Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2e9e65d8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2e9e65d8
编写于
11月 10, 2022
作者:
W
wuhuachaocoding
提交者:
GitHub
11月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【cherry-pick】update Recompute doc (#47784)
* cherry-pick recompute doc update. * update.
上级
ff642c68
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
232 addition
and
103 deletion
+232
-103
python/paddle/distributed/fleet/recompute/recompute.py
python/paddle/distributed/fleet/recompute/recompute.py
+131
-96
python/paddle/distributed/fleet/utils/__init__.py
python/paddle/distributed/fleet/utils/__init__.py
+101
-7
未找到文件。
python/paddle/distributed/fleet/recompute/recompute.py
浏览文件 @
2e9e65d8
...
...
@@ -41,16 +41,23 @@ def detach_variable(inputs):
def
check_recompute_necessary
(
inputs
):
if
not
any
(
input_
.
stop_gradient
==
False
for
input_
in
inputs
if
isinstance
(
input_
,
(
core
.
eager
.
Tensor
,
paddle
.
Tensor
))):
if
not
any
(
input_
.
stop_gradient
==
False
for
input_
in
inputs
if
isinstance
(
input_
,
(
core
.
eager
.
Tensor
,
paddle
.
Tensor
))
):
logger
.
warning
(
"[Recompute]: None of the inputs to current recompute block need grad, "
"therefore there is NO need to recompute this block in backward !"
)
"therefore there is NO need to recompute this block in backward !"
)
@
contextlib
.
contextmanager
def
swith_rng_state_tracker
(
rng_state
,
tracker
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
get_rng_state_tracker
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
orig_cuda_rng_state
=
paddle
.
get_cuda_rng_state
()
orig_cuda_rng_tracker
=
get_rng_state_tracker
().
get_states_tracker
()
...
...
@@ -64,10 +71,11 @@ def swith_rng_state_tracker(rng_state, tracker):
class
LegacyRecomputeFunction
(
LegacyPyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
get_rng_state_tracker
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
# store for recomputing
ctx
.
run_function
=
run_function
...
...
@@ -96,30 +104,37 @@ class LegacyRecomputeFunction(LegacyPyLayer):
cur_device
=
paddle
.
get_device
()
if
'gpu:'
not
in
cur_device
:
raise
RuntimeError
(
"Recompute with RNG perserve is not support current device: {}."
.
format
(
cur_device
))
"Recompute with RNG perserve is not support current device: {}."
.
format
(
cur_device
)
)
ctx
.
fw_cuda_rng_state
=
paddle
.
get_cuda_rng_state
()
ctx
.
fwd_cuda_rng_state_tracker
=
get_rng_state_tracker
(
).
get_states_tracker
()
ctx
.
fwd_cuda_rng_state_tracker
=
(
get_rng_state_tracker
().
get_states_tracker
()
)
# TODO support AMP
tracer
=
framework
.
_dygraph_tracer
()
ctx
.
is_fw_autocast
=
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
ctx
.
is_fw_autocast
=
(
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
)
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O2
:
ctx
.
amp_level
=
'O2'
elif
tracer
.
_amp_level
in
(
core
.
AmpLevel
.
O1
,
core
.
AmpLevel
.
O0
):
ctx
.
amp_level
=
'O1'
else
:
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
))
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
)
)
if
tracer
.
_amp_dtype
==
'float16'
:
ctx
.
amp_dtype
=
'float16'
elif
tracer
.
_amp_dtype
in
(
'bfloat16'
,
'float32'
):
ctx
.
amp_dtype
=
'bfloat16'
else
:
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
))
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
)
)
ctx
.
amp_white_list
,
ctx
.
amp_black_list
=
tracer
.
_get_amp_op_list
()
...
...
@@ -129,7 +144,10 @@ class LegacyRecomputeFunction(LegacyPyLayer):
@
staticmethod
def
backward
(
ctx
,
*
args
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
get_rng_state_tracker
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
with
paddle
.
fluid
.
dygraph
.
guard
():
# TODO need to check the recompute calling is vaild or not
...
...
@@ -147,27 +165,31 @@ class LegacyRecomputeFunction(LegacyPyLayer):
# NOTE support AMP
# need restore auto_cast state as well as w/b list
if
ctx
.
preserve_rng_state
:
with
swith_rng_state_tracker
(
ctx
.
fw_cuda_rng_state
,
ctx
.
fwd_cuda_rng_state_tracker
):
with
swith_rng_state_tracker
(
ctx
.
fw_cuda_rng_state
,
ctx
.
fwd_cuda_rng_state_tracker
):
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
else
:
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
if
isinstance
(
outputs
,
core
.
