Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2a98cba2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
2a98cba2
编写于
9月 15, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable mkldnn_pool forward and backward
上级
d3a86c67
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
216 addition
and
12 deletion
+216
-12
paddle/gserver/layers/MKLDNNPoolLayer.cpp
paddle/gserver/layers/MKLDNNPoolLayer.cpp
+171
-12
paddle/gserver/layers/MKLDNNPoolLayer.h
paddle/gserver/layers/MKLDNNPoolLayer.h
+45
-0
未找到文件。
paddle/gserver/layers/MKLDNNPoolLayer.cpp
浏览文件 @
2a98cba2
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNPoolLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"
using
namespace
mkldnn
;
// NOLINT
...
...
@@ -28,17 +29,49 @@ bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
return
false
;
}
/* the size of inputs for pool-layer is 1 */
CHECK_EQ
(
config_
.
inputs_size
(),
1
);
const
PoolConfig
&
conf
=
config_
.
inputs
(
0
).
pool_conf
();
ic_
=
conf
.
channels
();
ih_
=
conf
.
img_size_y
();
iw_
=
conf
.
img_size
();
oc_
=
ic_
;
oh_
=
conf
.
output_y
();
ow_
=
conf
.
output_x
();
fh_
=
conf
.
size_y
();
fw_
=
conf
.
size_x
();
ph_
=
conf
.
padding_y
();
pw_
=
conf
.
padding
();
sh_
=
conf
.
stride_y
();
sw_
=
conf
.
stride
();
const
std
::
string
&
type
=
conf
.
pool_type
();
if
(
type
==
"max-projection"
)
{
poolAlgo_
=
algorithm
::
pooling_max
;
}
else
if
(
type
==
"avg-projection"
)
{
// TODO(TJ): support choosing exclude or include when paddle support it
// paddle only support pooling_avg_exclude_padding yet
poolAlgo_
=
algorithm
::
pooling_avg_exclude_padding
;
}
else
{
LOG
(
FATAL
)
<<
"unknow pooling type!"
;
}
return
true
;
}
void
MKLDNNPoolLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
reshapeInput
(
bs
,
ih
,
iw
);
// ic_ and oc can not be changed
CHECK_EQ
(
inputElemenCnt_
/
bs
/
ih
/
iw
,
(
size_t
)
ic
)
<<
"Input channel can not be changed"
;
// cal output sizes
// oc can not be changed
// paddle used false caffeMode for pooling
oh
=
outputSize
(
ih
,
fh_
,
ph_
,
sh_
,
false
);
ow
=
outputSize
(
iw
,
fw_
,
pw_
,
sw_
,
false
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
...
...
@@ -81,40 +114,166 @@ void MKLDNNPoolLayer::updateInputData() {
void
MKLDNNPoolLayer
::
resetFwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
)
{
resetInValue
(
in
);
resetOutValue
(
out
);
}
void
MKLDNNPoolLayer
::
resetInValue
(
MKLDNNMatrixPtr
&
in
)
{}
void
MKLDNNPoolLayer
::
resetInValue
(
MKLDNNMatrixPtr
&
in
)
{
if
(
inputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
dnnIn
=
getInputValue
(
0
);
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
dnnIn
);
CHECK
(
in
)
<<
"Input should be MKLDNNMatrix"
;
}
else
{
CHECK_EQ
(
getPrev
(
0
)
->
getDeviceId
(),
CPU_DEVICE
)
<<
"Only support CPU yet"
;
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
in
=
MKLDNNMatrix
::
create
(
cpuIn
,
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
}
}
void
MKLDNNPoolLayer
::
resetOutValue
(
MKLDNNMatrixPtr
&
out
)
{}
void
MKLDNNPoolLayer
::
resetOutValue
(
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
inVal_
)
<<
"Should reset input value first"
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
out
=
MKLDNNMatrix
::
create
(
output_
.
value
,
outDims
,
inVal_
->
getFormat
(),
engine_
);
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_
=
nullptr
;
cvtOutVal_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
}
else
{
// CPU output share the same data of MKLDNN output
cpuOut
->
setData
(
out
->
getData
());
cpuOutVal_
=
out
;
}
}
}
void
MKLDNNPoolLayer
::
resetFwdPD
(
std
::
shared_ptr
<
pool_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
in
,
MKLDNNMatrixPtr
out
)
{}
MKLDNNMatrixPtr
out
)
{
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
kernels
=
memory
::
dims
{
fh_
,
fw_
};
memory
::
dims
strides
=
memory
::
dims
{
sh_
,
sw_
};
memory
::
dims
padL
=
memory
::
dims
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
padding_kind
padKind
=
padding_kind
::
zero
;
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
:
prop_kind
::
forward_training
;
auto
fwdDesc
=
pool_fwd
::
desc
(
pk
,
poolAlgo_
,
in
->
getMemoryDesc
(),
out
->
getMemoryDesc
(),
strides
,
kernels
,
padL
,
padR
,
padKind
);
pd
.
reset
(
new
pool_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
// prepare workspace if necessary
workspace_
=
(
passType_
!=
PASS_TEST
&&
poolAlgo_
==
algorithm
::
pooling_max
)
?
