diff --git a/paddle/fluid/imperative/CMakeLists.txt b/paddle/fluid/imperative/CMakeLists.txt index e52a0283f726640eb56b24a2978af6ee44e658ff..fdbf3b5bcf4d97a5d19e77020f54b078f526f337 100644 --- a/paddle/fluid/imperative/CMakeLists.txt +++ b/paddle/fluid/imperative/CMakeLists.txt @@ -1,6 +1,6 @@ if(WITH_PYTHON) -cc_library(layer SRCS layer.cc DEPS proto_desc operator device_context blas pybind) -cc_library(tracer SRCS tracer.cc DEPS proto_desc device_context pybind) +cc_library(layer SRCS layer.cc DEPS proto_desc operator device_context blas pybind profiler) +cc_library(tracer SRCS tracer.cc DEPS proto_desc device_context pybind profiler) cc_library(engine SRCS engine.cc) cc_library(imperative_profiler SRCS profiler.cc) cc_library(nccl_context SRCS nccl_context.cc DEPS device_context) diff --git a/paddle/fluid/imperative/layer.cc b/paddle/fluid/imperative/layer.cc index 1dd20021e9824e4318b4f6241e7dcbc9d43ae199..cfe11075d19cb72e91e2ec8c5a491badc3c8686d 100644 --- a/paddle/fluid/imperative/layer.cc +++ b/paddle/fluid/imperative/layer.cc @@ -27,6 +27,7 @@ #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/string/printf.h" namespace paddle { @@ -256,7 +257,6 @@ std::map> OpBase::ApplyGrad( const detail::BackwardStrategy& bck_stratedy) { PADDLE_ENFORCE(!grad_op_descs_.empty() || backward_id_ > 0, "%s has no backward implementation", Type()); - VLOG(3) << "apply op grad: " << Type(); std::vector tmp_grad_outputs; if (backward_id_ > 0) { @@ -272,8 +272,8 @@ std::map> OpBase::ApplyGrad( tmp_grad_outputs.resize(grad_op_count); for (size_t k = 0; k < grad_op_count; ++k) { framework::OpDesc* grad_op_desc = grad_op_descs_[k]; + platform::RecordEvent record_event(grad_op_desc->Type()); auto& grad_output_variable_map = grad_output_vars_[k]; - VLOG(3) << "apply grad op " << grad_op_desc->Type(); // Allocate tmp grad output variable @@ -345,6 +345,7 @@ std::map> OpBase::ApplyGrad( } } + platform::RecordEvent record_event("merge_grads"); // Add tmp grad outputs to original grad vars for (size_t k = 0; k < grad_output_vars_.size(); ++k) { for (const auto& it : grad_output_vars_[k]) { @@ -424,7 +425,7 @@ void OpBase::RegisterBackwardHooks(const py::object& callable) { void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) { if (!pre_op_) return; - + platform::RecordEvent record_event("Imperative Backward"); VLOG(3) << "start backward"; auto grads_t = grads_->var_->GetMutable(); operators::math::set_constant( diff --git a/paddle/fluid/imperative/tracer.cc b/paddle/fluid/imperative/tracer.cc index bda1ae283e3093d1427fd94a35972f08837c3e29..45ae15e2edecea59ec8b2f3e05c478c34909e66e 100644 --- a/paddle/fluid/imperative/tracer.cc +++ b/paddle/fluid/imperative/tracer.cc @@ -24,6 +24,7 @@ #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" +#include "paddle/fluid/platform/profiler.h" namespace paddle { namespace imperative { @@ -141,6 +142,7 @@ std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, framework::AttributeMap attrs_map, const platform::Place expected_place, const bool stop_gradient) { + platform::RecordEvent record_event(op->type_); framework::VariableValueMap invars_map; framework::VariableValueMap outvars_map;