VarBase
):
outputs
=
(
outputs
,
)
outputs
=
(
outputs
,)
assert
len
(
outputs
)
==
len
(
args
)
# run backward() with only tensor that requires grad
...
...
@@ -178,8 +200,10 @@ class LegacyRecomputeFunction(LegacyPyLayer):
# the following backward_inputs_with_grad is used to avoid this case.
backward_inputs_with_grad
=
[]
for
i
in
range
(
len
(
outputs
)):
if
isinstance
(
outputs
[
i
],
core
.
VarBase
)
and
not
outputs
[
i
].
stop_gradient
:
if
(
isinstance
(
outputs
[
i
],
core
.
VarBase
)
and
not
outputs
[
i
].
stop_gradient
):
forward_outputs_with_grad
.
append
(
outputs
[
i
])
backward_inputs_with_grad
.
append
(
args
[
i
])
...
...
@@ -190,19 +214,24 @@ class LegacyRecomputeFunction(LegacyPyLayer):
# actually backward
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
grads
=
list
(
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
core
.
VarBase
))
grads
=
list
(
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
core
.
VarBase
)
)
return
grads
class
RecomputeFunction
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
,
**
kwargs
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
get_rng_state_tracker
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
# store for recomputing
ctx
.
run_function
=
run_function
...
...
@@ -232,30 +261,37 @@ class RecomputeFunction(PyLayer):
cur_device
=
paddle
.
get_device
()
if
'gpu:'
not
in
cur_device
:
raise
RuntimeError
(
"Recompute with RNG perserve is not support current device: {}."
.
format
(
cur_device
))
"Recompute with RNG perserve is not support current device: {}."
.
format
(
cur_device
)
)
ctx
.
fw_cuda_rng_state
=
paddle
.
get_cuda_rng_state
()
ctx
.
fwd_cuda_rng_state_tracker
=
get_rng_state_tracker
(
).
get_states_tracker
()
ctx
.
fwd_cuda_rng_state_tracker
=
(
get_rng_state_tracker
().
get_states_tracker
()
)
# TODO support AMP
tracer
=
framework
.
_dygraph_tracer
()
ctx
.
is_fw_autocast
=
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
ctx
.
is_fw_autocast
=
(
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
)
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O2
:
ctx
.
amp_level
=
'O2'
elif
tracer
.
_amp_level
in
(
core
.
AmpLevel
.
O1
,
core
.
AmpLevel
.
O0
):
ctx
.
amp_level
=
'O1'
else
:
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
))
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
)
)
if
tracer
.
_amp_dtype
==
'float16'
:
ctx
.
amp_dtype
=
'float16'
elif
tracer
.
_amp_dtype
in
(
'bfloat16'
,
'float32'
):
ctx
.
amp_dtype
=
'bfloat16'
else
:
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
))
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
)
)
ctx
.
amp_white_list
,
ctx
.
amp_black_list
=
tracer
.
_get_amp_op_list
()
...
...
@@ -265,7 +301,10 @@ class RecomputeFunction(PyLayer):
@
staticmethod
def
backward
(
ctx
,
*
args
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
get_rng_state_tracker
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
with
paddle
.
fluid
.
dygraph
.
guard
():
# TODO need to check the recompute calling is vaild or not
...
...
@@ -283,28 +322,33 @@ class RecomputeFunction(PyLayer):
# NOTE support AMP
# need restore auto_cast state as well as w/b list
if
ctx
.
preserve_rng_state
:
with
swith_rng_state_tracker
(
ctx
.
fw_cuda_rng_state
,
ctx
.
fwd_cuda_rng_state_tracker
):
with
swith_rng_state_tracker
(
ctx
.
fw_cuda_rng_state
,
ctx
.
fwd_cuda_rng_state_tracker
):
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
,
**
ctx
.
kwargs
)
outputs
=
ctx
.
run_function
(
*
detached_inputs
,
**
ctx
.
kwargs
)
else
:
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
,
**
ctx
.
kwargs
)
if
isinstance
(
outputs
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
)):
outputs
=
(
outputs
,
)
outputs
=
(
outputs
,)
assert
len
(
outputs
)
==
len
(
args
)
# run backward() with only tensor that requires grad
...
