未验证 提交 2e299ad0 编写于 作者: F Feng Ni 提交者: GitHub

add prior_box and box_coder for paddle.vision.ops (#47282)

上级 3a0690e6
...@@ -996,63 +996,15 @@ def box_coder( ...@@ -996,63 +996,15 @@ def box_coder(
box_normalized=False, box_normalized=False,
axis=1) axis=1)
""" """
check_variable_and_dtype( return paddle.vision.ops.box_coder(
prior_box, 'prior_box', ['float32', 'float64'], 'box_coder' prior_box=prior_box,
) prior_box_var=prior_box_var,
check_variable_and_dtype( target_box=target_box,
target_box, 'target_box', ['float32', 'float64'], 'box_coder' code_type=code_type,
) box_normalized=box_normalized,
if in_dygraph_mode(): axis=axis,
if isinstance(prior_box_var, Variable): name=name,
box_coder_op = _C_ops.box_coder(
prior_box,
prior_box_var,
target_box,
code_type,
box_normalized,
axis,
[],
)
elif isinstance(prior_box_var, list):
box_coder_op = _C_ops.box_coder(
prior_box,
None,
target_box,
code_type,
box_normalized,
axis,
prior_box_var,
)
else:
raise TypeError(
"Input variance of box_coder must be Variable or lisz"
)
return box_coder_op
helper = LayerHelper("box_coder", **locals())
output_box = helper.create_variable_for_type_inference(
dtype=prior_box.dtype
)
inputs = {"PriorBox": prior_box, "TargetBox": target_box}
attrs = {
"code_type": code_type,
"box_normalized": box_normalized,
"axis": axis,
}
if isinstance(prior_box_var, Variable):
inputs['PriorBoxVar'] = prior_box_var
elif isinstance(prior_box_var, list):
attrs['variance'] = prior_box_var
else:
raise TypeError("Input variance of box_coder must be Variable or lisz")
helper.append_op(
type="box_coder",
inputs=inputs,
attrs=attrs,
outputs={"OutputBox": output_box},
) )
return output_box
@templatedoc() @templatedoc()
...@@ -2021,75 +1973,20 @@ def prior_box( ...@@ -2021,75 +1973,20 @@ def prior_box(
# [6L, 9L, 1L, 4L] # [6L, 9L, 1L, 4L]
""" """
return paddle.vision.ops.prior_box(
if in_dygraph_mode(): input=input,
step_w, step_h = steps image=image,
if max_sizes == None: min_sizes=min_sizes,
max_sizes = [] max_sizes=max_sizes,
return _C_ops.prior_box( aspect_ratios=aspect_ratios,
input, variance=variance,
image, flip=flip,
min_sizes, clip=clip,
aspect_ratios, steps=steps,
variance, offset=offset,
max_sizes, min_max_aspect_ratios_order=min_max_aspect_ratios_order,
flip, name=name,
clip,
step_w,
step_h,
offset,
min_max_aspect_ratios_order,
)
helper = LayerHelper("prior_box", **locals())
dtype = helper.input_dtype()
check_variable_and_dtype(
input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box'
)
def _is_list_or_tuple_(data):
return isinstance(data, list) or isinstance(data, tuple)
if not _is_list_or_tuple_(min_sizes):
min_sizes = [min_sizes]
if not _is_list_or_tuple_(aspect_ratios):
aspect_ratios = [aspect_ratios]
if not (_is_list_or_tuple_(steps) and len(steps) == 2):
raise ValueError(
'steps should be a list or tuple ',
'with length 2, (step_width, step_height).',
)
min_sizes = list(map(float, min_sizes))
aspect_ratios = list(map(float, aspect_ratios))
steps = list(map(float, steps))
attrs = {
'min_sizes': min_sizes,
'aspect_ratios': aspect_ratios,
'variances': variance,
'flip': flip,
'clip': clip,
'step_w': steps[0],
'step_h': steps[1],
'offset': offset,
'min_max_aspect_ratios_order': min_max_aspect_ratios_order,
}
if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
if not _is_list_or_tuple_(max_sizes):
max_sizes = [max_sizes]
attrs['max_sizes'] = max_sizes
box = helper.create_variable_for_type_inference(dtype)
var = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="prior_box",
inputs={"Input": input, "Image": image},
outputs={"Boxes": box, "Variances": var},
attrs=attrs,
) )
box.stop_gradient = True
var.stop_gradient = True
return box, var
def density_prior_box( def density_prior_box(
......
