Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2e74cf46
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2e74cf46
编写于
11月 01, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 01, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5273 from tensor-tang/merge
refine mkldnn unit test
上级
8401039f
1e8300fa
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
220 addition
and
269 deletion
+220
-269
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+30
-20
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+10
-10
paddle/gserver/tests/mkldnn_branch_net.conf
paddle/gserver/tests/mkldnn_branch_net.conf
+142
-0
paddle/gserver/tests/mkldnn_branches_fc.conf
paddle/gserver/tests/mkldnn_branches_fc.conf
+0
-58
paddle/gserver/tests/mkldnn_branches_pool.conf
paddle/gserver/tests/mkldnn_branches_pool.conf
+0
-60
paddle/gserver/tests/mkldnn_simple_net.conf
paddle/gserver/tests/mkldnn_simple_net.conf
+28
-20
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+5
-6
paddle/math/MKLDNNMatrix.h
paddle/math/MKLDNNMatrix.h
+5
-0
paddle/trainer/tests/CMakeLists.txt
paddle/trainer/tests/CMakeLists.txt
+0
-16
paddle/trainer/tests/sample_trainer_config_simple_net.conf
paddle/trainer/tests/sample_trainer_config_simple_net.conf
+0
-68
paddle/trainer/tests/test_CompareTwoNets.cpp
paddle/trainer/tests/test_CompareTwoNets.cpp
+0
-11
未找到文件。
paddle/gserver/tests/MKLDNNTester.cpp
浏览文件 @
2e74cf46
...
@@ -273,31 +273,37 @@ void MKLDNNTester::printVector(const VectorPtr& v) {
...
@@ -273,31 +273,37 @@ void MKLDNNTester::printVector(const VectorPtr& v) {
VLOG
(
MKLDNN_ALL
)
<<
std
::
endl
<<
ostr
.
str
();
VLOG
(
MKLDNN_ALL
)
<<
std
::
endl
<<
ostr
.
str
();
}
}
double
MKLDNNTester
::
getDelta
(
const
real
*
d1
,
double
MKLDNNTester
::
getDelta
(
const
real
*
refer
,
const
real
*
d2
,
const
real
*
value
,
size_t
len
,
size_t
len
,
const
float
failRate
,
const
float
failRate
,
const
float
thres
)
{
const
float
thres
)
{
double
delta
=
0
,
sum
=
0
;
double
delta
=
0
,
sum
=
0
;
int
failCnt
=
0
;
int
failCnt
=
0
;
const
double
eps
=
1e-5
;
const
double
eps
=
1e-5
;
double
max
Out
=
0
;
double
max
Ratio
=
0
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
double
ref
=
fabs
(
d2
[
i
]);
double
ref
=
fabs
(
refer
[
i
]);
double
diff
=
fabs
(
d1
[
i
]
-
d2
[
i
]);
double
val
=
fabs
(
value
[
i
]);
double
diff
=
fabs
(
refer
[
i
]
-
value
[
i
]);
delta
+=
diff
;
delta
+=
diff
;
sum
+=
ref
;
sum
+=
ref
;
if
(
ref
>
eps
&&
fabs
(
d1
[
i
])
>
eps
&&
diff
/
ref
>
thres
)
{
if
(
ref
<
eps
&&
val
<
eps
)
{
// both values are very small
maxOut
=
std
::
max
(
maxOut
,
diff
/
ref
);
continue
;
}
double
ratio
=
diff
/
ref
;
if
(
ratio
>
thres
)
{
maxRatio
=
std
::
max
(
maxRatio
,
ratio
);
failCnt
++
;
failCnt
++
;
}
}
}
}
EXPECT_TRUE
(
std
::
isnormal
(
sum
));
EXPECT_FALSE
(
std
::
isinf
(
sum
));
EXPECT_FALSE
(
std
::
isinf
(
sum
));
EXPECT_FALSE
(
std
::
isnan
(
sum
));
EXPECT_FALSE
(
std
::
isnan
(
delta
));
EXPECT_FALSE
(
std
::
isnan
(
delta
));
VLOG
(
MKLDNN_ALL
)
<<
"reference avg data: "
<<
sum
/
len
VLOG
(
MKLDNN_ALL
)
<<
"reference avg data: "
<<
sum
/
len
<<
", delta: "
<<
delta
/
sum
<<
", failCnt:"
<<
failCnt
;
<<
", delta: "
<<
delta
/
sum
<<
", failCnt:"
<<
failCnt
;
return
(
failCnt
/
(
float
)
len
)
>
failRate
?