...
@@ -315,10 +359,10 @@ class RecomputeFunction(PyLayer):
# the following backward_inputs_with_grad is used to avoid this case.
backward_inputs_with_grad
=
[]
for
i
in
range
(
len
(
outputs
)):
if
isinstance
(
outputs
[
i
],
(
core
.
VarBase
,
core
.
eager
.
Tensor
))
and
not
outputs
[
i
].
stop_gradient
:
if
(
isinstance
(
outputs
[
i
],
(
core
.
VarBase
,
core
.
eager
.
Tensor
))
and
not
outputs
[
i
].
stop_gradient
)
:
forward_outputs_with_grad
.
append
(
outputs
[
i
])
backward_inputs_with_grad
.
append
(
args
[
i
])
...
...
@@ -329,17 +373,22 @@ class RecomputeFunction(PyLayer):
# actually backward
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
if
in_dygraph_mode
():
grads
=
tuple
(
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
)))
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
))
)
else
:
grads
=
list
(
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
)))
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
))
)
return
grads
...
...
@@ -363,13 +412,10 @@ def recompute(function, *args, **kwargs):
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.distributed.fleet.utils import recompute
import random
# required: gpu
def get_fc_block(block_idx, input_size, is_last=False):
block_name = "block_" + str(block_idx)
block = paddle.nn.Sequential(
...
...
@@ -391,10 +437,7 @@ def recompute(function, *args, **kwargs):
block_name + "_fc_2",
paddle.nn.Linear(input_size, input_size, bias_attr=False)
)
return block
class Naive_fc_net(paddle.nn.Layer):
def __init__(self, input_size=10,
recompute_blocks=[1, 3],
...
...
@@ -408,7 +451,6 @@ def recompute(function, *args, **kwargs):
self.runfunc3 = get_fc_block(3, input_size, is_last=False)
self.runfunc4 = get_fc_block(4, input_size, is_last=True)
self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]
def forward(self, inputs):
nums = len(self.total_func)
for i in range(nums):
...
...
@@ -417,15 +459,12 @@ def recompute(function, *args, **kwargs):
else:
inputs = self.total_func[i](inputs)
return inputs
def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
gen = paddle.seed(10)
gen.manual_seed(10)
np.random.seed(10)
random.seed(10)
if cuda_state:
paddle.set_cuda_rng_state(cuda_state)
batch_size, input_size = 1, 10
model = Naive_fc_net(
input_size,
...
...
@@ -436,29 +475,24 @@ def recompute(function, *args, **kwargs):
param_ = []
grad_ = []
for _ in range(5):
x_data = np.random.randn(batch_size, input_size).astype(np.float32)
x = paddle.to_tensor(x_data)
x = paddle.rand(shape=[batch_size, input_size], dtype="float32")
y_pred = model(x)
loss = y_pred.mean()
loss_.append(
np.asarray(loss).tolist
())
loss_.append(
loss.item
())
loss.backward()
optimizer.step()
param_.append(
np.asarray(model.parameters()[9]).tolist()
)
grad_.append(
np.asarray(model.parameters()[3]._grad_ivar()).tolist
())
param_.append(
model.parameters()[9]
)
grad_.append(
model.parameters()[3]._grad_ivar
())
optimizer.clear_grad()
return loss_, param_, grad_
cuda_state = paddle.get_cuda_rng_state()
# without recompute
loss_ref, param_ref, grad_ref = run_model(
cuda_state, recompute_block=[]
)
loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
# The result of the recompute_loss should be the same as the normal_loss.
"""
# Hack to mix *args with **kwargs in a python 2.7-compliant way
preserve
=
kwargs
.
pop
(
'preserve_rng_state'
,
True
)
...
...
@@ -497,7 +531,6 @@ def recompute_sequential(ctx, functions, *args, **kwargs):
preserve_rng_state
=
ctx
.
get
(
'preserve_rng_state'
,
True
)
def
_run_func
(
begin
,
end
,
funcs
):
def
do_run
(
input
):
for
i
in
range
(
begin
,
end
+
1
):
input
=
funcs
[
i
](
input
)
...
...