...@@ -319,5 +319,62 @@ class TestBoxCoderOpWithVarianceDygraphAPI(unittest.TestCase): ...@@ -319,5 +319,62 @@ class TestBoxCoderOpWithVarianceDygraphAPI(unittest.TestCase):
run(place) run(place)
class TestBoxCoderAPI(unittest.TestCase):
def setUp(self):
np.random.seed(678)
self.prior_box_np = np.random.random((80, 4)).astype('float32')
self.prior_box_var_np = np.random.random((80, 4)).astype('float32')
self.target_box_np = np.random.random((20, 80, 4)).astype('float32')
def test_dygraph_with_static(self):
paddle.enable_static()
prior_box = paddle.static.data(
name='prior_box', shape=[80, 4], dtype='float32'
)
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[80, 4], dtype='float32'
)
target_box = paddle.static.data(
name='target_box', shape=[20, 80, 4], dtype='float32'
)
boxes = paddle.vision.ops.box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=target_box,
code_type="decode_center_size",
box_normalized=False,
)
exe = paddle.static.Executor()
boxes_np = exe.run(
paddle.static.default_main_program(),
feed={
'prior_box': self.prior_box_np,
'prior_box_var': self.prior_box_var_np,
'target_box': self.target_box_np,
},
fetch_list=[boxes],
)
paddle.disable_static()
prior_box_dy = paddle.to_tensor(self.prior_box_np)
prior_box_var_dy = paddle.to_tensor(self.prior_box_var_np)
target_box_dy = paddle.to_tensor(self.target_box_np)
boxes_dy = paddle.vision.ops.box_coder(
prior_box=prior_box_dy,
prior_box_var=prior_box_var_dy,
target_box=target_box_dy,
code_type="decode_center_size",
box_normalized=False,
)
boxes_dy_np = boxes_dy.numpy()
np.testing.assert_allclose(boxes_np[0], boxes_dy_np)
paddle.enable_static()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static()
unittest.main() unittest.main()
...@@ -109,9 +109,6 @@ class TestPriorBoxOp(OpTest): ...@@ -109,9 +109,6 @@ class TestPriorBoxOp(OpTest):
self.flip = True self.flip = True
self.set_min_max_aspect_ratios_order() self.set_min_max_aspect_ratios_order()
self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0] self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0]
self.aspect_ratios = np.array(
self.aspect_ratios, dtype=np.float64
).flatten()
self.variances = [0.1, 0.1, 0.2, 0.2] self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float64).flatten() self.variances = np.array(self.variances, dtype=np.float64).flatten()
...@@ -225,6 +222,59 @@ class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp): ...@@ -225,6 +222,59 @@ class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp):
self.min_max_aspect_ratios_order = True self.min_max_aspect_ratios_order = True
class TestPriorBoxAPI(unittest.TestCase):
def setUp(self):
np.random.seed(678)
self.input_np = np.random.rand(2, 10, 32, 32).astype('float32')
self.image_np = np.random.rand(2, 10, 40, 40).astype('float32')
self.min_sizes = [2.0, 4.0]
def test_dygraph_with_static(self):
paddle.enable_static()
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='float32'
)
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='float32'
)
box, var = paddle.vision.ops.prior_box(
input=input,
image=image,
min_sizes=self.min_sizes,
clip=True,
flip=True,
)
exe = paddle.static.Executor()
box_np, var_np = exe.run(
paddle.static.default_main_program(),
feed={
'input': self.input_np,
'image': self.image_np,
},
fetch_list=[box, var],
)
paddle.disable_static()