maxOut
:
delta
/
sum
;
double
res
=
sum
>
eps
?
delta
/
sum
:
eps
;
return
(
failCnt
/
(
float
)
len
)
>
failRate
?
maxRatio
:
res
;
}
}
double
MKLDNNTester
::
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
)
{
double
MKLDNNTester
::
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
)
{
...
@@ -515,12 +521,16 @@ void MKLDNNTester::getOutResult(const std::string& configPath,
...
@@ -515,12 +521,16 @@ void MKLDNNTester::getOutResult(const std::string& configPath,
gradientMachine
->
forward
(
in
.
inArgs
[
i
],
&
outArgs
,
PASS_TRAIN
);
gradientMachine
->
forward
(
in
.
inArgs
[
i
],
&
outArgs
,
PASS_TRAIN
);
// save forward result
// save forward result
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
for
(
size_t
k
=
0
;
k
<
outArgs
.
size
();
k
++
)
{
MatrixPtr
value
=
Matrix
::
create
(
outArgs
[
k
].
value
->
getHeight
(),
const
MatrixPtr
&
src
=
outArgs
[
k
].
value
;
outArgs
[
k
].
value
->
getWidth
(),
MatrixPtr
dst
=
false
,
Matrix
::
create
(
src
->
getHeight
(),
src
->
getWidth
(),
false
,
false
);
false
);
if
(
typeid
(
*
src
)
==
typeid
(
MKLDNNMatrix
))
{
value
->
copyFrom
(
*
outArgs
[
k
].
value
);
MKLDNNMatrixPtr
dnnSrc
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
src
);
out
.
outValues
.
push_back
(
value
);
dnnSrc
->
copyTo
(
*
dst
);
}
else
{
dst
->
copyFrom
(
*
src
);
}
out
.
outValues
.
push_back
(
dst
);
}
}
// random backward input
// random backward input
...
@@ -543,17 +553,17 @@ void MKLDNNTester::getOutResult(const std::string& configPath,
...
@@ -543,17 +553,17 @@ void MKLDNNTester::getOutResult(const std::string& configPath,
void
MKLDNNTester
::
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
)
{
void
MKLDNNTester
::
compareResult
(
DataOut
&
ref
,
DataOut
&
dnn
,
float
eps
)
{
CHECK_EQ
(
ref
.
outValues
.
size
(),
dnn
.
outValues
.
size
());
CHECK_EQ
(
ref
.
outValues
.
size
(),
dnn
.
outValues
.
size
());
CHECK_EQ
(
ref
.
paraValues
.
size
(),
dnn
.
paraValues
.
size
());
CHECK_EQ
(
ref
.
paraValues
.
size
(),
dnn
.
paraValues
.
size
());
VLOG
(
MKLDNN_TESTS
)
<<
"compare value size: "
<<
ref
.
outValues
.
size
();
for
(
size_t
i
=
0
;
i
<
ref
.
outValues
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
ref
.
outValues
.
size
();
i
++
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"compare value index: "
<<
i
;
EXPECT_LE
(
fabs
(
compareMatrix
(
ref
.
outValues
[
i
],
dnn
.
outValues
[
i
])),
eps
);
EXPECT_LE
(
fabs
(
compareMatrix
(
ref
.
outValues
[
i
],
dnn
.
outValues
[
i
])),
eps
);
}
}
VLOG
(
MKLDNN_TESTS
)
<<
"compare param size: "
<<
ref
.
outValues
.
size
();
for
(
size_t
i
=
0
;
i
<
ref
.
paraValues
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
ref
.
paraValues
.
size
();
i
++
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"compare param index: "
<<
i
;
EXPECT_LE
(
fabs
(
compareVector
(
ref
.
paraValues
[
i
],
dnn
.
paraValues
[
i
])),
eps
);
EXPECT_LE
(
fabs
(
compareVector
(
ref
.
paraValues
[
i
],
dnn
.
paraValues
[
i
])),
eps
);
}
}
}
}
void
MKLDNNTester
::
run
Branches
Test
(
const
std
::
string
&
configPath
,
void
MKLDNNTester
::
run
Net
Test
(
const
std
::
string
&
configPath
,
size_t
iter
,
size_t
iter
,
float
eps
)
{
float
eps
)
{
DataIn
in
;
DataIn
in
;
...