@@ -513,8 +546,10 @@ def recompute_sequential(ctx, functions, *args, **kwargs):
end
=
-
1
for
begin
in
range
(
0
,
segment_size
*
(
segments
-
1
),
segment_size
):
end
=
begin
+
segment_size
-
1
args
=
recompute
(
_run_func
(
begin
,
end
,
functions
),
args
=
recompute
(
_run_func
(
begin
,
end
,
functions
),
*
args
,
preserve_rng_state
=
preserve_rng_state
,
**
kwargs
)
**
kwargs
)
return
_run_func
(
end
+
1
,
len
(
functions
)
-
1
,
functions
)(
args
)
python/paddle/distributed/fleet/utils/__init__.py
浏览文件 @
2e9e65d8
...
...
@@ -22,14 +22,108 @@ import paddle
from
.
import
log_util
# noqa: F401
from
.
import
hybrid_parallel_util
# noqa: F401
__all__
=
[
#noqa
"LocalFS"
,
"recompute"
,
"DistributedInfer"
,
"HDFSClient"
]
__all__
=
[
"LocalFS"
,
"recompute"
,
"DistributedInfer"
,
"HDFSClient"
]
# noqa
@
deprecated
(
since
=
"2.4.0"
,
update_to
=
"paddle.distributed.fleet.recompute"
,
level
=
1
,
reason
=
"Please use new recompute API(fleet.recompute) "
)
def
recompute
(
function
,
*
args
,
**
kwargs
):
"""
recompute intermediate activations to save then memory.
Parameters:
function(paddle.nn.Layer): layer of sequence of layers that describes part of forward pass of the model
whose intermediate activations will be released to save memory in forward stage and will be recomputed
in backward stage for gradient calculation.
*args(Tensor): inputs to the function.
**kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to
indicate whether to save the forward rng. If it is True, then the last forward rng value will be
restored when the forward recalculation of backpropagation is performed. The default
preserve_rng_state is True.
Returns:
Output of function on args.
Examples:
.. code-block:: python
import paddle
from paddle.distributed.fleet.utils import recompute
import random
# required: gpu
def get_fc_block(block_idx, input_size, is_last=False):
block_name = "block_" + str(block_idx)
block = paddle.nn.Sequential(
(block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
(block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
(block_name + "_relu_1", paddle.nn.ReLU()),
(block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
(block_name + "_relu_2", paddle.nn.ReLU()),
)
if is_last:
block.add_sublayer(
block_name + "_fc_2",
paddle.nn.Linear(
input_size, 1, bias_attr=False
)
)
else:
block.add_sublayer(
block_name + "_fc_2",
paddle.nn.Linear(input_size, input_size, bias_attr=False)
)
return block
class Naive_fc_net(paddle.nn.Layer):
def __init__(self, input_size=10,
recompute_blocks=[1, 3],
recompute_kwargs={}):
super(Naive_fc_net, self).__init__()
self.recompute_blocks = recompute_blocks
self.recompute_kwargs = recompute_kwargs
self.runfunc0 = get_fc_block(0, input_size, is_last=False)
self.runfunc1 = get_fc_block(1, input_size, is_last=False)
self.runfunc2 = get_fc_block(2, input_size, is_last=False)
self.runfunc3 = get_fc_block(3, input_size, is_last=False)
self.runfunc4 = get_fc_block(4, input_size, is_last=True)
self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]
def forward(self, inputs):
nums = len(self.total_func)
for i in range(nums):
if i in self.recompute_blocks:
inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
else:
inputs = self.total_func[i](inputs)
return inputs
def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
gen = paddle.seed(10)
gen.manual_seed(10)
random.seed(10)
if cuda_state:
paddle.set_cuda_rng_state(cuda_state)
batch_size, input_size = 1, 10
model = Naive_fc_net(
input_size,
recompute_blocks=recompute_block,
recompute_kwargs=recompute_kwargs)
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
loss_ = []
param_ = []
grad_ = []
for _ in range(5):
x = paddle.rand(shape=[batch_size, input_size], dtype="float32")
y_pred = model(x)
loss = y_pred.mean()
loss_.append(loss.item())
loss.backward()
optimizer.step()
param_.append(model.parameters()[9])
grad_.append(model.parameters()[3]._grad_ivar())
optimizer.clear_grad()
return loss_, param_, grad_
cuda_state = paddle.get_cuda_rng_state()
# without recompute
loss_ref, param_ref, grad_ref = run_model(
cuda_state, recompute_block=[]
)
loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
# The result of the recompute_loss should be the same as the normal_loss.
"""
return
fleet
.
recompute
.
recompute
(
function
,
*
args
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录