Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
28eb7d84
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
28eb7d84
编写于
12月 11, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test all impls and all inplace cases
上级
d4cab7d9
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
121 addition
and
49 deletion
+121
-49
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+33
-20
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+88
-29
未找到文件。
paddle/fluid/operators/jit/helper.h
浏览文件 @
28eb7d84
...
...
@@ -28,33 +28,16 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// Refer code do not related with attr, and always on CPUPlace
template
<
KernelType
KT
,
typename
T
,
typename
Func
,
typename
Attr
>
inline
Func
GetRefer
()
{
auto
&
ref_pool
=
ReferKernelPool
().
Instance
().
AllKernels
();
KernelKey
kkey
(
KT
,
platform
::
CPUPlace
());
auto
ref_iter
=
ref_pool
.
find
(
kkey
);
PADDLE_ENFORCE
(
ref_iter
!=
ref_pool
.
end
(),
"Every Kernel should have reference function."
);
auto
&
ref_impls
=
ref_iter
->
second
;
for
(
auto
&
impl
:
ref_impls
)
{
auto
i
=
dynamic_cast
<
const
ReferKernel
<
T
,
Func
,
Attr
>*>
(
impl
.
get
());
if
(
i
)
{
return
i
->
GetFunc
();
}
}
return
nullptr
;
}
template
<
KernelType
KT
,
typename
T
,
typename
Func
,
typename
Attr
,
typename
PlaceType
=
platform
::
CPUPlace
>
const
Func
Get
(
Attr
attr
)
{
typename
PlaceType
>
inline
const
Func
GetJitCode
(
Attr
attr
)
{
size_t
key
=
JitCodeKey
<
Attr
>
(
attr
);
auto
&
codes
=
JitCodePool
<
KT
>
().
Instance
();
if
(
codes
.
Has
(
key
))
{
return
codes
.
AllKernels
().
at
(
key
)
->
template
getCode
<
Func
>();
}
// creator is not related with attr, so can use KernelKey as key
KernelKey
kkey
(
KT
,
PlaceType
());
if
(
std
::
is_same
<
PlaceType
,
platform
::
CPUPlace
>::
value
)
{
// pool: (KernelKey(type, place), vector<GenCreatorPtr>)
...
...
@@ -73,8 +56,38 @@ const Func Get(Attr attr) {
}
}
}
return
nullptr
;
}
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
template
<
KernelType
KT
,
typename
T
,
typename
Func
,
typename
Attr
>
inline
Func
GetRefer
()
{
auto
&
ref_pool
=
ReferKernelPool
().
Instance
().
AllKernels
();
KernelKey
kkey
(
KT
,
platform
::
CPUPlace
());
auto
ref_iter
=
ref_pool
.
find
(
kkey
);
PADDLE_ENFORCE
(
ref_iter
!=
ref_pool
.
end
(),
"Every Kernel should have reference function."
);
auto
&
ref_impls
=
ref_iter
->
second
;
for
(
auto
&
impl
:
ref_impls
)
{
auto
i
=
dynamic_cast
<
const
ReferKernel
<
T
,
Func
,
Attr
>*>
(
impl
.
get
());
if
(
i
)
{
return
i
->
GetFunc
();
}
}
return
nullptr
;
}
template
<
KernelType
KT
,
typename
T
,
typename
Func
,
typename
Attr
,
typename
PlaceType
=
platform
::
CPUPlace
>
const
Func
Get
(
Attr
attr
)
{
auto
jitfunc
=
GetJitCode
<
KT
,
T
,
Func
,
Attr
,
PlaceType
>
(
attr
);
if
(
jitfunc
)
{
return
jitfunc
;
}
// pool: (KernelKey(type, place), vector<KernelPtr>)
KernelKey
kkey
(
KT
,
PlaceType
());
auto
&
pool
=
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
28eb7d84
...
...
@@ -55,46 +55,105 @@ void ExpectEQ(const T* target, const T* refer, int n) {
}
}
TEST
(
JitKernel
,
vmul
)
{
using
T
=
float
;
using
PlaceType
=
paddle
::
platform
::
CPUPlace
;
std
::
vector
<
int
>
TestSizes
()
{
std
::
vector
<
int
>
s
;
for
(
int
i
=
1
;
i
<
30
;
++
i
)
{
s
.
push_back
(
i
);
}
// test some large size
s
.
push_back
(
100
);
s
.
push_back
(
1000
);
return
s
;
}
namespace
jit
=
paddle
::
operators
::
jit
;
// TODO(TJ): test more vector size
for
(
int
d
=
1
;
d
<
30
;
++
d
)
{
auto
ref
=
jit
::
GetRefer
<
jit
::
vmul
,
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
>
();
auto
tgt
=
jit
::
Get
<
jit
::
vmul
,
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
,
PlaceType
>
(
d
);
EXPECT_TRUE
(
ref
!=
nullptr
);
template
<
typename
T
,
typename
Func
>
void
TestTartgetFunc
(
const
Func
tgt
,
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
const
std
::
vector
<
T
>&
zref
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
zref
.
size
(),
x
.
size
());
EXPECT_EQ
(
zref
.
size
(),
y
.
size
());
const
T
*
x_data
=
x
.