std
::
make_shared
<
memory
>
(
memory
(
pd
->
workspace_primitive_desc
()))
:
nullptr
;
}
void
MKLDNNPoolLayer
::
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
pool_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
)
{}
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
fwd_
=
workspace_
?
std
::
make_shared
<
pool_fwd
>
(
pool_fwd
(
*
pd
,
*
in
,
*
out
,
*
workspace_
))
:
std
::
make_shared
<
pool_fwd
>
(
pool_fwd
(
*
pd
,
*
in
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
if
(
cvtOutVal_
)
{
pipeline
.
push_back
(
*
cvtOutVal_
);
}
}
void
MKLDNNPoolLayer
::
resetBwdBuffers
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
)
{
resetOutGrad
(
out
);
resetInGrad
(
in
);
}
void
MKLDNNPoolLayer
::
resetOutGrad
(
MKLDNNMatrixPtr
&
out
)
{}
void
MKLDNNPoolLayer
::
resetOutGrad
(
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
)
<<
"Should have output value"
;
out
=
MKLDNNMatrix
::
create
(
output_
.
grad
,
outVal_
->
getPrimitiveDesc
());
// create reorder if output value has cpu device and pd do not match
cpuOutGrad_
=
nullptr
;
cvtOutGrad_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
format
::
nchw
,
engine_
);
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
)
<<
"should not be emptry"
;
}
else
{
// share the same data of CPU output
output_
.
grad
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
}
}
}
void
MKLDNNPoolLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
)
{}
void
MKLDNNPoolLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
)
{
in
=
nullptr
;
const
MatrixPtr
&
inGrad
=
inputLayers_
[
0
]
->
getOutput
().
grad
;
if
(
inGrad
==
nullptr
)
{
return
;
}
CHECK
(
inVal_
);
in
=
MKLDNNMatrix
::
create
(
inGrad
,
inVal_
->
getPrimitiveDesc
());
}
void
MKLDNNPoolLayer
::
resetBwdPD
(
std
::
shared_ptr
<
pool_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
)
{}
MKLDNNMatrixPtr
&
out
)
{
memory
::
dims
kernels
=
memory
::
dims
{
fh_
,
fw_
};
memory
::
dims
strides
=
memory
::
dims
{
sh_
,
sw_
};
memory
::
dims
padL
=
memory
::
dims
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
CHECK
(
in
);
CHECK
(
out
);
auto
bwdDesc
=
pool_bwd
::
desc
(
poolAlgo_
,
in
->
getMemoryDesc
(),
out
->
getMemoryDesc
(),
strides
,
kernels
,
padL
,
padR
,
padding_kind
::
zero
);
pd
.
reset
(
new
pool_bwd
::
primitive_desc
(
bwdDesc
,
engine_
,
*
fwdPD_
));
}
void
MKLDNNPoolLayer
::
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
pool_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
)
{}
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtOutGrad_
)
{
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
bwdData_
=
workspace_
?
std
::
make_shared
<
pool_bwd
>
(
pool_bwd
(
*
pd
,
*
out
,
*
workspace_
,
*
in
))
:
std
::
make_shared
<
pool_bwd
>
(
pool_bwd
(
*
pd
,
*
out
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNPoolLayer.h
浏览文件 @
2a98cba2
...
...
@@ -28,8 +28,28 @@ typedef mkldnn::pooling_backward pool_bwd;
*/
class
MKLDNNPoolLayer
:
public
MKLDNNLayer
{
protected:
// padding height and width
int
ph_
,
pw_
;
// stride height and width
int
sh_
,
sw_
;
// filter(kenerl) height and width
int
fh_
,
fw_
;
// pooling_avg or pooling_max
mkldnn
::
algorithm
poolAlgo_
;
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr
cpuOutVal_
;
MKLDNNMatrixPtr
cpuOutGrad_
;
// convert handle between CPU device and MKLDNN device
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtOutVal_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtOutGrad_
;
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
pool_fwd
::
primitive_desc
>
fwdPD_
;
// according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
// test_pooling_forward.cpp, pool need workspace for backward
std
::
shared_ptr
<
mkldnn
::
memory
>
workspace_
;
public:
explicit
MKLDNNPoolLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
)
{}
...
...
@@ -56,6 +76,13 @@ public:
void
updateInputData
()
override
;
void
printSizeInfo
()
override
{
MKLDNNLayer
::
printSizeInfo
();
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
<<
": ph: "
<<
ph_
<<
", pw: "
<<
pw_
<<
", sh: "
<<
sh_
<<
", sw: "
<<
sw_
;
}
protected:
/**
* Forward functions: reset buffers(input, output),
...
...
@@ -88,6 +115,24 @@ protected:
std
::
shared_ptr
<
pool_bwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
out
);
/**
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* test_pooling_forward.cpp
*/
mkldnn
::
memory
::
dims
getPaddingR
()
const
{
mkldnn
::
memory
::
dims
padR
=
{
ph_
,
pw_
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
((
ih_
+
ph_
+
padR
[
0
]
-
fh_
)
/
sh_
+
1
<
oh_
)
{
++
padR
[
0
];
}
if
((
iw_
+
pw_
+
padR
[
1
]
-
fw_
)
/
sw_
+
1
<
ow_
)
{
++
padR
[
1
];
}
}
return
padR
;
}
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录