From 29b5050726fe33a7d81bdf5dbd32206be2d6d652 Mon Sep 17 00:00:00 2001 From: yukavio <67678385+yukavio@users.noreply.github.com> Date: Thu, 26 Nov 2020 21:46:38 +0800 Subject: [PATCH] Revert "add hapi api flops (#28755)" (#29144) This reverts commit 63e90ee331072fd2c13a7891869721affbd14f0e. --- python/paddle/__init__.py | 1 - python/paddle/hapi/__init__.py | 6 +- python/paddle/hapi/dynamic_flops.py | 289 ---------------------------- python/paddle/hapi/static_flops.py | 204 -------------------- python/paddle/tests/test_model.py | 20 -- 5 files changed, 2 insertions(+), 518 deletions(-) delete mode 100644 python/paddle/hapi/dynamic_flops.py delete mode 100644 python/paddle/hapi/static_flops.py diff --git a/python/paddle/__init__.py b/python/paddle/__init__.py index 79c13d03f18..dc0cc321c06 100755 --- a/python/paddle/__init__.py +++ b/python/paddle/__init__.py @@ -275,7 +275,6 @@ from . import onnx from .hapi import Model from .hapi import callbacks from .hapi import summary -from .hapi import flops import paddle.text import paddle.vision diff --git a/python/paddle/hapi/__init__.py b/python/paddle/hapi/__init__.py index de0e298bacc..67965de5d97 100644 --- a/python/paddle/hapi/__init__.py +++ b/python/paddle/hapi/__init__.py @@ -13,15 +13,13 @@ # limitations under the License. from . import logger -from . import callbacks #DEFINE_ALIAS +from . import callbacks from . import model_summary from . import model from .model import * -from .model_summary import summary #DEFINE_ALIAS -from .dynamic_flops import flops #DEFINE_ALIAS +from .model_summary import summary logger.setup_logger() __all__ = ['callbacks'] + model.__all__ + ['summary'] -__all__ = model.__all__ + ['flops'] diff --git a/python/paddle/hapi/dynamic_flops.py b/python/paddle/hapi/dynamic_flops.py deleted file mode 100644 index be6c5770de4..00000000000 --- a/python/paddle/hapi/dynamic_flops.py +++ /dev/null @@ -1,289 +0,0 @@ -# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle -import warnings -import paddle.nn as nn -import numpy as np -from prettytable import PrettyTable -from .static_flops import static_flops - -__all__ = ['flops'] - - -def flops(net, input_size, custom_ops=None, print_detail=False): - """Print a table about the FLOPs of network. - - Args: - net (paddle.nn.Layer||paddle.static.Program): The network which could be a instance of paddle.nn.Layer in - dygraph or paddle.static.Program in static graph. - input_size (list): size of input tensor. Note that the batch_size in argument 'input_size' only support 1. - custom_ops (A dict of function, optional): A dictionary which key is the class of specific operation such as - paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This - argument only work when argument 'net' is an instance of paddle.nn.Layer. The details could be found - in following example code. Default is None. - print_detail (bool, optional): Whether to print the detail information, like FLOPs per layer, about the net FLOPs. - Default is False. - - Returns: - Int: A number about the FLOPs of total network. - - Examples: - .. code-block:: python - - import paddle - import paddle.nn as nn - - class LeNet(nn.Layer): - def __init__(self, num_classes=10): - super(LeNet, self).__init__() - self.num_classes = num_classes - self.features = nn.Sequential( - nn.Conv2D( - 1, 6, 3, stride=1, padding=1), - nn.ReLU(), - nn.MaxPool2D(2, 2), - nn.Conv2D( - 6, 16, 5, stride=1, padding=0), - nn.ReLU(), - nn.MaxPool2D(2, 2)) - - if num_classes > 0: - self.fc = nn.Sequential( - nn.Linear(400, 120), - nn.Linear(120, 84), - nn.Linear( - 84, 10)) - - def forward(self, inputs): - x = self.features(inputs) - - if self.num_classes > 0: - x = paddle.flatten(x, 1) - x = self.fc(x) - return x - - lenet = LeNet() - # m is the instance of nn.Layer, x is the intput of layer, y is the output of layer. - def count_leaky_relu(m, x, y): - x = x[0] - nelements = x.numel() - m.total_ops += int(nelements) - - FLOPs = paddle.flops(lenet, [1, 1, 28, 28], custom_ops= {nn.LeakyReLU: count_leaky_relu}, - print_detail=True) - print(FLOPs) - - #+--------------+-----------------+-----------------+--------+--------+ - #| Layer Name | Input Shape | Output Shape | Params | Flops | - #+--------------+-----------------+-----------------+--------+--------+ - #| conv2d_2 | [1, 1, 28, 28] | [1, 6, 28, 28] | 60 | 47040 | - #| re_lu_2 | [1, 6, 28, 28] | [1, 6, 28, 28] | 0 | 0 | - #| max_pool2d_2 | [1, 6, 28, 28] | [1, 6, 14, 14] | 0 | 0 | - #| conv2d_3 | [1, 6, 14, 14] | [1, 16, 10, 10] | 2416 | 241600 | - #| re_lu_3 | [1, 16, 10, 10] | [1, 16, 10, 10] | 0 | 0 | - #| max_pool2d_3 | [1, 16, 10, 10] | [1, 16, 5, 5] | 0 | 0 | - #| linear_0 | [1, 400] | [1, 120] | 48120 | 48000 | - #| linear_1 | [1, 120] | [1, 84] | 10164 | 10080 | - #| linear_2 | [1, 84] | [1, 10] | 850 | 840 | - #+--------------+-----------------+-----------------+--------+--------+ - #Total Flops: 347560 Total Params: 61610 - """ - if isinstance(net, nn.Layer): - inputs = paddle.randn(input_size) - return dynamic_flops( - net, - inputs=inputs, - custom_ops=custom_ops, - print_detail=print_detail) - elif isinstance(net, paddle.static.Program): - return static_flops(net, print_detail=print_detail) - else: - warnings.warn( - "Your model must be an instance of paddle.nn.Layer or paddle.static.Program." - ) - return -1 - - -def count_convNd(m, x, y): - x = x[0] - kernel_ops = np.product(m.weight.shape[2:]) - bias_ops = 1 if m.bias is not None else 0 - total_ops = int(y.numel()) * ( - x.shape[1] / m._groups * kernel_ops + bias_ops) - m.total_ops += total_ops - - -def count_leaky_relu(m, x, y): - x = x[0] - nelements = x.numel() - m.total_ops += int(nelements) - - -def count_bn(m, x, y): - x = x[0] - nelements = x.numel() - if not m.training: - total_ops = 2 * nelements - - m.total_ops += int(total_ops) - - -def count_linear(m, x, y): - total_mul = m.weight.shape[0] - num_elements = y.numel() - total_ops = total_mul * num_elements - m.total_ops += int(total_ops) - - -def count_avgpool(m, x, y): - kernel_ops = 1 - num_elements = y.numel() - total_ops = kernel_ops * num_elements - - m.total_ops += int(total_ops) - - -def count_adap_avgpool(m, x, y): - kernel = np.array(x[0].shape[2:]) // np.array(y.shape[2:]) - total_add = np.product(kernel) - total_div = 1 - kernel_ops = total_add + total_div - num_elements = y.numel() - total_ops = kernel_ops * num_elements - - m.total_ops += int(total_ops) - - -def count_zero_ops(m, x, y): - m.total_ops += int(0) - - -def count_parameters(m, x, y): - total_params = 0 - for p in m.parameters(): - total_params += p.numel() - m.total_params[0] = int(total_params) - - -def count_io_info(m, x, y): - m.register_buffer('input_shape', paddle.to_tensor(x[0].shape)) - m.register_buffer('output_shape', paddle.to_tensor(y.shape)) - - -register_hooks = { - nn.Conv1D: count_convNd, - nn.Conv2D: count_convNd, - nn.Conv3D: count_convNd, - nn.Conv1DTranspose: count_convNd, - nn.Conv2DTranspose: count_convNd, - nn.Conv3DTranspose: count_convNd, - nn.layer.norm.BatchNorm2D: count_bn, - nn.BatchNorm: count_bn, - nn.ReLU: count_zero_ops, - nn.ReLU6: count_zero_ops, - nn.LeakyReLU: count_leaky_relu, - nn.Linear: count_linear, - nn.Dropout: count_zero_ops, - nn.AvgPool1D: count_avgpool, - nn.AvgPool2D: count_avgpool, - nn.AvgPool3D: count_avgpool, - nn.AdaptiveAvgPool1D: count_adap_avgpool, - nn.AdaptiveAvgPool2D: count_adap_avgpool, - nn.AdaptiveAvgPool3D: count_adap_avgpool -} - - -def dynamic_flops(model, inputs, custom_ops=None, print_detail=False): - handler_collection = [] - types_collection = set() - if custom_ops is None: - custom_ops = {} - - def add_hooks(m): - if len(list(m.children())) > 0: - return - m.register_buffer('total_ops', paddle.zeros([1], dtype='int32')) - m.register_buffer('total_params', paddle.zeros([1], dtype='int32')) - m_type = type(m) - - flops_fn = None - if m_type in custom_ops: - flops_fn = custom_ops[m_type] - if m_type not in types_collection: - print("Customize Function has been appied to {}".format(m_type)) - elif m_type in register_hooks: - flops_fn = register_hooks[m_type] - if m_type not in types_collection: - print("{}'s flops has been counted".format(m_type)) - else: - if m_type not in types_collection: - print( - "Cannot find suitable count function for {}. Treat it as zero Macs.". - format(m_type)) - - if flops_fn is not None: - flops_handler = m.register_forward_post_hook(flops_fn) - handler_collection.append(flops_handler) - params_handler = m.register_forward_post_hook(count_parameters) - io_handler = m.register_forward_post_hook(count_io_info) - handler_collection.append(params_handler) - handler_collection.append(io_handler) - types_collection.add(m_type) - - training = model.training - - model.eval() - model.apply(add_hooks) - - with paddle.framework.no_grad(): - model(inputs) - - total_ops = 0 - total_params = 0 - for m in model.sublayers(): - if len(list(m.children())) > 0: - continue - total_ops += m.total_ops - total_params += m.total_params - - total_ops = int(total_ops) - total_params = int(total_params) - - if training: - model.train() - for handler in handler_collection: - handler.remove() - - table = PrettyTable( - ["Layer Name", "Input Shape", "Output Shape", "Params", "Flops"]) - - for n, m in model.named_sublayers(): - if len(list(m.children())) > 0: - continue - if "total_ops" in m._buffers: - table.add_row([ - m.full_name(), list(m.input_shape.numpy()), - list(m.output_shape.numpy()), int(m.total_params), - int(m.total_ops) - ]) - m._buffers.pop("total_ops") - m._buffers.pop("total_params") - m._buffers.pop('input_shape') - m._buffers.pop('output_shape') - if (print_detail): - print(table) - print('Total Flops: {} Total Params: {}'.format(total_ops, - total_params)) - return total_ops diff --git a/python/paddle/hapi/static_flops.py b/python/paddle/hapi/static_flops.py deleted file mode 100644 index 55e7a5f3d12..00000000000 --- a/python/paddle/hapi/static_flops.py +++ /dev/null @@ -1,204 +0,0 @@ -# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -import numpy as np -import paddle -from prettytable import PrettyTable -from collections import OrderedDict -from paddle.static import Program, program_guard, Variable - - -class VarWrapper(object): - def __init__(self, var, graph): - assert isinstance(var, Variable) - assert isinstance(graph, GraphWrapper) - self._var = var - self._graph = graph - - def name(self): - """ - Get the name of the variable. - """ - return self._var.name - - def shape(self): - """ - Get the shape of the varibale. - """ - return self._var.shape - - -class OpWrapper(object): - def __init__(self, op, graph): - assert isinstance(graph, GraphWrapper) - self._op = op - self._graph = graph - - def type(self): - """ - Get the type of this operator. - """ - return self._op.type - - def inputs(self, name): - """ - Get all the varibales by the input name. - """ - if name in self._op.input_names: - return [ - self._graph.var(var_name) for var_name in self._op.input(name) - ] - else: - return [] - - def outputs(self, name): - """ - Get all the varibales by the output name. - """ - return [self._graph.var(var_name) for var_name in self._op.output(name)] - - -class GraphWrapper(object): - """ - It is a wrapper of paddle.fluid.framework.IrGraph with some special functions - for paddle slim framework. - - Args: - program(framework.Program): A program with - in_nodes(dict): A dict to indicate the input nodes of the graph. - The key is user-defined and human-readable name. - The value is the name of Variable. - out_nodes(dict): A dict to indicate the input nodes of the graph. - The key is user-defined and human-readable name. - The value is the name of Variable. - """ - - def __init__(self, program=None, in_nodes=[], out_nodes=[]): - """ - """ - super(GraphWrapper, self).