data
();
const
T
*
y_data
=
y
.
data
();
const
T
*
zref_data
=
zref
.
data
();
const
int
d
=
zref
.
size
();
std
::
vector
<
T
>
x
(
d
),
y
(
d
);
std
::
vector
<
T
>
zref
(
d
),
ztgt
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
());
RandomVec
<
T
>
(
d
,
y
.
data
());
const
float
*
x_data
=
x
.
data
();
const
float
*
y_data
=
y
.
data
();
float
*
ztgt_data
=
ztgt
.
data
();
float
*
zref_data
=
zref
.
data
();
std
::
vector
<
T
>
ztgt
(
d
);
T
*
ztgt_data
=
ztgt
.
data
();
// test normal
tgt
(
x_data
,
y_data
,
ztgt_data
,
d
);
ref
(
x_data
,
y_data
,
zref_data
,
d
);
ExpectEQ
<
T
>
(
ztgt_data
,
zref_data
,
d
);
// test inplace x
std
::
copy
(
x
.
begin
(),
x
.
end
(),
zref
.
begin
());
std
::
copy
(
x
.
begin
(),
x
.
end
(),
ztgt
.
begin
());
tgt
(
ztgt_data
,
y_data
,
ztgt_data
,
d
);
ref
(
zref_data
,
y_data
,
zref_data
,
d
);
ExpectEQ
<
T
>
(
ztgt_data
,
zref_data
,
d
);
// test inplace y
std
::
copy
(
y
.
begin
(),
y
.
end
(),
zref
.
begin
());
std
::
copy
(
y
.
begin
(),
y
.
end
(),
ztgt
.
begin
());
tgt
(
x_data
,
ztgt_data
,
ztgt_data
,
d
);
ref
(
x_data
,
zref_data
,
zref_data
,
d
);
ExpectEQ
<
T
>
(
ztgt_data
,
zref_data
,
d
);
}
TEST
(
JitKernel
,
vmul
)
{
using
T
=
float
;
using
PlaceType
=
paddle
::
platform
::
CPUPlace
;
namespace
jit
=
paddle
::
operators
::
jit
;
const
auto
KT
=
jit
::
vmul
;
for
(
int
d
:
TestSizes
())
{
auto
ref
=
jit
::
GetRefer
<
KT
,
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
T
>
x
(
d
),
y
(
d
),
zref
(
d
);
RandomVec
<
T
>
(
d
,
x
.
data
());
RandomVec
<
T
>
(
d
,
y
.
data
());
std
::
vector
<
T
>
xinp
(
d
),
yinp
(
d
);
// inplace test
std
::
copy
(
x
.
begin
(),
x
.
end
(),
xinp
.
begin
());
std
::
copy
(
y
.
begin
(),
y
.
end
(),
yinp
.
begin
());
const
T
*
x_data
=
x
.
data
();
const
T
*
y_data
=
y
.
data
();
T
*
zref_data
=
zref
.
data
();
T
*
xinp_data
=
xinp
.
data
();
T
*
yinp_data
=
yinp
.
data
();
// test refer code inplace
ref
(
x_data
,
y_data
,
zref_data
,
d
);
ref
(
x_data
,
yinp_data
,
yinp_data
,
d
);
ref
(
xinp_data
,
y_data
,
xinp_data
,
d
);
ExpectEQ
<
T
>
(
xinp_data
,
zref_data
,
d
);
ExpectEQ
<
T
>
(
yinp_data
,
zref_data
,
d
);
// test jitcode
auto
jitcode
=
jit
::
GetJitCode
<
KT
,
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
,
PlaceType
>
(
d
);
if
(
jitcode
)
{
VLOG
(
10
)
<<
"Test jitcode, size: "
<<
d
;
TestTartgetFunc
<
T
,
jit
::
VMulTuples
<
T
>::
func_type
>
(
jitcode
,
x
,
y
,
zref
);
}
// test all impls in more
jit
::
KernelKey
kkey
(
KT
,
PlaceType
());
auto
&
pool
=
jit
::
KernelPool
().
Instance
().
AllKernels
();
auto
iter
=
pool
.
find
(
kkey
);
if
(
iter
!=
pool
.
end
())
{
auto
&
impls
=
iter
->
second
;
for
(
auto
&
impl
:
impls
)
{
auto
i
=
dynamic_cast
<
const
jit
::
KernelImpl
<
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
>*>
(
impl
.
get
());
if
(
i
&&
i
->
UseMe
(
d
))
{
auto
more
=
i
->
GetFunc
();
VLOG
(
10
)
<<
"Test More Kernel, size: "
<<
d
;
TestTartgetFunc
<
T
,
jit
::
VMulTuples
<
T
>::
func_type
>
(
more
,
x
,
y
,
zref
);
}
}
}
// Test result from Get function
VLOG
(
10
)
<<
"Test Get function, size: "
<<
d
;
auto
tgt
=
jit
::
Get
<
KT
,
T
,
jit
::
VMulTuples
<
T
>::
func_type
,
jit
::
VMulTuples
<
T
>::
attr_type
,
PlaceType
>
(
d
);
TestTartgetFunc
<
T
,
jit
::
VMulTuples
<
T
>::
func_type
>
(
tgt
,
x
,
y
,
zref
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录