Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
27a601e8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
27a601e8
编写于
4月 17, 2023
作者:
张
张春乔
提交者:
GitHub
4月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove hccl in .py files (#52934)
* remove hccl in .py files * remove ascend in setup.py.in * remove ascend in setup.py
上级
23f87442
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
6 addition
and
3520 deletion
+6
-3520
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+1
-1
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+1
-1
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+1
-2
python/paddle/distributed/fleet/meta_optimizers/ascend/__init__.py
...ddle/distributed/fleet/meta_optimizers/ascend/__init__.py
+0
-13
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
...tributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
+0
-310
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
...distributed/fleet/meta_optimizers/ascend/ascend_parser.py
+0
-2813
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+0
-1
python/paddle/fluid/tests/unittests/ascend_group.py
python/paddle/fluid/tests/unittests/ascend_group.py
+0
-169
python/paddle/fluid/tests/unittests/hccl_tools.py
python/paddle/fluid/tests/unittests/hccl_tools.py
+0
-191
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+3
-17
python/setup.py.in
python/setup.py.in
+0
-1
setup.py
setup.py
+0
-1
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
27a601e8
...
...
@@ -63,7 +63,7 @@ _group_map_backend = {}
# Name of the default group for init_parallel_env
_default_group_name
=
"_default_pg"
_valid_backend_list
=
[
'nccl'
,
'gloo'
,
'h
ccl'
,
'h
eter'
,
'xccl'
,
'bkcl'
]
_valid_backend_list
=
[
'nccl'
,
'gloo'
,
'heter'
,
'xccl'
,
'bkcl'
]
_default_store
=
None
# the default tcp store
_default_backend
=
None
_default_timeout
=
datetime
.
timedelta
(
seconds
=
1800
)
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
27a601e8
...
...
@@ -115,7 +115,7 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"--backend"
,
type
=
str
,
default
=
os
.
environ
.
get
(
'PADDLE_DISTRI_BACKEND'
,
'auto'
),
help
=
"Specifize the backend, can be gloo|nccl|bkcl|auto|h
ccl|h
eter. "
help
=
"Specifize the backend, can be gloo|nccl|bkcl|auto|heter. "
"Default value is auto which perfers nccl or bkcl."
,
)
base_group
.
add_argument
(
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
27a601e8
...
...
@@ -1988,14 +1988,13 @@ def check_backend(backend):
'bkcl'
,
'cncl'
,
'auto'
,
'hccl'
,
'heter'
,
'xccl'
,
]:
raise
ValueError
(
"paddle.distributed initialize error, "
"backend argument can only be one of "
"'nccl', 'gloo', 'bkcl', 'auto', 'h
ccl', 'h
eter', 'xccl' "
"'nccl', 'gloo', 'bkcl', 'auto', 'heter', 'xccl' "
"but got %s"
%
backend
)
...
...
python/paddle/distributed/fleet/meta_optimizers/ascend/__init__.py
已删除
100644 → 0
浏览文件 @
23f87442
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
已删除
100644 → 0
浏览文件 @
23f87442
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
namedtuple
import
hccl.manage.api
as
hccl
from
paddle.distributed
import
fleet
from
paddle.framework
import
core
from
paddle.optimizer
import
Optimizer
from
.
import
ascend_parser
HcomGroupConfig
=
namedtuple
(
'HcomGroupConfig'
,
[
'name'
,
'nranks'
,
'rank_ids'
])
__all__
=
[]
class
AscendIRParser
:
def
__init__
(
self
,
auto_dp
=
False
,
world_rank_size
=
1
):
self
.
graph_idx
=
0
self
.
hcom_endpoints
=
{}
self
.
groups_to_create
=
[]
self
.
_auto_dp
=
auto_dp
self
.
_world_rank_size
=
world_rank_size
def
_construct_input_map
(
self
,
input_varlist
):
ret_map
=
{}
ge_in_operator
=
[]
for
id
,
var
in
enumerate
(
input_varlist
):
if
var
.
is_data
:
# input data
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Data"
).
set_attr_int32
(
"index"
,
id
)
ret_map
[
var
.
name
]
=
ge_input
ge_in_operator
.
append
(
ge_input
)
else
:
# param, learning ...
ge_input
=
core
.
GEOperatorFactory
.
create_operator
(
var
.
name
,
"Variable"
)
ge_input
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
var
.
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
,
),
)
ret_map
[
var
.
name
]
=
ge_input
return
ge_in_operator
,
ret_map
def
_endpoint_to_world_rank_id
(
self
,
endpoint
):
world_endpoints
=
fleet
.
worker_endpoints
()
assert
(
endpoint
in
world_endpoints
),
"endpoint ({}) not in worker_endpoints ({}) "
.
format
(
endpoint
,
fleet
.
world_device_ids
(),
)
return
world_endpoints
.
index
(
endpoint
)
def
parse_op
(
self
,
op
):
if
op
.
type
==
'c_gen_nccl_id'
:
endpoint
=
op
.
attr
(
"endpoint"
)
other_endpoints
=
op
.
attr
(
"other_endpoints"
)
rank
=
op
.
attr
(
"rank"
)
nccl_id
=
op
.
output_arg_names
[
0
]
# c_gen_nccl_id operator splits endpoints into local endpoint and other_endpoints
# we should combine these together to produce world_rank_ids
self
.
hcom_endpoints
[
nccl_id
]
=
other_endpoints
[:]
self
.
hcom_endpoints
[
nccl_id
].
insert
(
rank
,
endpoint
)
print
(
"nccl_id (%s) registered endpoints %s"
%
(
nccl_id
,
self
.
hcom_endpoints
[
nccl_id
])
)
elif
op
.
type
==
'c_comm_init'
:
nccl_id
=
op
.
input_arg_names
[
0
]
nranks
=
op
.
attr
(
"nranks"
)
assert
nranks
==
len
(
self
.
hcom_endpoints
[
nccl_id
]
),
"nranks doesn't match endpoint count"
rank
=
op
.
attr
(
"rank"
)
ring_id
=
op
.
attr
(
"ring_id"
)
group_name
=
"hcom_group_"
+
str
(
ring_id
)
global_rank_ids
=
[
self
.
