Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
29d50d20
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29d50d20
编写于
3月 11, 2021
作者:
Z
zhang wenhui
提交者:
GitHub
3月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【NPU】Support npu kernel for matmul op (#31544)
* add matmulv2_npu * add matmul * add matmul
上级
f400ce9f
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
370 addition
and
0 deletion
+370
-0
paddle/fluid/operators/matmul_v2_op_npu.cc
paddle/fluid/operators/matmul_v2_op_npu.cc
+160
-0
python/paddle/fluid/tests/unittests/npu/test_matmulv2_op_npu.py
.../paddle/fluid/tests/unittests/npu/test_matmulv2_op_npu.py
+210
-0
未找到文件。
paddle/fluid/operators/matmul_v2_op_npu.cc
0 → 100644
浏览文件 @
29d50d20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulV2NPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
bool
transpose_x
=
ctx
.
Attr
<
bool
>
(
"trans_x"
);
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
if
(
x
->
dims
().
size
()
==
2
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"MatMul"
,
{
*
x
,
*
y
},
{
*
out
},
{{
"transpose_x1"
,
transpose_x
},
{
"transpose_x2"
,
transpose_y
}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
else
if
(
x
->
dims
().
size
()
>
2
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"BatchMatMul"
,
{
*
x
,
*
y
},
{
*
out
},
{{
"adj_x1"
,
transpose_x
},
{
"adj_x2"
,
transpose_y
}});
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulV2GradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
bool
transpose_y
=
ctx
.
Attr
<
bool
>
(
"trans_y"
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
x
->
dims
().
size
()
==
2
)
{
if
(
transpose_y
)
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dx
=
NpuOpRunner
(
"MatMul"
,
{
*
dout
,
*
y
},
{
*
dx
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
false
}});
runner_dx
.
Run
(
stream
);
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"MatMul"
,
{
*
dout
,
*
x
},
{
*
dy
},
{{
"transpose_x1"
,
true
},
{
"transpose_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
else
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dx
=
NpuOpRunner
(
"MatMul"
,
{
*
dout
,
*
y
},
{
*
dx
},
{{
"transpose_x1"
,
false
},
{
"transpose_x2"
,
true
}});
runner_dx
.
Run
(
stream
);
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"MatMul"
,
{
*
x
,
*
dout
},
{
*
dy
},
{{
"transpose_x1"
,
true
},
{
"transpose_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
}
else
if
(
x
->
dims
().
size
()
>
2
)
{
if
(
transpose_y
)
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dx
=
NpuOpRunner
(
"BatchMatMul"
,
{
*
dout
,
*
y
},
{
*
dx
},
{{
"adj_x1"
,
false
},
{
"adj_x2"
,
false
}});
runner_dx
.
Run
(
stream
);
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"BatchMatMul"
,
{
*
dout
,
*
x
},
{
*
dy
},
{{
"adj_x1"
,
true
},
{
"adj_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
else
{
if
(
dx
)
{
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dx
=
NpuOpRunner
(
"BatchMatMul"
,
{
*
dout
,
*
y
},
{
*
dx
},
{{
"adj_x1"
,
false
},
{
"adj_x2"
,
true
}});
runner_dx
.
Run
(
stream
);
}
if
(
dy
)
{
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner_dy
=
NpuOpRunner
(
"BatchMatMul"
,
{
*
x
,
*
dout
},
{
*
dy
},
{{
"adj_x1"
,
true
},
{
"adj_x2"
,
false
}});
runner_dy
.
Run
(
stream
);
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
matmul_v2
,
ops
::
MatMulV2NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MatMulV2NPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
matmul_v2_grad
,
ops
::
MatMulV2GradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MatMulV2GradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_matmulv2_op_npu.py
0 → 100644
浏览文件 @
29d50d20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
def
reference_matmul
(
X
,
Y
,
transpose_X
=
False
,
transpose_Y
=
False
):
"""Reference forward implementation using np.matmul."""