__init__() - self.program = Program() if program is None else program - self.persistables = {} - self.teacher_persistables = {} - for var in self.program.list_vars(): - if var.persistable: - self.persistables[var.name] = var - self.compiled_graph = None - in_nodes = [] if in_nodes is None else in_nodes - out_nodes = [] if out_nodes is None else out_nodes - self.in_nodes = OrderedDict(in_nodes) - self.out_nodes = OrderedDict(out_nodes) - self._attrs = OrderedDict() - - def ops(self): - """ - Return all operator nodes included in the graph as a set. - """ - ops = [] - for block in self.program.blocks: - for op in block.ops: - ops.append(OpWrapper(op, self)) - return ops - - def var(self, name): - """ - Get the variable by variable name. - """ - for block in self.program.blocks: - if block.has_var(name): - return VarWrapper(block.var(name), self) - return None - - -def count_convNd(op): - filter_shape = op.inputs("Filter")[0].shape() - filter_ops = np.product(filter_shape[1:]) - bias_ops = 1 if len(op.inputs("Bias")) > 0 else 0 - output_numel = np.product(op.outputs("Output")[0].shape()[1:]) - total_ops = output_numel * (filter_ops + bias_ops) - return total_ops - - -def count_leaky_relu(op): - total_ops = np.product(op.outputs("Output")[0].shape()[1:]) - return total_ops - - -def count_bn(op): - output_numel = np.product(op.outputs("Y")[0].shape()[1:]) - total_ops = 2 * output_numel - return total_ops - - -def count_linear(op): - total_mul = op.inputs("Y")[0].shape()[0] - numel = np.product(op.outputs("Out")[0].shape()[1:]) - total_ops = total_mul * numel - return total_ops - - -def count_pool2d(op): - input_shape = op.inputs("X")[0].shape() - output_shape = op.outputs('Out')[0].shape() - kernel = np.array(input_shape[2:]) // np.array(output_shape[2:]) - total_add = np.product(kernel) - total_div = 1 - kernel_ops = total_add + total_div - num_elements = np.product(output_shape[1:]) - total_ops = kernel_ops * num_elements - return total_ops - - -def count_element_op(op): - input_shape = op.inputs("X")[0].shape() - total_ops = np.product(input_shape[1:]) - return total_ops - - -def _graph_flops(graph, detail=False): - assert isinstance(graph, GraphWrapper) - flops = 0 - table = PrettyTable(["OP Type", 'Param name', "Flops"]) - for op in graph.ops(): - param_name = '' - if op.type() in ['conv2d', 'depthwise_conv2d']: - op_flops = count_convNd(op) - flops += op_flops - param_name = op.inputs("Filter")[0].name() - elif op.type() == 'pool2d': - op_flops = count_pool2d(op) - flops += op_flops - - elif op.type() in ['mul', 'matmul']: - op_flops = count_linear(op) - flops += op_flops - param_name = op.inputs("Y")[0].name() - elif op.type() == 'batch_norm': - op_flops = count_bn(op) - flops += op_flops - elif op.type().startswith('element'): - op_flops = count_element_op(op) - flops += op_flops - if op_flops != 0: - table.add_row([op.type(), param_name, op_flops]) - op_flops = 0 - if detail: - print(table) - return flops - - -def static_flops(program, print_detail=False): - graph = GraphWrapper(program) - return _graph_flops(graph, detail=print_detail) diff --git a/python/paddle/tests/test_model.py b/python/paddle/tests/test_model.py index 24460a2e116..a410c726af1 100644 --- a/python/paddle/tests/test_model.py +++ b/python/paddle/tests/test_model.py @@ -33,8 +33,6 @@ from paddle.nn.layer.loss import CrossEntropyLoss from paddle.metric import Accuracy from paddle.vision.datasets import MNIST from paddle.vision.models import LeNet -import paddle.vision.models as models -import paddle.fluid.dygraph.jit as jit from paddle.io import DistributedBatchSampler, Dataset from paddle.hapi.model import prepare_distributed_context from paddle.fluid.dygraph.jit import declarative @@ -548,24 +546,6 @@ class TestModelFunction(unittest.TestCase): gt_params = _get_param_from_state_dict(rnn.state_dict()) np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0) - def test_static_flops(self): - paddle.disable_static() - net = models.__dict__['mobilenet_v2'](pretrained=False) - inputs = paddle.randn([1, 3, 224, 224]) - static_program = jit._trace(net, inputs=[inputs])[1] - paddle.flops(static_program, [1, 3, 224, 224], print_detail=True) - - def test_dynamic_flops(self): - net = models.__dict__['mobilenet_v2'](pretrained=False) - - def customize_dropout(m, x, y): - m.total_ops += 0 - - paddle.flops( - net, [1, 3, 224, 224], - custom_ops={paddle.nn.Dropout: customize_dropout}, - print_detail=True) - def test_summary_dtype(self): input_shape = (3, 1) net = paddle.nn.Embedding(10, 3, sparse=True) -- GitLab