_endpoint_to_world_rank_id
(
endpoint
)
for
endpoint
in
self
.
hcom_endpoints
[
nccl_id
]
]
self
.
groups_to_create
.
append
(
HcomGroupConfig
(
name
=
group_name
,
nranks
=
nranks
,
rank_ids
=
global_rank_ids
)
)
print
(
"append to create group: %s, with rank_ids: %s"
%
(
group_name
,
global_rank_ids
)
)
elif
op
.
type
in
ascend_parser
.
registerd_op
:
op_parser
=
self
.
parser_factory
.
create_parse
(
ascend_parser
.
registerd_op
[
op
.
type
]
)
op_parser
.
apply
(
op
)
else
:
raise
AssertionError
(
'Op[%s] has not been registered, so we have to skip it'
%
op
.
type
)
def
_parse_program
(
self
,
graph_name
,
program
,
input_varlist
=
[],
fetch_list
=
[]
):
begin_graph_idx
=
self
.
graph_idx
ge_in_operator
=
[]
ge_out_operator
=
[]
self
.
var2geop
=
{}
block
=
program
.
global_block
()
if
len
(
block
.
ops
)
==
0
:
print
(
"There is no ops in program %s"
%
(
graph_name
))
return
[]
graph
=
core
.
GEGraph
(
graph_name
)
ge_in_operator
,
self
.
var2geop
=
self
.
_construct_input_map
(
input_varlist
)
self
.
parser_factory
=
ascend_parser
.
AscendParserFactory
(
graph
,
self
.
var2geop
)
for
i
,
curop
in
list
(
enumerate
(
block
.
ops
)):
self
.
parse_op
(
curop
)
# Set fetch_var for GE
for
e
in
fetch_list
:
name
=
e
if
not
isinstance
(
e
,
str
):
name
=
e
.
name
ge_out_operator
.
append
(
self
.
var2geop
[
name
])
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
# if graph_name == "main":
# ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])
# Add ops that may be input of a graph, such as const.
for
varname
,
geop
in
self
.
var2geop
.
items
():
if
varname
.
startswith
(
"geinput"
):
ge_in_operator
.
append
(
geop
)
graph
.
set_inputs
(
ge_in_operator
).
set_outputs
(
ge_out_operator
)
# Remove ops of origin program
op_num
=
len
(
block
.
ops
)
for
i
in
range
(
op_num
-
1
,
-
1
,
-
1
):
block
.
_remove_op
(
i
)
input_varlist
=
[
var
for
var
in
input_varlist
if
var
.
is_data
]
block
.
append_op
(
type
=
"ascend_trigger"
,
inputs
=
{
"FeedList"
:
input_varlist
},
outputs
=
{
"FetchList"
:
fetch_list
},
attrs
=
{
'graph_idx'
:
self
.
graph_idx
},
)
self
.
graph_idx
+=
1
return
graph
def
parse_program
(
self
,
startup_program
,
main_program
,
input_varlist
,
fetch_list
):
startup_graph
=
self
.
_parse_program
(
"startup"
,
startup_program
)
main_graph
=
self
.
_parse_program
(
"main"
,
main_program
,
input_varlist
,
fetch_list
)
if
self
.
_auto_dp
and
self
.
_world_rank_size
>
1
:
assert
(
len
(
self
.
groups_to_create
)
==
0
),
"can't parse program under auto_dp mode"
from
paddle.distributed
import
fleet
self
.
groups_to_create
.
append
(
HcomGroupConfig
(
name
=
"hcom_group_0"
,
nranks
=
fleet
.
world_size
(),
rank_ids
=
list
(
range
(
fleet
.
world_size
())),
)
)
return
startup_graph
,
main_graph
# AscendOptimizer is a wrapper for basic optimizer now
# We will make it part of fleet meta_optimizer in the future
class
AscendOptimizer
(
Optimizer
):
def
__init__
(
self
,
optimizer
,
fetch_list
=
[]):
self
.
inner_opt
=
optimizer
self
.
fetch_list
=
fetch_list
self
.
ascend_instance
=
None
def
__del__
(
self
):
print
(
"begin AscendOptimizer del"
)
if
self
.
ascend_instance
is
not
None
:
self
.
ascend_instance
.
destroy_global_resources
()
core
.
ge_finalize
()
print
(
"end AscendOptimizer del"
)
def
_can_apply
(
self
):
if
not
self
.
user_defined_strategy
.
ascend
:
return
False
# TODO(hutuxian): other check here
return
True
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
ascend
=
False
dist_strategy
.
ascend_configs
=
{}
def
_get_input_varlist
(
self
,
program
):
ret_list
=
[]
for
var
in
program
.
list_vars
():
if
var
.
is_data
or
var
.
persistable
:
ret_list
.
append
(
var
)
return
ret_list
def
_set_auxiliary_var
(
self
,
key
,
val
):
super
().
_set_auxiliary_var
(
key
,
val
)
self
.
inner_opt
.
_set_auxiliary_var
(
key
,
val
)
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
auto_dp
=
False
,
rank_table_file
=
None
,
precision_mode
=
"must_keep_origin_dtype"
,
):
minimized
=
None
if
self
.
inner_opt
:
minimized
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
=
startup_program
)
self
.
ascend_instance
=
core
.
AscendInstance
()
from
paddle.distributed
import
fleet
if
auto_dp
and
fleet
.
world_size
()
>
1
:
from
paddle.distributed.transpiler
import
ascend_transpiler
t
=
ascend_transpiler
.
AscendTranspiler
(
startup_program
,
loss
.
block
.
program
)
t
.
transpile
()
# print(loss.block.program)
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config
=
{
"ge.exec.deviceId"
:
str
(
fleet
.
local_device_ids
()),
"ge.graphRunMode"
:
"1"
,
"ge.exec.precision_mode"
:
precision_mode
,
}
# if multi trainers
if
rank_table_file
and
fleet
.
world_size
()
>
1
:
config
[
"ge.exec.rankTableFile"
]
=
rank_table_file
config
[
"ge.exec.rankId"
]
=
str
(
fleet
.
worker_index
())
config
[
"ge.exec.isUseHcom"
]
=
"1"
config
[
"ge.exec.deployMode"
]
=
"0"
print
(
"ge_initialize config:"
,
config
)
core
.
ge_initialize
(
config
)
# Init Session
self
.
ascend_instance
.
init_global_resources
()
main_block
=
loss
.
block
self
.
parser
=
AscendIRParser
(
auto_dp
=
auto_dp
,
world_rank_size
=
fleet
.
world_size
()
)
input_varlist
=
self
.
