Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2bb44317
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2bb44317
编写于
9月 13, 2021
作者:
S
ShenLiang
提交者:
GitHub
9月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel]Fix scaler bug in pipeline_parallel/model_parallel (#35556)
* support grad group * fix single card condition
上级
48ec02f1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
78 addition
and
19 deletion
+78
-19
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+35
-2
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
...optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
+29
-10
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+8
-5
python/paddle/fluid/tests/unittests/hybrid_parallel_mp_amp.py
...on/paddle/fluid/tests/unittests/hybrid_parallel_mp_amp.py
+6
-2
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
2bb44317
...
...
@@ -17,6 +17,7 @@ import copy
import
warnings
import
paddle
import
os
from
types
import
MethodType
import
numpy
as
np
from
paddle.fluid.framework
import
dygraph_only
,
_global_flags
from
paddle.fluid
import
compiler
...
...
@@ -33,7 +34,7 @@ from .topology import ParallelMode
from
..meta_parallel
import
TensorParallel
,
model_parallel_random_seed
from
..meta_parallel
import
PipelineParallel
,
ShardingParallel
from
..meta_optimizers
import
HybridParallelOptimizer
from
..meta_optimizers
import
HybridParallelGradScaler
from
paddle
import
_C_ops
__all__
=
[]
...
...
@@ -1540,4 +1541,36 @@ class Fleet(object):
@
dygraph_only
def
distributed_scaler
(
self
,
scaler
):
return
HybridParallelGradScaler
(
scaler
,
self
.
_hcg
)
def
unscale_method
(
self
,
optimizer
):
if
not
self
.
_enable
:
return
if
getattr
(
optimizer
,
'_param_groups'
,
None
)
and
isinstance
(
optimizer
.
_param_groups
[
0
],
dict
):
param_grads
=
[]
for
group
in
optimizer
.
_param_groups
:
for
param
in
group
[
'params'
]:
if
param
.
_grad_ivar
()
is
not
None
:
param_grads
.
append
(
param
.
_grad_ivar
())
else
:
param_grads
=
[
param
.
_grad_ivar
()
for
param
in
optimizer
.
_parameter_list
if
param
.
_grad_ivar
()
is
not
None
]
_C_ops
.
check_finite_and_unscale
(
param_grads
,
self
.
_scale
,
param_grads
,
self
.
_found_inf
)
self
.
_found_inf
=
paddle
.
cast
(
self
.
_found_inf
,
dtype
=
"int32"
)
# TODO(shenliang03) Since dp allreduce in the optimizer is
# after the gradscaler, check_finite needs to synchronize global
# information. In the future, we should use check_group to speed.
paddle
.
distributed
.
all_reduce
(
self
.
_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
MAX
,
group
=
None
)
self
.
_found_inf
=
paddle
.
cast
(
self
.
_found_inf
,
dtype
=
"bool"
)
# Only tensor_parallel and pipeline_parallel need to modify scaler
if
self
.
_hcg
.
get_parallel_mode
()
in
(
ParallelMode
.
TENSOR_PARALLEL
,
ParallelMode
.
PIPELINE_PARALLEL
):
scaler
.
_unscale
=
MethodType
(
unscale_method
,
scaler
)
return
scaler
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
浏览文件 @
2bb44317
...
...
@@ -29,6 +29,19 @@ from paddle.fluid import layers
__all__
=
[]
def
_obtain_optimizer_parameters_list
(
optimizer
):
if
getattr
(
optimizer
,
'_param_groups'
,
None
)
and
isinstance
(
optimizer
.
_param_groups
[
0
],
dict
):
parameters_list
=
[]
for
group
in
optimizer
.
_param_groups
:
for
param
in
group
[
'params'
]:
parameters_list
.
append
(
param
)
else
:
parameters_list
=
[
param
for
param
in
optimizer
.
_parameter_list
]
return
parameters_list
class
HybridParallelClipGrad
:
def
__init__
(
self
,
clip
,
hcg
):
self
.
_clip
=
clip
...
...
@@ -98,6 +111,10 @@ class HybridParallelOptimizer:
self
.
_need_dp
=
(
self
.
_hcg
.
get_data_parallel_world_size
()
>
1
)
# NOTE(shenliang03): Because of the pure DataParallel mode, the gradient synchronization
# is achieved through reducer, so there is no need to call fuse_allreduce in oprimizer.
self
.
_dp_enable
=
not
self
.
_use_dp_mode
and
self
.
_need_dp
self
.