...
paddle/gserver/tests/MKLDNNTester.h
浏览文件 @
2e74cf46
...
@@ -85,17 +85,17 @@ public:
...
@@ -85,17 +85,17 @@ public:
bool
printDetails
=
false
,
bool
printDetails
=
false
,
size_t
iter
=
3
,
size_t
iter
=
3
,
float
epsilon
=
1e-4
);
float
epsilon
=
1e-4
);
static
void
run
Branches
Test
(
const
std
::
string
&
configPath
,
static
void
run
Net
Test
(
const
std
::
string
&
configPath
,
size_t
iter
=
3
,
size_t
iter
=
2
,
float
eps
=
1e-4
);
float
eps
=
1e-4
);
static
void
initArgument
(
DataIn
&
data
,
static
void
initArgument
(
DataIn
&
data
,
const
std
::
string
&
configPath
,
const
std
::
string
&
configPath
,
size_t
iter
=
3
);
size_t
iter
=
2
);
static
void
getOutResult
(
const
std
::
string
&
configPath
,
static
void
getOutResult
(
const
std
::
string
&
configPath
,
DataIn
&
in
,
DataIn
&
in
,
DataOut
&
out
,
DataOut
&
out
,
bool
use_mkldnn
,
bool
use_mkldnn
,
size_t
iter
=
3
);
size_t
iter
=
2
);
private:
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
...
@@ -128,13 +128,13 @@ private:
...
@@ -128,13 +128,13 @@ private:
/**
/**
* Get delta percent
* Get delta percent
* if many(>failRate) wrong(abs(
dnn-ref)/abs(ref)>thres) points return the
* if many(>failRate) wrong(abs(
val-ref)/abs(ref) > thres) points
* max(diff/ref)
*
return the
max(diff/ref)
* else return sum(abs(
a-b)) / sum(abs(b
))
* else return sum(abs(
diff)) / sum(abs(ref
))
* The return value should be smaller than eps when passing.
* The return value should be smaller than eps when passing.
*/
*/
static
double
getDelta
(
const
real
*
d1
,
static
double
getDelta
(
const
real
*
refer
,
const
real
*
d2
,
const
real
*
value
,
size_t
len
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
const
float
thres
=
0.1
);
...
...
paddle/
trainer/tests/sample_trainer_config
_branch_net.conf
→
paddle/
gserver/tests/mkldnn
_branch_net.conf
浏览文件 @
2e74cf46
...
@@ -14,76 +14,97 @@
...
@@ -14,76 +14,97 @@
from
paddle
.