_get_input_varlist
(
main_block
.
program
)
startup_graph
,
main_graph
=
self
.
parser
.
parse_program
(
startup_program
,
main_block
.
program
,
input_varlist
,
self
.
fetch_list
)
for
cfg
in
self
.
parser
.
groups_to_create
:
print
(
"create group (%s), nranks: %d, rank_ids: %s"
%
(
cfg
.
name
,
cfg
.
nranks
,
cfg
.
rank_ids
)
)
hccl
.
create_group
(
cfg
.
name
,
cfg
.
nranks
,
cfg
.
rank_ids
)
self
.
ascend_instance
.
add_ascend_subgraph
(
0
,
startup_graph
)
self
.
ascend_instance
.
add_ascend_subgraph
(
1
,
main_graph
)
return
minimized
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
已删除
100644 → 0
浏览文件 @
23f87442
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
functools
import
reduce
import
numpy
as
np
from
paddle.framework
import
core
__all__
=
[]
registerd_op
=
{
# forwards
"elementwise_add"
:
"AddParser"
,
"matmul"
:
"MatMulParser"
,
"mul"
:
"MulParser"
,
"relu"
:
"ReluParser"
,
"softmax_with_cross_entropy"
:
"SoftmaxWithCrossEntropyParser"
,
"shape"
:
"ShapeParser"
,
"fill_constant"
:
"FillConstantParser"
,
"reduce_sum"
:
"ReduceSumParser"
,
"elementwise_mul"
:
"DotMulParser"
,
"elementwise_div"
:
"DotDivParser"
,
"elementwise_pow"
:
"DotPowParser"
,
"elementwise_max"
:
"MaxParser"
,
"elementwise_min"
:
"MinParser"
,
"elementwise_sub"
:
"DotSubParser"
,
"pow"
:
"PowParser"
,
"gelu"
:
"GeluParser"
,
"sqrt"
:
"SqrtParser"
,
"log"
:
"LogParser"
,
"sum"
:
"SumParser"
,
"logical_not"
:
"LogicalNotParser"
,
"gather"
:
"GatherParser"
,
"scatter"
:
"ScatterParser"
,
"cast"
:
"CastParser"
,
"tanh"
:
"TanhParser"
,
"stack"
:
"StackParser"
,
"square"
:
"SquareParser"
,
"unsqueeze2"
:
"UnSqueezeParser"
,
"assign"
:
"AssignParser"
,
"softmax"
:
"SoftMaxParser"
,
"reshape2"
:
"ReshapeParser"
,
"transpose2"
:
"TransposeParser"
,
"layer_norm"
:
"LayerNormParser"
,
"less_than"
:
"LessParser"
,
"mean"
:
"MeanParser"
,
"scale"
:
"ScaleParser"
,
"slice"
:
"SliceParser"
,
"top_k"
:
"TopkParser"
,
"accuracy"
:
"AccuracyParser"
,
# "increment": "IncrementParser",
"lookup_table"
:
"LookupTableParser"
,
"truncated_gaussian_random"
:
"TruncatedNormalParser"
,
"c_allgather"
:
"AllGatherParser"
,
"c_allreduce_sum"
:
"AllReduceSumParser"
,
"c_allreduce_max"
:
"AllReduceMaxParser"
,
"c_broadcast"
:
"BroadcastParser"
,
"c_reduce_scatter"
:
"ReduceScatterParser"
,
"c_send"
:
"SendParser"
,
"c_receive"
:
"ReceiveParser"
,
"uniform_random"
:
"UniformRandomParser"
,
"range"
:
"RangeParser"
,
"equal"
:
"EqualParser"
,
"expand"
:
"ExpandParser"
,
"squeeze2"
:
"SqueezeParser"
,
# backwords
"matmul_grad"
:
"MatMulGradParser"
,
"mul_grad"
:
"MulGradParser"
,
"relu_grad"
:
"ReluGradParser"
,
"reduce_sum_grad"
:
"ReduceSumGradParser"
,
"softmax_with_cross_entropy_grad"
:
"SoftmaxWithCrossEntropyGradParser"
,
"tanh_grad"
:
"TanhGradParser"
,
"log_grad"
:
"LogGradParser"
,
"pow_grad"
:
"PowGradParser"
,
"sqrt_grad"
:
"SqrtGradParser"
,
"gelu_grad"
:
"GeluGradParser"
,
"mean_grad"
:
"MeanGradParser"
,
'lookup_table_grad'
:
"LookUpTableGradParser"
,
"elementwise_mul_grad"
:
"DotMulGradParser"
,
"elementwise_add_grad"
:
"DotAddGradParser"
,
"elementwise_div_grad"
:
"DotDivGradParser"
,
"softmax_grad"
:
"SoftmaxGradParser"
,
"slice_grad"
:
"SliceGradParser"
,
"reshape2_grad"
:
"ReshapeGradParser"
,
"gather_grad"
:
"GatherGradParser"
,
"transpose2_grad"
:
"TransposeGradParser"
,
"layer_norm_grad"
:
"LayerNormGradParser"
,
# opt
"sgd"
:
"SGDParser"
,
# "adam": "AdamParser",
}
global_cnt
=
-
1
global_input_cnt
=
-
1
class
AscendHelper
:
def
__init__
(
self
):
self
.
dtype2ge_map
=
{
0
:
core
.
GEDataType
.
DT_BOOL
,
1
:
core
.
GEDataType
.
DT_INT16
,
2
:
core
.
GEDataType
.
DT_INT32
,
3
:
core
.
GEDataType
.
DT_INT64
,
4
:
core
.