_sharding_enable
=
(
self
.
_hcg
.
get_sharding_parallel_world_size
()
>
1
)
...
...
@@ -105,20 +122,20 @@ class HybridParallelOptimizer:
ClipGradByGlobalNorm
)
and
not
self
.
_use_dp_mode
:
logger
.
warning
(
"using ClipGradByGlobalNorm in TensorParallel, the origin "
\
"optmizer'grad clip will be changed."
)
self
.
_inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
self
.
_inner_opt
.
_grad_clip
,
hcg
)
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
def
step
(
self
):
parameters_list
=
_obtain_optimizer_parameters_list
(
self
.
_inner_opt
)
if
self
.
_sharding_enable
:
sharding_reduce_gradients
(
list
(
self
.
_inner_opt
.
_parameter_list
),
self
.
_hcg
)
sharding_reduce_gradients
(
list
(
parameters_list
),
self
.
_hcg
)
if
self
.
_dp_enable
:
fused_allreduce_gradients
(
list
(
parameters_list
),
self
.
_hcg
)
if
not
self
.
_use_dp_mode
and
self
.
_need_dp
:
fused_allreduce_gradients
(
list
(
self
.
_inner_opt
.
_parameter_list
),
self
.
_hcg
)
self
.
_inner_opt
.
step
()
@
imperative_base
.
no_grad
...
...
@@ -128,16 +145,18 @@ class HybridParallelOptimizer:
parameters
=
None
,
no_grad_set
=
None
):
# minimize does not support parameters in the form of param_group,
# so no need use _obtain_optimizer_parameters_list
parameter_list
=
parameters
if
parameters
\
else
self
.
_inner_opt
.
_parameter_list
# Here shardin
ng should use global parameter list
# Here shardin
g should use global parameter list
if
self
.
_sharding_enable
:
sharding_reduce_gradients
(
list
(
self
.
_inner_opt
.
_parameter_list
),
self
.
_hcg
)
sharding_reduce_gradients
(
list
(
parameter_list
),
self
.
_hcg
)
if
not
self
.
_use_dp_mode
and
self
.
_need_dp
:
if
self
.
_dp_enable
:
fused_allreduce_gradients
(
list
(
parameter_list
),
self
.
_hcg
)
return
self
.
_inner_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
2bb44317
...
...
@@ -80,9 +80,7 @@ class PipelineParallel(MetaParallelBase):
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
if
scaler
is
not
None
:
assert
isinstance
(
scaler
,
HybridParallelGradScaler
),
(
'scaler should be HybridParallelGradScaler subclass or None.'
)
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
...
...
@@ -212,7 +210,12 @@ class PipelineParallel(MetaParallelBase):
if
not
last_iter
:
input_tensor
=
p2p
.
recv_forward
()
return
self
.
total_loss
if
self
.
_compute_loss
else
output_buffers
if
self
.
_compute_loss
:
self
.
train_loss
=
self
.
_broadcast_final_loss
()
else
:
self
.
train_loss
=
output_buffers
return
self
.
train_loss
def
_forward_step
(
self
,
input_tensor
):
if
self
.
stage_id
==
0
:
...
...
@@ -325,7 +328,7 @@ class PipelineParallel(MetaParallelBase):
def
_optimizer_step
(
self
):
if
self
.
scaler
:
self
.
scaler
.
minimize
(
self
.
optimizer
,
self
.
train_loss
)
self
.
scaler
.
step
(
self
.
optimizer
)
else
:
self
.
optimizer
.
step
()
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_mp_amp.py
浏览文件 @
2bb44317
...
...
@@ -29,7 +29,11 @@ class TestMPClipGrad(TestDistMPTraning):
learning_rate
=
0.001
,
gamma
=
0.999
,
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
scheduler
,
grad_clip
=
grad_clip
,
parameters
=
model
.
parameters
())
parameters
=
[{
'params'
:
model
.
parameters
(),
'weight_decay'
:
0.001
,
'learning_rate'
:
0.1
}])
return
optimizer
def
train_batch
(
self
,
batch
,
model
,
optimizer
,
is_mp
):
...
...
@@ -43,7 +47,7 @@ class TestMPClipGrad(TestDistMPTraning):
scaled
=
scaler
.
scale
(
loss
)
# scale the loss
scaled
.
backward
()
# do backward
scaler
.
minimize
(
optimizer
,
scaled
)
# update parameters
scaler
.
step
(
optimizer
)
# update parameters
optimizer
.
clear_grad
()
return
scaled
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录