inputs_dy = paddle.to_tensor(self.input_np)
image_dy = paddle.to_tensor(self.image_np)
box_dy, var_dy = paddle.vision.ops.prior_box(
input=inputs_dy,
image=image_dy,
min_sizes=self.min_sizes,
clip=True,
flip=True,
)
box_dy_np = box_dy.numpy()
var_dy_np = var_dy.numpy()
np.testing.assert_allclose(box_np, box_dy_np)
np.testing.assert_allclose(var_np, var_dy_np)
paddle.enable_static()
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -19,6 +19,7 @@ from ..fluid.layers import nn, utils ...@@ -19,6 +19,7 @@ from ..fluid.layers import nn, utils
from ..nn import Layer, Conv2D, Sequential, ReLU, BatchNorm2D from ..nn import Layer, Conv2D, Sequential, ReLU, BatchNorm2D
from ..fluid.initializer import Normal from ..fluid.initializer import Normal
from ..fluid.framework import ( from ..fluid.framework import (
Variable,
_non_static_mode, _non_static_mode,
in_dygraph_mode, in_dygraph_mode,
_in_legacy_dygraph, _in_legacy_dygraph,
...@@ -29,6 +30,8 @@ from ..framework import _current_expected_place ...@@ -29,6 +30,8 @@ from ..framework import _current_expected_place
__all__ = [ # noqa __all__ = [ # noqa
'yolo_loss', 'yolo_loss',
'yolo_box', 'yolo_box',
'prior_box',
'box_coder',
'deform_conv2d', 'deform_conv2d',
'DeformConv2D', 'DeformConv2D',
'distribute_fpn_proposals', 'distribute_fpn_proposals',
...@@ -479,6 +482,379 @@ def yolo_box( ...@@ -479,6 +482,379 @@ def yolo_box(
return boxes, scores return boxes, scores
def prior_box(
input,
image,
min_sizes,
max_sizes=None,
aspect_ratios=[1.0],
variance=[0.1, 0.1, 0.2, 0.2],
flip=False,
clip=False,
steps=[0.0, 0.0],
offset=0.5,
min_max_aspect_ratios_order=False,
name=None,
):
r"""
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
the count of min_sizes, max_sizes and aspect_ratios, The size of the
box is in range(min_size, max_size) interval, which is generated in
sequence according to the aspect_ratios.
Args:
input (Tensor): 4-D tensor(NCHW), the data type should be float32 or float64.
image (Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp,
the data type should be float32 or float64.
min_sizes (list|tuple|float): the min sizes of generated prior boxes.
max_sizes (list|tuple|None, optional): the max sizes of generated prior boxes.
Default: None, means [] and will not be used.
aspect_ratios (list|tuple|float, optional): the aspect ratios of generated
prior boxes. Default: [1.0].
variance (list|tuple, optional): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.2, 0.2].
flip (bool): Whether to flip aspect ratios. Default:False.
clip (bool): Whether to clip out-of-boundary boxes. Default: False.
steps (list|tuple, optional): Prior boxes steps across width and height, If
steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across
height or weight of the input will be automatically calculated.
Default: [0., 0.]
offset (float, optional)): Prior boxes center offset. Default: 0.5
min_max_aspect_ratios_order (bool, optional): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the final
detection results. Default: False.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor: the output prior boxes and the expanded variances of PriorBox.
The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4],
num_priors is the total box count of each position of input.
The expanded variances is a 4-D tensor, same shape as the prior boxes.