GEDataType
.
DT_FLOAT16
,
5
:
core
.
GEDataType
.
DT_FLOAT
,
6
:
core
.
GEDataType
.
DT_DOUBLE
,
}
self
.
dtype2np_map
=
{
0
:
"bool"
,
1
:
"int16"
,
2
:
"int32"
,
3
:
"int64"
,
4
:
"float16"
,
5
:
"float32"
,
6
:
"float64"
,
}
self
.
dtype2paddle_inv_map
=
{
"VarType.FP32"
:
0
,
"VarType.FP16"
:
1
}
def
dtype2ge
(
self
,
dtype
):
assert
dtype
in
self
.
dtype2ge_map
,
"dtype[%d] is not supported %d"
%
(
dtype
)
return
self
.
dtype2ge_map
[
dtype
]
def
dtype2np
(
self
,
index
):
assert
index
in
self
.
dtype2np_map
,
"index[%d] is not supported %d"
%
(
index
)
return
self
.
dtype2np_map
[
index
]
class
AscendParserFactory
:
def
__init__
(
self
,
graph
,
var2geop
):
self
.
graph
=
graph
self
.
var2geop
=
var2geop
def
create_parse
(
self
,
parser_class
):
try
:
parser
=
globals
()[
parser_class
](
self
.
graph
,
self
.
var2geop
)
return
parser
except
:
raise
ValueError
(
"parser class %s does not exist"
%
parser_class
)
class
AscendParserBase
:
def
__init__
(
self
,
graph
,
var2geop
):
self
.
graph
=
graph
self
.
var2geop
=
var2geop
self
.
op
=
None
self
.
ascend_helper
=
AscendHelper
()
def
_get_ge_input
(
self
,
input_var_name
):
assert
input_var_name
in
self
.
var2geop
,
"var %s not created before"
%
(
input_var_name
)
return
self
.
var2geop
[
input_var_name
]
def
update_output
(
self
,
geop_list
,
index_list
):
output_num
=
len
(
self
.
op
.
output_names
)
assert
output_num
==
len
(
index_list
),
(
"Parser[%s]'s output number[%d] is not equal to parameters number[%d]"
%
(
self
.
parser_name
,
len
(
index_list
),
output_num
)
)
for
output_id
in
range
(
output_num
):
arguments
=
self
.
op
.
output
(
self
.
op
.
output_names
[
output_id
])
if
len
(
arguments
)
>
0
:
assert
len
(
arguments
)
==
len
(
index_list
[
output_id
]),
(
"Parser[%s]'s %dth argument number[%d] is not equal to paddle's number[%d]"
%
(
self
.
parser_name
,
output_id
,
len
(
index_list
[
output_id
]),
len
(
arguments
),
)
)
for
i
in
range
(
len
(
arguments
)):
self
.
var2geop
[
arguments
[
i
]]
=
geop_list
[
index_list
[
output_id
][
i
]
]
for
geop
in
geop_list
:
self
.
graph
.
add_op
(
geop
)
def
apply
(
self
,
op
):
self
.
op
=
op
assert
(
self
.
op
.
type
==
self
.
parser_name
),
f
"op [
{
self
.
op
.
type
}
] != parser_name[
{
self
.
parser_name
}
]"
# print("begin to parse op %s" % (self.parser_name))
geop_list
,
index_list
=
self
.
_apply
()
self
.
update_output
(
geop_list
,
index_list
)
def
_mark_as_input
(
self
,
ge_tensor
):
global
global_input_cnt
global_input_cnt
+=
1
self
.
var2geop
[
"geinput."
+
str
(
global_input_cnt
)]
=
ge_tensor
def
_accumulated_op_id
(
self
):
global
global_cnt
global_cnt
+=
1
name
=
"."
+
str
(
global_cnt
)
return
name
def
_create_ge_tensor
(
self
,
shape
,
dtype
,
value
):
tensor_desc
=
core
.
GETensorDesc
(
core
.
GEShape
(
shape
),
core
.
GEFormat
.
FORMAT_ND
,
self
.
ascend_helper
.
dtype2ge
(
dtype
),
)
tensor
=
core
.
GETensor
(
tensor_desc
)
data
=
(
(
value
*
np
.
ones
(
shape
))
.
reshape
(
shape
)
.
astype
(
self
.
ascend_helper
.
dtype2np
(
dtype
))
)
buf
=
data
.
tobytes
()
data_8
=
np
.
frombuffer
(
buf
,
dtype
=
np
.
uint8
)
tensor
.
set_data
(
data_8
)
return
tensor
def
_get_ge_tensor
(
self
,
shape
,
dtype
,
value_list
):
tensor_desc
=
core
.
GETensorDesc
(
core
.
GEShape
(
shape
),
core
.
GEFormat
.
FORMAT_ND
,
self
.
ascend_helper
.
dtype2ge
(
dtype
),
)
tensor
=
core
.
GETensor
(
tensor_desc
)
data
=
(
np
.
array
(
value_list
)
.
reshape
(
shape
)
.
astype
(
self
.
ascend_helper
.
dtype2np
(
dtype
))
)
buf
=
data
.
tobytes
()
data_8
=
np
.
frombuffer
(
buf
,
dtype
=
np
.
uint8
)
tensor
.
set_data
(
data_8
)
tensor_const
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
return
tensor_const
def
_get_variable
(
self
,
shape
,
dtype
,
tensor
):
if
dtype
==
"int32"
:
type
=
core
.
GEDataType
.
DT_INT32
elif
dtype
==
"float32"
:
type
=
core
.
GEDataType
.
DT_FLOAT
var
=
core
.
GEOperatorFactory
.
create_operator
(
"variable"
+
self
.
_accumulated_op_id
(),
"Variable"
)
var
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
shape
),
core
.
GEFormat
.
FORMAT_ND
,
type
),
)
assign
=
(
core
.
GEOperatorFactory
.
create_operator
(
"assign"
+
self
.
_accumulated_op_id
(),
"Assign"
)
.
set_input
(
"value"
,
tensor
)
.
set_input
(
"ref"
,
var
)
)
return
assign
def
_create_shape_tensor
(
self
):
tensor_desc
=
core
.