trainer_config_helpers
import
*
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
settings
(
batch_size
=
16
)
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
128
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
tmp
=
img_conv_layer
(
input
=
data
,
def
two_conv
(
input
,
group_name
):
num_channels
=
1
,
out1
=
img_conv_layer
(
input
=
input
,
filter_size
=
3
,
name
=
group_name
+
'_conv1_'
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
a1
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
1
,
filter_size
=
1
,
num_filters
=
32
,
num_filters
=
channels
,
padding
=
0
,
padding
=
0
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
ReluActivation
())
a2
=
img_conv_layer
(
input
=
tmp
,
out2
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv2_'
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
32
,
num_filters
=
channels
,
padding
=
1
,
padding
=
1
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
ReluActivation
())
return
out1
,
out2
tmp
=
addto_layer
(
input
=[
a1
,
a2
],
def
two_conv_bn
(
input
,
group_name
):
act
=
ReluActivation
(),
out1
,
out2
=
two_conv
(
input
,
group_name
)
bias_attr
=
False
)
out1
=
batch_norm_layer
(
input
=
out1
,
name
=
group_name
+
'_bn1_'
,
tmp
=
img_pool_layer
(
input
=
tmp
,
use_global_stats
=
False
,
pool_size
=
3
,
act
=
ReluActivation
())
stride
=
2
,
padding
=
1
,
pool_type
=
AvgPooling
())
b1
=
img_conv_layer
(
input
=
tmp
,
out2
=
batch_norm_layer
(
input
=
out2
,
filter_size
=
3
,
name
=
group_name
+
'_bn2_'
,
num_filters
=
32
,
use_global_stats
=
False
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
ReluActivation
())
return
out1
,
out2
b1
=
img_pool_layer
(
input
=
b1
,
def
two_conv_pool
(
input
,
group_name
):
out1
,
out2
=
two_conv
(
input
,
group_name
)
out1
=
img_pool_layer
(
input
=
out1
,
name
=
group_name
+
'_pool1_'
,
pool_size
=
3
,
pool_size
=
3
,
stride
=
2
,
stride
=
2
,
padding
=
0
,
padding
=
0
,
pool_type
=
MaxPooling
())
pool_type
=
MaxPooling
())
b2
=
img_conv_layer
(
input
=
tmp
,
out2
=
img_pool_layer
(
input
=
out2
,
name
=
group_name
+
'_pool2_'
,
pool_size
=
5
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
return
out1
,
out2
def
two_fc
(
input
,
group_name
):
out1
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc1_'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
out2
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc2_'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
tmp
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
64
,
num_filters
=
channels
,
padding
=
1
,
padding
=
1
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
ReluActivation
())
b2
=
img_pool_layer
(
input
=
b2
,
a1
,
a2
=
two_conv
(
tmp
,
'conv_branch'
)
pool_size
=
5
,
tmp
=
addto_layer
(
input
=[
a1
,
a2
],
act
=
ReluActivation
(),
bias_attr
=
False
)
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
stride
=
2
,
padding
=
1
,
padding
=
1
,
pool_type
=
Max
Pooling
())
pool_type
=
Avg
Pooling
())
b1
,
b2
=
two_conv_pool
(
tmp
,
'pool_branch'
)
tmp
=
concat_layer
(
input
=[
b1
,
b2
])
tmp
=
concat_layer
(
input
=[
b1
,
b2
])
tmp
=
img_pool_layer
(
input
=
tmp
,
tmp
=
img_pool_layer
(
input
=
tmp
,
num_channels
=
96
,
num_channels
=
channels
*
2
,
pool_size
=
3
,
pool_size
=
3
,
stride
=
2
,
stride
=
2
,
padding
=
1
,
padding
=
1
,
...
@@ -91,8 +112,9 @@ tmp = img_pool_layer(input=tmp,
...
@@ -91,8 +112,9 @@ tmp = img_pool_layer(input=tmp,
tmp
=
img_conv_layer
(
input
=
tmp
,
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
32
,
num_filters
=
channels
,
padding
=
1
,
padding
=
1
,
stride
=
2
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
LinearActivation
(),
act
=
LinearActivation
(),
bias_attr
=
False
)
bias_attr
=
False
)
...
@@ -101,33 +123,20 @@ tmp = batch_norm_layer(input=tmp,
...