# np.matmul does not support the transpose flags, so we manually
# transpose X and Y appropriately.
if
transpose_X
:
if
X
.
ndim
==
1
:
X
=
X
.
reshape
((
X
.
size
,
))
elif
X
.
ndim
==
2
:
X
=
X
.
T
else
:
dim
=
[
i
for
i
in
range
(
len
(
X
.
shape
))]
dim
[
-
1
],
dim
[
len
(
X
.
shape
)
-
2
]
=
dim
[
len
(
X
.
shape
)
-
2
],
dim
[
-
1
]
X
=
np
.
transpose
(
X
,
tuple
(
dim
))
if
transpose_Y
:
if
Y
.
ndim
==
1
:
Y
=
Y
.
reshape
((
Y
.
size
,
))
else
:
dim
=
[
i
for
i
in
range
(
len
(
Y
.
shape
))]
dim
[
-
1
],
dim
[
len
(
Y
.
shape
)
-
2
]
=
dim
[
len
(
Y
.
shape
)
-
2
],
dim
[
-
1
]
Y
=
np
.
transpose
(
Y
,
tuple
(
dim
))
Out
=
np
.
matmul
(
X
,
Y
)
if
not
Out
.
shape
:
# We do not support 0-dimensional Tensors (scalars). So where
# np.matmul outputs a scalar, we must convert to a Tensor of
# shape (1, ) instead.
# Everywhere else, we are compatible with np.matmul.
Out
=
np
.
array
([
Out
],
dtype
=
"float64"
)
return
Out
class
TestMatMul
(
OpTest
):
def
config
(
self
):
self
.
x_shape
=
(
100
,
24
)
self
.
y_shape
=
(
24
,
100
)
self
.
trans_x
=
False
self
.
trans_y
=
False
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"matmul_v2"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
config
()
np
.
random
.
seed
(
SEED
)
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
# -0.1 ~ 0.1
x
=
-
0.1
+
0.2
*
x
y
=
-
0.1
+
0.2
*
y
result
=
reference_matmul
(
x
,
y
,
self
.
trans_x
,
self
.
trans_y
)
result
=
result
.
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
,
}
self
.
attrs
=
{
'trans_x'
:
self
.
trans_x
,
'trans_y'
:
self
.
trans_y
}
self
.
outputs
=
{
'Out'
:
result
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
,
atol
=
1e-5
)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
class
TestMatMul2
(
TestMatMul
):
"""
case 2
"""
def
config
(
self
):
self
.
x_shape
=
(
32
,
24
)
self
.
y_shape
=
(
32
,
24
)
self
.
trans_x
=
False
self
.
trans_y
=
True
class
TestMatMul3
(
TestMatMul
):
"""
case 3
"""
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
class
TestMatMul4
(
TestMatMul
):
"""
case 4 dim=3
"""
def
config
(
self
):
self
.
x_shape
=
(
2
,
3
,
4
)
self
.
y_shape
=
(
2
,
4
,
3
)
self
.
trans_x
=
False
self
.
trans_y
=
False
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMatMulNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
2
,
3
)).
astype
(
'float32'
)
c_np
=
np
.
random
.
random
(
size
=
(
3
,
2
)).
astype
(
'float32'
)
d_np
=
np
.
random
.
random
(
size
=
(
3
,
2
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
2
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
c
=
paddle
.
static
.
data
(
name
=
"c"
,
shape
=
[
3
,
2
],
dtype
=
'float32'
)
d
=
paddle
.
static
.
data
(
name
=
"d"
,
shape
=
[
3
,
2
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
2
,
1
],
dtype
=
'int64'
)
sum_1
=
paddle
.
add
(
a
,
b
)
sum_2
=
paddle
.
add
(
c
,
d
)
result
=
paddle
.
matmul
(
sum_1
,
sum_2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
result
,
size
=
8
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"c"
:
c_np
,
"d"
:
d_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录