GETensorDesc
(
core
.
GEShape
([
2
]),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_INT32
)
tensor
=
core
.
GETensor
(
tensor_desc
)
data
=
np
.
ones
(
2
).
astype
(
"int32"
).
reshape
([
2
])
data
[
0
]
=
64
buf
=
data
.
tobytes
()
data_8
=
np
.
frombuffer
(
buf
,
dtype
=
np
.
uint8
)
tensor
.
set_data
(
data_8
)
return
tensor
def
_get_GEtensor_shape
(
self
,
tensor
):
tensor_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
tensor
)
tensor_shape
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
tensor_shape
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
return
tensor_shape
class
AddParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_add"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
add
=
(
core
.
GEOperatorFactory
.
create_operator
(
"add"
+
self
.
_accumulated_op_id
(),
"Add"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
add
],
[[
0
]]
class
DotSubParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_sub"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
sub
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sub"
+
self
.
_accumulated_op_id
(),
"Sub"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
sub
],
[[
0
]]
class
DotMulParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_mul"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
mul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"dotmul"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
mul
],
[[
0
]]
class
DotDivParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_div"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
div
=
(
core
.
GEOperatorFactory
.
create_operator
(
"dotdiv"
+
self
.
_accumulated_op_id
(),
"Div"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
div
],
[[
0
]]
class
DotPowParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_pow"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
pow
=
(
core
.
GEOperatorFactory
.
create_operator
(
"dotpow"
+
self
.
_accumulated_op_id
(),
"Pow"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
pow
],
[[
0
]]
class
LessParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"less_than"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
less_than
=
(
core
.
GEOperatorFactory
.
create_operator
(
"less_than"
+
self
.
_accumulated_op_id
(),
"Less"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
less_than
],
[[
0
]]
class
MaxParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_max"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
max_out
=
(
core
.
GEOperatorFactory
.
create_operator
(
"max"
+
self
.
_accumulated_op_id
(),
"Maximum"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
max_out
],
[[
0
]]
class
MinParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_min"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
min_out
=
(
core
.
GEOperatorFactory
.
create_operator
(
"min"
+
self
.
_accumulated_op_id
(),
"Minimum"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
return
[
min_out
],
[[
0
]]
# cal
class
LogParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"log"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
log
=
core
.
GEOperatorFactory
.
create_operator
(
"log"
+
self
.
_accumulated_op_id
(),
"Log"
).
set_input
(
"x"
,
x
)
return
[
log
],
[[
0
]]
class
SqrtParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"sqrt"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
sqrt
=
core
.
GEOperatorFactory
.
create_operator
(
"sqrt"
+
self
.
_accumulated_op_id
(),
"Sqrt"
).
set_input
(
"x"
,
x
)
return
[
sqrt
],
[[
0
]]
class
PowParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"pow"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
factor
=
self
.
op
.
attr
(
"factor"
)
pow_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"pow"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
x
)
.
set_attr_float
(
"power"
,
factor
)
.
set_attr_float
(
"scale"
,
1.0
)
.
set_attr_float
(
"shift"
,
0.0
)
)
return
[
pow_value
],
[[
0
]]
class
SquareParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"square"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
square
=
core
.
GEOperatorFactory
.
create_operator
(
"square"
+
self
.
_accumulated_op_id
(),
"Square"
).
set_input
(
"x"
,
x
)
return
[
square
],
[[
0
]]
class
SumParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"sum"
def
_apply
(
self
):
len_list
=
len
(
self
.
op
.
input_arg_names
)
if
len_list
<
2
:
raise
AssertionError
(
"the size of input list must large or equal 2"
)
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
sum
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sum"
+
self
.
_accumulated_op_id
(),
"Add"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
for
i
in
range
(
2
,
len_list
):
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
i
])
sum
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sum"
+
self
.
_accumulated_op_id
(),
"Add"
)
.
set_input
(
"x1"
,
sum
)
.
set_input
(
"x2"
,
y
)
)
return
[
sum
],
[[
0
]]
class
LogicalNotParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"logical_not"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
logical_not
=
core
.
GEOperatorFactory
.
create_operator
(
"logical_not"
+
self
.
_accumulated_op_id
(),
"LogicalNot"
).
set_input
(
"x"
,
x
)
return
[
logical_not
],
[[
0
]]
class
MeanParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"mean"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
mean
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mean"
+
self
.
_accumulated_op_id
(),
"ReduceMeanD"
)
.
set_input
(
"x"
,
x
)
.
set_attr_bool
(
"keep_dims"
,
False
)
.
set_attr_vec_int32
(
"axes"
,
[])
)
return
[
mean
],
[[
0
]]
class
ReduceSumParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"reduce_sum"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
"dim"
)
keep_dims
=
self
.
op
.
attr
(
"keep_dim"
)
reduce_all
=
self
.
op
.
attr
(
"reduce_all"
)
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
if
reduce_all
:
axes
=
list
(
range
(
len
(
x_shape
)))
reduce_sum
=
(
core
.
GEOperatorFactory
.
create_operator
(
"reduce_sum"
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
x
,
0
)
.
set_attr_vec_int32
(
"axes"
,
axes
)
.
set_attr_bool
(
"keep_dims"
,
keep_dims
)
)
return
[
reduce_sum
],
[[
0
]]
# class IncrementParser(AscendParserBase):
# def __init__(self, graph, var2geop):
# super().__init__(graph, var2geop)
# self.parser_name = "increment"
#
# def _apply(self):
# x = self._get_ge_input(self.op.input_arg_names[0])
# step = self.op.attr("step") #self._get_ge_input(self.op.input_arg_names[1])
# print("step: ", step)
#
# increment = core.GEOperatorFactory.create_operator("adds" + self._accumulated_op_id(), "Adds").set_input("x", x).set_attr_float("value", step) #set_input("x2", bias)
#
# return [increment]
# matrix cal
class
MatMulParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"matmul"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
transpose_x
=
self
.
op
.
attr
(
"transpose_X"
)
transpose_y
=
self
.
op
.
