
}
// namespace imperative
...
...
paddle/fluid/imperative/tests/CMakeLists.txt
浏览文件 @
2ef9e0e2
...
...
@@ -12,3 +12,7 @@ cc_test(test_layer SRCS test_layer.cc DEPS layer proto_desc operator op_registry
cc_test
(
test_prepare_op SRCS test_prepare_op.cc DEPS prepared_operator op_info split_op layer concat_and_split activation_op place
)
cc_test
(
test_tracer SRCS test_tracer.cc DEPS tracer layer proto_desc operator op_registry variable_helper mul_op reduce_sum_op elementwise_add_op memcpy
)
cc_test
(
test_hooks SRCS test_hooks.cc DEPS tracer basic_engine layer proto_desc operator op_registry variable_helper mul_op elementwise_add_op memcpy
)
if
(
WITH_NCCL
)
cc_test
(
test_group SRCS test_group.cc DEPS reducer concat_and_split memcpy
)
endif
()
paddle/fluid/imperative/tests/test_group.cc
0 → 100644
浏览文件 @
2ef9e0e2
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <ostream>
#include <sstream>
#include <string>
#include "glog/logging.h"
#include "gtest/gtest.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/reducer.h"
#endif
namespace
paddle
{
namespace
imperative
{
#if defined(PADDLE_WITH_NCCL)
TEST
(
TestGroup
,
TestPrintGroupMessage
)
{
Group
group
;
std
::
stringstream
stream1
,
stream2
;
stream1
<<
group
;
ASSERT_STREQ
(
stream1
.
str
().
c_str
(),
"numul: 0 ;is_sparse: 0 ;var number: 0
\n
[]
\n
"
);
std
::
vector
<
size_t
>
vars
;
size_t
vars_num
=
102
;
for
(
size_t
i
=
0
;
i
<
vars_num
;
++
i
)
{
vars
.
push_back
(
i
);
}
group
.
variable_indices_
=
vars
;
group
.
all_length_
=
102
;
group
.
is_sparse_
=
false
;
std
::
string
head
=
"numul: 102 ;is_sparse: 0 ;var number: 102
\n
"
;
head
=
head
+
"["
;
auto
begin
=
vars
.
begin
();
auto
end
=
vars
.
end
();
for
(
int
i
=
0
;
begin
!=
end
&&
i
<
100
;
++
i
,
++
begin
)
{
if
(
i
>
0
)
head
+=
' '
;
head
+=
std
::
to_string
(
*
begin
);
}
if
(
begin
!=
end
)
{
head
+=
" ..."
;
}
head
+=
"]
\n
"
;
stream2
<<
group
;
ASSERT_STREQ
(
stream2
.
str
().
c_str
(),
head
.
c_str
());
}
#endif
}
// namespace imperative
}
// namespace paddle
paddle/fluid/pybind/imperative.cc
浏览文件 @
2ef9e0e2
...
...
@@ -1289,9 +1289,11 @@ void BindImperative(py::module *m_ptr) {
[](
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
)
{
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limits
)
{
return
imperative
::
Reducer
::
SetInstance
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
);
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limits
);
}))
.
def
(
"prepare_for_backward"
,
&
imperative
::
Reducer
::
PrepareForBackward
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
...
...
@@ -1299,6 +1301,7 @@ void BindImperative(py::module *m_ptr) {
m
.
def
(
"assign_group_by_size"
,
&
imperative
::
AssignGroupBySize
,
py
::
arg
(
"vars"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"group_size_limits"
)
=
std
::
vector
<
size_t
>
{
25
*
1024
*
1024
},
py
::
arg
(
"tensor_indices"
)
=
std
::
vector
<
int64_t
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
}
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
2ef9e0e2
...
...
@@ -18,7 +18,6 @@ from paddle.fluid.framework import Variable, set_flags, core
from
paddle.fluid.wrapped_decorator
import
wrap_decorator
import
google.protobuf.text_format
import
google.protobuf
from
paddle.fluid.framework
import
dygraph_only
__all__
=
[
"DistributedStrategy"
]
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
2ef9e0e2
...
...
@@ -441,10 +441,11 @@ class DataParallel(layers.Layer):
"ParallelContext must be initialized before. You should use init_parallel_env() before"
\
"constructing the DataParallel."
self
.
_reducer
=
core
.
Reducer
(
trainable_parameters
,
list
(
reversed
(
self
.
group_indices
)),
is_sparse_gradient
,
parallel_helper
.
__parallel_ctx__clz__
)
self
.
_reducer
=
core
.
Reducer
(
trainable_parameters
,
list
(
reversed
(
self
.
group_indices
)),
is_sparse_gradient
,
parallel_helper
.
__parallel_ctx__clz__
,
[
self
.
last_comm_buffer_size
,
self
.
comm_buffer_size
])
def
forward
(
self
,
*
inputs
,
**
kwargs
):
if
self
.
_strategy
.
nranks
>
1
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_group.py
浏览文件 @
2ef9e0e2
...
...
@@ -155,6 +155,30 @@ class TestDataParallelGroup(unittest.TestCase):
var_list
,
[
True
,
False
,
False
,
False
,
False
,
True
],
[
200
,
400
])
self
.
assertEqual
([[
0
],
[
1
],
[
2
],
[
3
],
[
4
],
[
5
]],
res
)
def
test_construct_group8
(
self
):
# one dtype & one limit capability & have tensor_indices
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
100
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
50
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
False
],
[
400
],
[
3
,
0
,
1
,
2
])
self
.
assertEqual
([[
3
,
0
],
[
1
],
[
2
]],
res
)
def
test_construct_group9
(
self
):
# one dtype & one limit capability & have tensor_indices
var_list
=
[]
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
25
]))
var_list
.
append
(
self
.
create_varbase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
2
,
1000
]))
res
=
core
.
assign_group_by_size
(
var_list
,
[
False
,
False
,
False
,
True
],
[
300
],
[
1
,
0
,
2
,
3
])
self
.
assertEqual
([[
1
,
0
],
[
3
],
[
2
]],
res
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录