Examples:
.. code-block:: python
import paddle
input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32)
image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32)
box, var = paddle.vision.ops.prior_box(
input=input,
image=image,
min_sizes=[2.0, 4.0],
clip=True,
flip=True)
"""
helper = LayerHelper("prior_box", **locals())
dtype = helper.input_dtype()
check_variable_and_dtype(
input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box'
)
def _is_list_or_tuple_(data):
return isinstance(data, list) or isinstance(data, tuple)
if not _is_list_or_tuple_(min_sizes):
min_sizes = [min_sizes]
if not _is_list_or_tuple_(aspect_ratios):
aspect_ratios = [aspect_ratios]
if not _is_list_or_tuple_(steps):
steps = [steps]
if not len(steps) == 2:
raise ValueError('steps should be (step_w, step_h)')
min_sizes = list(map(float, min_sizes))
aspect_ratios = list(map(float, aspect_ratios))
steps = list(map(float, steps))
cur_max_sizes = None
if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
if not _is_list_or_tuple_(max_sizes):
max_sizes = [max_sizes]
cur_max_sizes = max_sizes
if in_dygraph_mode():
step_w, step_h = steps
if max_sizes == None:
max_sizes = []
box, var = _C_ops.prior_box(
input,
image,
min_sizes,
aspect_ratios,
variance,
max_sizes,
flip,
clip,
step_w,
step_h,
offset,
min_max_aspect_ratios_order,
)
return box, var
if _in_legacy_dygraph():
attrs = (
'min_sizes',
min_sizes,
'aspect_ratios',
aspect_ratios,
'variances',
variance,
'flip',
flip,
'clip',
clip,
'step_w',
steps[0],
'step_h',
steps[1],
'offset',
offset,
'min_max_aspect_ratios_order',
min_max_aspect_ratios_order,
)
if cur_max_sizes is not None:
attrs += ('max_sizes', cur_max_sizes)
box, var = _legacy_C_ops.prior_box(input, image, *attrs)
return box, var
else:
attrs = {
'min_sizes': min_sizes,
'aspect_ratios': aspect_ratios,
'variances': variance,
'flip': flip,
'clip': clip,
'step_w': steps[0],
'step_h': steps[1],
'offset': offset,
'min_max_aspect_ratios_order': min_max_aspect_ratios_order,
}
if cur_max_sizes is not None:
attrs['max_sizes'] = cur_max_sizes
box = helper.create_variable_for_type_inference(dtype)
var = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="prior_box",
inputs={"Input": input, "Image": image},
outputs={"Boxes": box, "Variances": var},
attrs=attrs,
)
box.stop_gradient = True
var.stop_gradient = True
return box, var
def box_coder(
prior_box,
prior_box_var,
target_box,
code_type="encode_center_size",
box_normalized=True,
axis=0,
name=None,
):
r"""
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
.. math::
ox &= (tx - px) / pw / pxv
oy &= (ty - py) / ph / pyv
ow &= log(abs(tw / pw)) / pwv
oh &= log(abs(th / ph)) / phv
The Decoding schema described below:
.. math::
ox &= (pw * pxv * tx * + px) - tw / 2
oy &= (ph * pyv * ty * + py) - th / 2
ow &= exp(pwv * tw) * pw + tw / 2
oh &= exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
the priorbox's (anchor) center coordinates, width and height. `pxv`,
`pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
`ow`, `oh` denote the encoded/decoded coordinates, width and height.
During Box Decoding, two modes for broadcast are supported. Say target
box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
[M, 4]. Then prior box will broadcast to target box along the
assigned axis.
Args:
prior_box (Tensor): Box list prior_box is a 2-D Tensor with shape
[M, 4] holds M boxes and data type is float32 or float64. Each box
is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
left top coordinate of the anchor box, if the input is image feature
map, they are close to the origin of the coordinate system.
[xmax, ymax] is the right bottom coordinate of the anchor box.
prior_box_var (List|Tensor|None): prior_box_var supports three types
of input. One is Tensor with shape [M, 4] which holds M group and
data type is float32 or float64. The second is list consist of
4 elements shared by all boxes and data type is float32 or float64.