attr
(
"transpose_Y"
)
x1_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
x2_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
if
len
(
x1_shape
)
>
2
:
matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"matmul"
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"adj_x1"
,
transpose_x
)
.
set_attr_bool
(
"adj_x2"
,
transpose_y
)
)
elif
len
(
x1_shape
)
==
2
:
matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"matmul"
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"transpose_x1"
,
transpose_x
)
.
set_attr_bool
(
"transpose_x2"
,
transpose_y
)
)
else
:
raise
AssertionError
(
"not support"
)
return
[
matmul
],
[[
0
]]
class
MulParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"mul"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
x_num_col_dims
=
self
.
op
.
attr
(
"x_num_col_dims"
)
y_num_col_dims
=
self
.
op
.
attr
(
"y_num_col_dims"
)
shape_x1
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
shape_x2
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
if
x_num_col_dims
==
1
and
y_num_col_dims
==
1
:
if
len
(
shape_x1
)
==
2
and
len
(
shape_x2
)
==
2
:
matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
y
)
)
elif
len
(
shape_x1
)
==
3
and
len
(
shape_x2
)
==
2
:
flatten_x1
=
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"Flatten"
).
set_input
(
"x"
,
x
)
matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
flatten_x1
,
0
)
.
set_input
(
"x2"
,
y
,
0
)
)
else
:
raise
AssertionError
(
"not support"
)
else
:
if
len
(
shape_x1
)
==
3
and
len
(
shape_x2
)
==
2
:
assert
x_num_col_dims
==
2
,
"only support 2"
flatten_x1
=
(
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"FlattenV2"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"end_axis"
,
1
)
)
matmul_m
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
flatten_x1
,
0
)
.
set_input
(
"x2"
,
y
,
0
)
)
matmul_transpose
=
(
core
.
GEOperatorFactory
.
create_operator
(
"transpose"
+
self
.
_accumulated_op_id
(),
"TransposeD"
)
.
set_input
(
"x"
,
matmul_m
)
.
set_attr_vec_int32
(
"perm"
,
[
1
,
0
])
)
tensor
=
self
.
_create_ge_tensor
(
[
3
],
2
,
[
shape_x2
[
1
],
shape_x1
[
0
],
shape_x1
[
1
]]
)
const_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
reshape_matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"reshape"
+
self
.
_accumulated_op_id
(),
"Reshape"
)
.
set_input
(
"x"
,
matmul_transpose
)
.
set_input
(
"shape"
,
const_shape
)
.
set_attr_int32
(
"axis"
,
0
)
)
matmul
=
(
core
.
GEOperatorFactory
.
create_operator
(
"transpose"
+
self
.
_accumulated_op_id
(),
"TransposeD"
)
.
set_input
(
"x"
,
reshape_matmul
)
.
set_attr_vec_int32
(
"perm"
,
[
1
,
2
,
0
])
)
else
:
raise
AssertionError
(
"not support"
)
return
[
matmul
],
[[
0
]]
class
LayerNormParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"layer_norm"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
scale
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
bias
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
epsilon
=
self
.
op
.
attr
(
"epsilon"
)
begin_norm_axis
=
self
.
op
.
attr
(
"begin_norm_axis"
)
x_dtype
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
dtype
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
x
)
scale_expand
=
(
core
.
GEOperatorFactory
.
create_operator
(
"broadcast_to_d"
+
self
.
_accumulated_op_id
(),
"BroadcastTo"
)
.
set_input
(
"x"
,
scale
)
.
set_input
(
"shape"
,
shape_tensor
)
)
bias_expand
=
(
core
.
GEOperatorFactory
.
create_operator
(
"broadcast_to_d"
+
self
.
_accumulated_op_id
(),
"BroadcastTo"
)
.
set_input
(
"x"
,
bias
)
.
set_input
(
"shape"
,
shape_tensor
)
)
layer_norm
=
(
core
.
GEOperatorFactory
.
create_operator
(
"layer_norm"
+
self
.
_accumulated_op_id
(),
"LayerNorm"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"gamma"
,
scale_expand
)
.
set_input
(
"beta"
,
bias_expand
)
.
set_attr_int32
(
"begin_norm_axis"
,
begin_norm_axis
)
.
set_attr_int32
(
"begin_params_axis"
,
begin_norm_axis
)
.
set_attr_float
(
"epsilon"
,
epsilon
)
)
cast_dtype
=
(
0
if
self
.
ascend_helper
.
dtype2paddle_inv_map
[
str
(
x_dtype
)]
==
0
else
1
)
y
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
layer_norm
,
0
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
mean
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
layer_norm
,
1
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
variance
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
layer_norm
,
2
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
return
[
y
,
mean
,
variance
],
[[
1
],
[
2
],
[
0
]]
# activate function
class
ReluParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"relu"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
relu
=
core
.
GEOperatorFactory
.
create_operator
(
"relu"
+
self
.
_accumulated_op_id
(),
"Relu"
).
set_input
(
"x"
,
x
)
return
[
relu
],
[[
0
]]
class
GeluParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"gelu"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
gelu
=
core
.
GEOperatorFactory
.
create_operator
(
"gelu"
+
self
.
_accumulated_op_id
(),
"Gelu"
).
set_input
(
"x"
,
x
)
return
[
gelu
],
[[
0
]]
class
TanhParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"tanh"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
tanh
=
core
.
GEOperatorFactory
.
create_operator
(
"tanh"
+
self
.
_accumulated_op_id
(),
"Tanh"
).
set_input
(
"x"
,
x
)
return
[
tanh
],
[[
0
]]
# loss function
class
SoftmaxWithCrossEntropyParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"softmax_with_cross_entropy"
def
_apply
(
self
):
label
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
logits
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
cls_num
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
[
1
]
softmax
=
core
.
GEOperatorFactory
.
create_operator
(
"softmax"
+
self
.
_accumulated_op_id
(),
"SoftmaxV2"
).
set_input
(
"x"
,
logits
)
label
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
label
)
.
set_attr_int32
(
"dst_type"
,
3
)
)
tensoron
=
self
.