@@ -101,33 +123,20 @@ tmp = batch_norm_layer(input=tmp,
use_global_stats
=
False
,
use_global_stats
=
False
,
act
=
ReluActivation
())
act
=
ReluActivation
())
c1
=
img_conv_layer
(
input
=
tmp
,
c1
,
c2
=
two_conv_bn
(
tmp
,
'bn_branch'
)
filter_size
=
1
,
num_filters
=
32
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
c2
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
tmp
=
addto_layer
(
input
=[
c1
,
c2
],
tmp
=
addto_layer
(
input
=[
c1
,
c2
],
act
=
ReluActivation
(),
act
=
ReluActivation
(),
bias_attr
=
False
)
bias_attr
=
False
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
64
,
tmp
=
fc_layer
(
input
=
tmp
,
size
=
channels
,
bias_attr
=
False
,
bias_attr
=
True
,
act
=
TanhActivation
())
act
=
ReluActivation
())
d1
,
d2
=
two_fc
(
tmp
,
'fc_branch'
)
tmp
=
addto_layer
(
input
=[
d1
,
d2
])
out
put
=
fc_layer
(
input
=
tmp
,
size
=
10
,
out
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
act
=
SoftmaxActivation
())
lbl
=
data_layer
(
name
=
"label"
,
size
=
10
)
outputs
(
out
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
paddle/gserver/tests/mkldnn_branches_fc.conf
已删除
100644 → 0
浏览文件 @
8401039f
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_fc
(
input
,
group_name
):
out1
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc1'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
out2
=
fc_layer
(
input
=
input
,
name
=
group_name
+
'_fc2'
,
size
=
channels
,
bias_attr
=
False
,
act
=
LinearActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
())
pool
=
img_pool_layer
(
input
=
conv
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
AvgPooling
())
a1
,
a2
=
two_fc
(
input
=
pool
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_fc
(
input
=
pool
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/mkldnn_branches_pool.conf
已删除
100644 → 0
浏览文件 @
8401039f
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_pool
(
input
,
group_name
):
out1
=
img_pool_layer
(
input
=
input
,
name
=
group_name
+
'_pool1'
,
pool_size
=
3
,
stride
=
2
,
padding
=
0
,
pool_type
=
MaxPooling
())
out2
=
img_pool_layer
(
input
=
input
,
name
=
group_name
+
'_pool2'
,
pool_size
=
5
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
conv
=
img_conv_layer
(
input
=
data
,
num_channels
=
channels
,
filter_size
=
3
,
num_filters
=
channels
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
())
pool
=
img_pool_layer
(
input
=
conv
,
pool_size
=
3
,
stride
=
1
,
padding
=
1
,
pool_type
=
AvgPooling
())
a1
,
a2
=
two_pool
(
input
=
pool
,
group_name
=
'a'
)
concat
=
concat_layer
(
input
=[
a1
,
a2
])
b1
,
b2
=
two_pool
(
input
=
pool
,
group_name
=
'b'
)
addto
=
addto_layer
(
input
=[
b1
,
b2
])
outputs
([
concat
,
addto
])
paddle/gserver/tests/mkldnn_
branches_conv
.conf
→
paddle/gserver/tests/mkldnn_
simple_net
.conf
浏览文件 @
2e74cf46
...
@@ -17,40 +17,48 @@ from paddle.trainer_config_helpers import *
...
@@ -17,40 +17,48 @@ from paddle.trainer_config_helpers import *
settings
(
batch_size
=
16
)
settings
(
batch_size
=
16
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
channels
=
get_config_arg
(
"channels"
,
int
,
2
)
def
two_conv
(
input
,
group_name
):
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
out1
=
img_conv_layer
(
input
=
input
,
name
=
group_name
+
'_conv1'
,
filter_size
=
1
,
num_filters
=
channels
,
padding
=
0
,
shared_biases
=
True
,
act
=
ReluActivation
())
out2
=
img_conv_layer
(
input
=
input
,
tmp
=
img_conv_layer
(
input
=
data
,
n
ame
=
group_name
+
'_conv2'
,
n
um_channels
=
channels
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
channels
,
num_filters
=
channels
,
padding
=
1
,
padding
=
1
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
ReluActivation
())
return
out1
,
out2
data
=
data_layer
(
name
=
"input"
,
size
=
channels
*
16
*
16
)
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
1
,
padding
=
0
,
pool_type
=
AvgPooling
())
conv
=
img_conv_layer
(
input
=
data
,
tmp
=
img_conv_layer
(
input
=
tmp
,
num_channels
=
channels
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
channels
,
num_filters
=
channels
,
padding
=
1
,
padding
=
1
,
shared_biases
=
True
,
shared_biases
=
True
,
act
=
ReluActivation
())
act
=
LinearActivation
(),
bias_attr
=
False
)
a1
,
a2
=
two_conv
(
input
=
conv
,
group_name
=
'a'
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
concat
=
concat_layer
(
input
=[
a1
,
a2
])
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
b1
,
b2
=
two_conv
(
input
=
conv
,
group_name
=
'b'
)
tmp
=
fc_layer
(
input
=
tmp
,
size
=
channels
,
bias_attr
=
False
,
act
=
ReluActivation
())
addto
=
addto_layer
(
input
=[
b1
,
b2
])
out
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
outputs
(
[
concat
,
addto
]
)
outputs
(
out
)
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
2e74cf46
...