Other is None and not involved in calculation.
target_box (Tensor): This input can be a 2-D LoDTensor with shape
[N, 4] when code_type is 'encode_center_size'. This input also can
be a 3-D Tensor with shape [N, M, 4] when code_type is
'decode_center_size'. Each box is represented as
[xmin, ymin, xmax, ymax]. The data type is float32 or float64.
code_type (str, optional): The code type used with the target box. It can be
`encode_center_size` or `decode_center_size`. `encode_center_size`
by default.
box_normalized (bool, optional): Whether treat the priorbox as a normalized box.
Set true by default.
axis (int, optional): Which axis in PriorBox to broadcast for box decode,
for example, if axis is 0 and TargetBox has shape [N, M, 4] and
PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
for decoding. It is only valid when code type is
`decode_center_size`. Set 0 by default.
name (str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Tensor: output boxes, when code_type is 'encode_center_size', the
output tensor of box_coder_op with shape [N, M, 4] representing the
result of N target boxes encoded with M Prior boxes and variances.
When code_type is 'decode_center_size', N represents the batch size
and M represents the number of decoded boxes.
Examples:
.. code-block:: python
import paddle
# For encode
prior_box_encode = paddle.rand((80, 4), dtype=paddle.float32)
prior_box_var_encode = paddle.rand((80, 4), dtype=paddle.float32)
target_box_encode = paddle.rand((20, 4), dtype=paddle.float32)
output_encode = paddle.vision.ops.box_coder(
prior_box=prior_box_encode,
prior_box_var=prior_box_var_encode,
target_box=target_box_encode,
code_type="encode_center_size")
# For decode
prior_box_decode = paddle.rand((80, 4), dtype=paddle.float32)
prior_box_var_decode = paddle.rand((80, 4), dtype=paddle.float32)
target_box_decode = paddle.rand((20, 80, 4), dtype=paddle.float32)
output_decode = paddle.vision.ops.box_coder(
prior_box=prior_box_decode,
prior_box_var=prior_box_var_decode,
target_box=target_box_decode,
code_type="decode_center_size",
box_normalized=False)
"""
check_variable_and_dtype(
prior_box, 'prior_box', ['float32', 'float64'], 'box_coder'
)
check_variable_and_dtype(
target_box, 'target_box', ['float32', 'float64'], 'box_coder'
)
if in_dygraph_mode():
if isinstance(prior_box_var, Variable):
output_box = _C_ops.box_coder(
prior_box,
prior_box_var,
target_box,
code_type,
box_normalized,
axis,
[],
)
elif isinstance(prior_box_var, list):
output_box = _C_ops.box_coder(
prior_box,
None,
target_box,
code_type,
box_normalized,
axis,
prior_box_var,
)
else:
raise TypeError("Input prior_box_var must be Variable or list")
return output_box
if _in_legacy_dygraph():
if isinstance(prior_box_var, Variable):
output_box = _legacy_C_ops.box_coder(
prior_box,
prior_box_var,
target_box,
"code_type",
code_type,
"box_normalized",
box_normalized,
"axis",
axis,
)
elif isinstance(prior_box_var, list):
output_box = _legacy_C_ops.box_coder(
prior_box,
None,
target_box,
"code_type",
code_type,
"box_normalized",
box_normalized,
"axis",
axis,
"variance",
prior_box_var,
)
else:
raise TypeError("Input prior_box_var must be Variable or list")
return output_box
else:
helper = LayerHelper("box_coder", **locals())
output_box = helper.create_variable_for_type_inference(
dtype=prior_box.dtype
)
inputs = {"PriorBox": prior_box, "TargetBox": target_box}
attrs = {
"code_type": code_type,
"box_normalized": box_normalized,
"axis": axis,
}
if isinstance(prior_box_var, Variable):
inputs['PriorBoxVar'] = prior_box_var
elif isinstance(prior_box_var, list):
attrs['variance'] = prior_box_var
else:
raise TypeError("Input prior_box_var must be Variable or list")
helper.append_op(
type="box_coder",
inputs=inputs,
attrs=attrs,
outputs={"OutputBox": output_box},
)
return output_box
def deform_conv2d( def deform_conv2d(
x, x,
offset, offset,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册