_create_ge_tensor
([
1
],
5
,
1
)
on
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensoron
)
tensoroff
=
self
.
_create_ge_tensor
([
1
],
5
,
0
)
off
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensoroff
)
self
.
_mark_as_input
(
on
)
self
.
_mark_as_input
(
off
)
onehot
=
(
core
.
GEOperatorFactory
.
create_operator
(
"onehot"
+
self
.
_accumulated_op_id
(),
"OneHotD"
)
.
set_input
(
"x"
,
label
)
.
set_input
(
"on_value"
,
on
)
.
set_input
(
"off_value"
,
off
)
.
set_attr_int32
(
"depth"
,
cls_num
)
)
squeeze
=
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"Squeeze"
).
set_input
(
"x"
,
onehot
)
loss_all
=
(
core
.
GEOperatorFactory
.
create_operator
(
"loss"
+
self
.
_accumulated_op_id
(),
"SoftmaxCrossEntropyWithLogits"
,
)
.
set_input
(
"features"
,
logits
)
.
set_input
(
"labels"
,
squeeze
)
)
loss
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
loss_all
,
0
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
loss_expand
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
_accumulated_op_id
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
loss
)
.
set_attr_vec_int32
(
"axes"
,
[
1
])
)
return
[
label
,
softmax
,
loss_expand
],
[[
2
],
[
1
]]
class
SoftMaxParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"softmax"
def
_apply
(
self
):
logits
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
"axis"
)
softmax
=
(
core
.
GEOperatorFactory
.
create_operator
(
"softmax"
+
self
.
_accumulated_op_id
(),
"SoftmaxV2"
)
.
set_input
(
"x"
,
logits
)
.
set_attr_vec_int32
(
"axes"
,
[
axes
])
)
return
[
softmax
],
[[
0
]]
# general
class
ShapeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"shape"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
x
)
return
[
shape
],
[[
0
]]
class
FillConstantParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"fill_constant"
def
_apply
(
self
):
shape
=
self
.
op
.
attr
(
"shape"
)
dtype
=
self
.
op
.
attr
(
"dtype"
)
value
=
self
.
op
.
attr
(
"value"
)
tensor
=
self
.
_create_ge_tensor
(
shape
,
dtype
,
value
)
const
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
self
.
_mark_as_input
(
const
)
if
self
.
op
.
block
.
var
(
self
.
op
.
output
(
'Out'
)[
0
]).
persistable
:
# print("%s is Persistable in fill_constant" %
# (self.op.output('Out')[0]))
var
=
core
.
GEOperatorFactory
.
create_operator
(
self
.
op
.
output
(
'Out'
)[
0
],
"Variable"
)
var
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
,
),
)
assign
=
(
core
.
GEOperatorFactory
.
create_operator
(
"assign"
+
self
.
_accumulated_op_id
(),
"Assign"
)
.
set_input
(
"value"
,
const
)
.
set_input
(
"ref"
,
var
)
)
return
[
const
],
[[
0
]]
return
[
const
],
[[
0
]]
class
TruncatedNormalParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"truncated_gaussian_random"
def
_apply
(
self
):
shape
=
self
.
op
.
attr
(
"shape"
)
dtype
=
self
.
op
.
attr
(
"dtype"
)
mean
=
self
.
op
.
attr
(
"mean"
)
std
=
self
.
op
.
attr
(
"std"
)
seed
=
self
.
op
.
attr
(
"seed"
)
tensor1
=
self
.
_create_ge_tensor
([
len
(
shape
)],
2
,
shape
)
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor1
)
tensor2
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
)
mean_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor2
)
tensor3
=
self
.
_create_ge_tensor
([
1
],
dtype
,
std
)
std_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor3
)
tensor4
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
-
2
*
std
)
min_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor4
)
tensor5
=
self
.
_create_ge_tensor
([
1
],
dtype
,
mean
+
2
*
std
)
max_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor5
)
self
.
_mark_as_input
(
shape_tensor
)
self
.
_mark_as_input
(
mean_tensor
)
self
.
_mark_as_input
(
std_tensor
)
self
.
_mark_as_input
(
min_tensor
)
self
.
_mark_as_input
(
max_tensor
)
truncated_normal
=
(
core
.
GEOperatorFactory
.
create_operator
(
"truncated_normal"
+
self
.
_accumulated_op_id
(),
"ParameterizedTruncatedNormal"
,
)
.
set_input
(
"shape"
,
shape_tensor
)
.
set_input
(
"means"
,
mean_tensor
)
.
set_input
(
"stdevs"
,
std_tensor
)
.
set_input
(
"min"
,
min_tensor
)
.
set_input
(
"max"
,
max_tensor
)
.
set_attr_int32
(
"seed"
,
0
)
)
# wirte the output of truncatedNormal from startup_program to main_program
if
self
.
op
.
block
.
var
(
self
.
op
.
output
(
'Out'
)[
0
]).
persistable
:
# print("%s is Persistable in truncated_normal" %
# (self.op.output('Out')[0]))
var
=
core
.
GEOperatorFactory
.
create_operator
(
self
.
op
.
output
(
'Out'
)[
0
],
"Variable"
)
var
.
update_output_desc
(
"y"
,
core
.
GETensorDesc
(
core
.
GEShape
(
shape
),
core
.
GEFormat
.
FORMAT_ND
,
core
.
GEDataType
.
DT_FLOAT
,
),
)
assign
=
(
core
.
GEOperatorFactory
.
create_operator
(
"assign"
+
self
.
_accumulated_op_id
(),
"Assign"
)
.
set_input
(
"value"
,
truncated_normal
)
.
set_input
(
"ref"
,
var
)
)
return
[
shape_tensor
,
mean_tensor
,
std_tensor
,
min_tensor
,
max_tensor
,
truncated_normal
,
],
[[
-
1
]]
# else:
# print(
# "self.op.output('Out')[0] is not persistable in truncated_noraml"
# )
return
[
truncated_normal
],
[[
0
]]
class
GatherParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"gather"
def
_apply
(
self
):
index
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
clo
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
[
-
1
]
gather
=
(
core
.