@@ -234,8 +234,7 @@ static void getMKLDNNBatchNormConfig(TestConfig& cfg,
...
@@ -234,8 +234,7 @@ static void getMKLDNNBatchNormConfig(TestConfig& cfg,
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_2_moving_var"
,
1
,
size_t
(
pm
.
ic
)});
cfg
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_2_moving_var"
,
1
,
size_t
(
pm
.
ic
)});
cfg
.
inputDefs
.
back
().
isStatic
=
true
;
cfg
.
inputDefs
.
back
().
isStatic
=
true
;
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
// TODO(TJ): uncomment me when refine and support comparing all zeroes vector
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
// cfg.layerConfig.set_active_type("relu");
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
cfg
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
...
@@ -309,15 +308,15 @@ TEST(MKLDNNActivation, Activations) {
...
@@ -309,15 +308,15 @@ TEST(MKLDNNActivation, Activations) {
}
}
DECLARE_string
(
config_args
);
DECLARE_string
(
config_args
);
TEST
(
MKLDNN
Layer
,
branches
)
{
TEST
(
MKLDNN
Net
,
net
)
{
std
::
vector
<
std
::
string
>
cases
=
{
"
conv"
,
"pool"
,
"fc
"
};
std
::
vector
<
std
::
string
>
cases
=
{
"
simple"
,
"branch
"
};
for
(
auto
name
:
cases
)
{
for
(
auto
name
:
cases
)
{
std
::
string
config
=
"./gserver/tests/mkldnn_
branches_"
+
name
+
"
.conf"
;
std
::
string
config
=
"./gserver/tests/mkldnn_
"
+
name
+
"_net
.conf"
;
for
(
auto
channels
:
{
2
,
32
})
{
for
(
auto
channels
:
{
2
,
32
})
{
std
::
ostringstream
oss
;
std
::
ostringstream
oss
;
oss
<<
"channels="
<<
channels
;
oss
<<
"channels="
<<
channels
;
FLAGS_config_args
=
oss
.
str
();
FLAGS_config_args
=
oss
.
str
();
MKLDNNTester
::
run
Branches
Test
(
config
);
MKLDNNTester
::
run
Net
Test
(
config
);
}
}
}
}
}
}
...
...
paddle/math/MKLDNNMatrix.h
浏览文件 @
2e74cf46
...
@@ -102,6 +102,11 @@ public:
...
@@ -102,6 +102,11 @@ public:
m_
->
copyFrom
(
src
);
m_
->
copyFrom
(
src
);
}
}
void
copyTo
(
Matrix
&
dst
)
{
// TODO(TJ): reorder data if this format is not nchw or x
dst
.
copyFrom
(
*
m_
);
}
public:
public:
/**
/**
* Reorder this MKLDNNMatrix from other format.
* Reorder this MKLDNNMatrix from other format.
...
...
paddle/trainer/tests/CMakeLists.txt
浏览文件 @
2e74cf46
...
@@ -37,22 +37,6 @@ add_test(NAME test_CompareTwoNets
...
@@ -37,22 +37,6 @@ add_test(NAME test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
################ test_CompareMKLDNNandCPU ######################
if
(
WITH_MKLDNN
)
macro
(
gen_command VAR_NAME CONFIG_FILE
)
set
(
${
VAR_NAME
}
"
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh"
"-d"
"
${
PADDLE_SOURCE_DIR
}
/python/"
"
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareMKLDNNandCPU --use_gpu=False"
"--config_file_a=trainer/tests/
${
CONFIG_FILE
}
--use_mkldnn_a=True"
"--config_file_b=trainer/tests/
${
CONFIG_FILE
}
--use_mkldnn_b=False"
"WORKING_DIRECTORY"
"
${
PADDLE_SOURCE_DIR
}
/paddle/"
)
endmacro
()
add_unittest_without_exec
(
test_CompareMKLDNNandCPU test_CompareTwoNets.cpp
)
gen_command
(
compare_simple_net
"sample_trainer_config_simple_net.conf"
)
gen_command
(
compare_branch_net
"sample_trainer_config_branch_net.conf"
)
add_test
(
NAME test_CompareMKLDNNandCPU_simple_net COMMAND
${
compare_simple_net
}
)
add_test
(
NAME test_CompareMKLDNNandCPU_branch_net COMMAND
${
compare_branch_net
}
)
endif
()
############### test_CompareTwoOpts ###################
############### test_CompareTwoOpts ###################
add_unittest_without_exec
(
test_CompareTwoOpts
add_unittest_without_exec
(
test_CompareTwoOpts
test_CompareTwoOpts.cpp
)
test_CompareTwoOpts.cpp
)
...
