diff --git a/paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc b/paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc new file mode 100644 index 0000000000000000000000000000000000000000..d9a62ce4dc97de308da1ffd3162165ad272cbdfc --- /dev/null +++ b/paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc @@ -0,0 +1,118 @@ +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h" +#include "paddle/fluid/platform/device/npu/npu_op_runner.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +class ReduceMinNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* x = ctx.Input("X"); + auto* out = ctx.Output("Out"); + auto dims = ctx.Attr>("dim"); + bool keep_dim = ctx.Attr("keep_dim"); + bool reduce_all = ctx.Attr("reduce_all"); + int out_dtype = ctx.Attr("out_dtype"); + + auto place = ctx.GetPlace(); + + framework::Tensor cast_out(x->type()); + cast_out.Resize(out->dims()); + cast_out.mutable_data(place); + + auto cast_out_dtype = x->type(); + if (out_dtype != -1) { + cast_out_dtype = static_cast(out_dtype); + } + + if (x->type() != cast_out_dtype) { + if (cast_out_dtype == framework::proto::VarType::FP32) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::FP16) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::INT16) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::INT32) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::INT64) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::FP64) { + out->mutable_data(place); + } else if (cast_out_dtype == framework::proto::VarType::BOOL) { + out->mutable_data(place); + } + } else { + out->ShareDataWith(cast_out); + } + + framework::NPUAttributeMap attr_input = {{"axes", dims}, + {"keep_dims", keep_dim}}; + + if (reduce_all) { + std::vector dim_vec; + for (int i = 0; i < x->dims().size(); i++) { + dim_vec.push_back(i); + } + + attr_input = {{"axes", dim_vec}, {"keep_dims", keep_dim}}; + } + + const auto& dev_ctx = + ctx.template device_context(); + if (x->type() == framework::proto::VarType::INT64) { + auto op_func = [](const std::vector& inputs, + const std::vector& outputs, + const NPUAttributeMap& attrs, + const platform::NPUDeviceContext& dev_ctx) { + const auto& runner = + NpuOpRunner("ReduceMinD", {inputs[0]}, {outputs[0]}, attrs); + runner.Run(dev_ctx.stream()); + }; + + NpuOpRunner::TypeAdapter({*x}, {cast_out}, attr_input, dev_ctx, op_func, + {framework::proto::VarType::INT32}, + {framework::proto::VarType::INT32}); + } else { + const auto& runner = + NpuOpRunner("ReduceMinD", {*x}, {cast_out}, attr_input); + runner.Run(dev_ctx.stream()); + } + + if (x->type() != cast_out_dtype) { + auto dst_dtype = ConvertToNpuDtype(cast_out_dtype); + const auto& runner_cast = + NpuOpRunner("Cast", {cast_out}, {*out}, + {{"dst_type", static_cast(dst_dtype)}}); + runner_cast.Run(dev_ctx.stream()); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; +REGISTER_OP_NPU_KERNEL( + reduce_min, ops::ReduceMinNPUKernel, + ops::ReduceMinNPUKernel, +#ifdef PADDLE_WITH_ASCEND_INT64 + ops::ReduceMinNPUKernel, +#endif + ops::ReduceMinNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py new file mode 100644 index 0000000000000000000000000000000000000000..bbf23e1be3e0e861b614d198f51fa8ff39e0b462 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_reduce_min_op_npu.py @@ -0,0 +1,300 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci +import paddle +import paddle.fluid.core as core +import paddle.fluid as fluid +from paddle.fluid import compiler, Program, program_guard +from paddle.fluid.framework import convert_np_dtype_to_dtype_ + +paddle.enable_static() + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestNPUReduceMinOp(OpTest): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = {'dim': [-1]} + self.outputs = { + 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) + } + + def test_check_output(self): + self.check_output_with_place(self.place) + + def set_npu(self): + self.__class__.use_npu = True + self.place = paddle.NPUPlace(0) + + def init_dtype(self): + self.dtype = np.float32 + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpMultiAxises(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = {'dim': [-2, -1]} + self.outputs = { + 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceAll(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = {'reduce_all': True} + self.outputs = {'Out': self.inputs['X'].min()} + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_bool(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.BOOL) + } + self.outputs = { + 'Out': + self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.bool) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_int16(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.INT16) + } + + self.outputs = { + 'Out': + self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int16) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_int32(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.INT32) + } + self.outputs = { + 'Out': + self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int32) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_int64(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.INT64) + } + self.outputs = { + 'Out': + self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.int64) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_fp16(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.FP16) + } + self.outputs = { + 'Out': self.inputs['X'].min( + axis=tuple(self.attrs['dim'])).astype(np.float16) + } + + def test_check_output(self): + self.check_output_with_place(self.place, atol=1e-3) + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_fp32(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.FP32) + } + self.outputs = { + 'Out': self.inputs['X'].min( + axis=tuple(self.attrs['dim'])).astype(np.float32) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_fp64(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.FP64) + } + self.outputs = { + 'Out': self.inputs['X'].min( + axis=tuple(self.attrs['dim'])).astype(np.float64) + } + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpWithOutDtype_fp32_2(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.FP32) + } + self.outputs = { + 'Out': self.inputs['X'].min( + axis=tuple(self.attrs['dim'])).astype(np.float32) + } + + def init_dtype(self): + self.dtype = np.float16 + + +@skip_check_grad_ci( + reason="reduce_min is discontinuous non-derivable function," + " its gradient check is not supported by unittest framework.") +class TestReduceMinOpInt64(TestNPUReduceMinOp): + """Remove Min with subgradient from gradient check to confirm the success of CI.""" + + def setUp(self): + self.op_type = "reduce_min" + self.set_npu() + self.init_dtype() + + self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)} + self.attrs = { + 'dim': [-2, -1], + 'out_dtype': int(core.VarDesc.VarType.INT64) + } + self.outputs = { + 'Out': self.inputs['X'].min( + axis=tuple(self.attrs['dim'])).astype(np.float32) + } + + def init_dtype(self): + self.dtype = np.int64 + + +if __name__ == '__main__': + unittest.main()