...
paddle/trainer/tests/sample_trainer_config_simple_net.conf
已删除
100644 → 0
浏览文件 @
8401039f
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
128
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
tmp
=
img_conv_layer
(
input
=
data
,
num_channels
=
1
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
ReluActivation
())
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
AvgPooling
())
tmp
=
img_conv_layer
(
input
=
tmp
,
filter_size
=
3
,
num_filters
=
32
,
padding
=
1
,
shared_biases
=
True
,
act
=
LinearActivation
(),
bias_attr
=
False
)
tmp
=
batch_norm_layer
(
input
=
tmp
,
use_global_stats
=
False
,
act
=
ReluActivation
())
tmp
=
img_pool_layer
(
input
=
tmp
,
pool_size
=
3
,
stride
=
2
,
padding
=
1
,
pool_type
=
MaxPooling
())
tmp
=
fc_layer
(
input
=
tmp
,
size
=
64
,
bias_attr
=
True
,
act
=
ReluActivation
())
output
=
fc_layer
(
input
=
tmp
,
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
lbl
=
data_layer
(
name
=
"label"
,
size
=
10
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
paddle/trainer/tests/test_CompareTwoNets.cpp
浏览文件 @
2e74cf46
...
@@ -26,15 +26,12 @@ DECLARE_int32(gpu_id);
...
@@ -26,15 +26,12 @@ DECLARE_int32(gpu_id);
DECLARE_bool
(
local
);
DECLARE_bool
(
local
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_string
(
config
);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
use_mkldnn_a
,
false
,
"whether to use mkldnn to run config_file_a"
);
DEFINE_bool
(
use_mkldnn_b
,
false
,
"whether to use mkldnn to run config_file_b"
);
DEFINE_bool
(
need_high_accuracy
,
DEFINE_bool
(
need_high_accuracy
,
false
,
false
,
"whether need to run in double accuracy"
);
"whether need to run in double accuracy"
);
...
@@ -131,12 +128,6 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
...
@@ -131,12 +128,6 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
matA
.
getWidth
());
matA
.
getWidth
());
}
}
if
(
FLAGS_use_mkldnn_a
||
FLAGS_use_mkldnn_b
)
{
// some format of mkldnn parameter is different with cpu
// test_MKLDNN will check the parameters
return
;
}
vector
<
ParameterPtr
>&
parametersA
=
comDataA
.
parameters
;
vector
<
ParameterPtr
>&
parametersA
=
comDataA
.
parameters
;
vector
<
ParameterPtr
>&
parametersB
=
comDataB
.
parameters
;
vector
<
ParameterPtr
>&
parametersB
=
comDataB
.
parameters
;
...
@@ -176,12 +167,10 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
...
@@ -176,12 +167,10 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
TEST
(
Trainer
,
create
)
{
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
ComData
dataA
;
FLAGS_use_mkldnn
=
FLAGS_use_mkldnn_a
;
calcGradient
(
dataA
,
FLAGS_config_file_a
);
calcGradient
(
dataA
,
FLAGS_config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of Network A is finished
\n\n
"
;
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of Network A is finished
\n\n
"
;
ComData
dataB
;
ComData
dataB
;
FLAGS_use_mkldnn
=
FLAGS_use_mkldnn_b
;
calcGradient
(
dataB
,
FLAGS_config_file_b
);
calcGradient
(
dataB
,
FLAGS_config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of the Network B is finished
\n\n
"
;
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of the Network B is finished
\n\n
"
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录