GEOperatorFactory
.
create_operator
(
"gather"
+
self
.
_accumulated_op_id
(),
"Gather"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"indices"
,
index
)
.
set_attr_bool
(
"validate_indices"
,
True
)
)
return
[
gather
],
[[
0
]]
class
ScatterParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"scatter"
def
_apply
(
self
):
index
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
updates
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
overwrite
=
self
.
op
.
attr
(
"overwrite"
)
index_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
if
len
(
index_shape
)
==
1
:
index
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
getid
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
index
)
.
set_attr_vec_int32
(
"axes"
,
[
1
])
)
if
not
overwrite
:
scatter_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scatter"
+
self
.
_accumulated_op_id
(),
"TensorScatterAdd"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"indices"
,
index
)
.
set_input
(
"updates"
,
updates
)
)
else
:
scatter_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scatter"
+
self
.
_accumulated_op_id
(),
"TensorScatterUpdate"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"indices"
,
index
)
.
set_input
(
"updates"
,
updates
)
)
return
[
x
,
index
,
updates
,
scatter_value
],
[[
-
1
]]
class
CastParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"cast"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
dtype
=
self
.
op
.
attr
(
"out_dtype"
)
cast
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"dst_type"
,
dtype
)
)
return
[
cast
],
[[
0
]]
class
AssignParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"assign"
def
_apply
(
self
):
const
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
var
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
assign
=
(
core
.
GEOperatorFactory
.
create_operator
(
"assign"
+
self
.
_accumulated_op_id
(),
"Assign"
)
.
set_input
(
"value"
,
const
)
.
set_input
(
"ref"
,
var
)
)
return
[
assign
],
[[
0
]]
class
ScaleParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"scale"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
scale
=
self
.
op
.
attr
(
"scale"
)
bias
=
self
.
op
.
attr
(
"bias"
)
bias_after_scale
=
self
.
op
.
attr
(
"bias_after_scale"
)
if
bias_after_scale
:
scale_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
x
)
.
set_attr_float
(
"power"
,
1.0
)
.
set_attr_float
(
"scale"
,
scale
)
.
set_attr_float
(
"shift"
,
bias
)
)
else
:
x_add_bias
=
(
core
.
GEOperatorFactory
.
create_operator
(
"adds"
+
self
.
_accumulated_op_id
(),
"Adds"
)
.
set_input
(
"x"
,
x
)
.
set_attr_float
(
"value"
,
bias
)
)
scale_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
x_add_bias
)
.
set_attr_float
(
"power"
,
1.0
)
.
set_attr_float
(
"scale"
,
scale
)
.
set_attr_float
(
"shift"
,
0.0
)
)
return
[
scale_value
],
[[
0
]]
class
SliceParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"slice"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
"axes"
)
starts
=
self
.
op
.
attr
(
"starts"
)
ends
=
self
.
op
.
attr
(
"ends"
)
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
len_shape
=
len
(
x_shape
)
axes_cor
=
list
(
range
(
len_shape
))
starts_cor
,
ends_cor
=
[],
[]
cnt
=
0
for
i
in
range
(
len_shape
):
starts_cor
.
append
(
starts
[
cnt
]
if
i
in
axes
else
0
)
if
i
in
axes
and
ends
[
cnt
]
<=
x_shape
[
i
]:
ends_cor
.
append
(
ends
[
cnt
])
else
:
ends_cor
.
append
(
x_shape
[
i
])
if
i
in
axes
:
cnt
+=
1
size
=
[
ends_cor
[
i
]
-
starts_cor
[
i
]
for
i
in
range
(
len
(
axes_cor
))]
assert
(
len
(
axes_cor
)
==
len
(
starts_cor
)
==
len
(
ends_cor
)
),
"the three fields must have same size"
slice_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"slice"
+
self
.
_accumulated_op_id
(),
"SliceD"
)
.
set_input
(
"x"
,
x
)
.
set_attr_vec_int32
(
"offsets"
,
starts_cor
)
.
set_attr_vec_int32
(
"size"
,
size
)
)
return
[
slice_value
],
[[
0
]]
class
ReshapeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"reshape2"
def
_apply
(
self
):
org_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
assert
org_shape
.
count
(
-
1
)
==
0
,
"do not allow the dim is -1"
shape
=
self
.
op
.
attr
(
"shape"
)
for
cnt
in
range
(
len
(
shape
)):
if
shape
[
cnt
]
==
0
:
shape
[
cnt
]
=
org_shape
[
cnt
]
if
-
1
in
shape
:
assert
shape
.
count
(
-
1
)
==
1
,
"only allow one dim is -1"
mul_res_org
=
reduce
(
lambda
x
,
y
:
x
*
y
,
org_shape
)
mul_res_refine
=
reduce
(
lambda
x
,
y
:
x
*
y
,
shape
)
*
-
1
idx
=
shape
.
index
(
-
1
)
shape
[
idx
]
=
mul_res_org
//
mul_res_refine
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
tensor
=
self
.
_create_ge_tensor
([
len
(
shape
)],
2
,
shape
)
const_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
reshape
=
(
core
.
GEOperatorFactory
.
create_operator
(
"reshape"
+
self
.
_accumulated_op_id
(),
"Reshape"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"shape"
,
const_shape
)
.
set_attr_int32
(
"axis"
,
0
)
)
x_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
x
)
return
[
x_shape
,
reshape
],
[[
1
],
[
0
]]
class
TransposeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"transpose2"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
perm
=
self
.
op
.
attr
(
"axis"
)
transpose
=
(
core
.
GEOperatorFactory
.
create_operator
(
"transpose"
+
self
.
_accumulated_op_id
(),
"TransposeD"
)
.
set_input
(
"x"
,
x
)
.
set_attr_vec_int32
(
"perm"
,
perm
)
)
x_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
x
)
return
[
x_shape
,
transpose
],
[[
1
],
[
0
]]
class
AccuracyParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"accuracy"
def
_apply
(
self
):
pred
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
label
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
logits
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
pred
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
pred
)
.
set_attr_int32
(
"dst_type"
,
3
)
)
label
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
label
)
.
set_attr_int32
(
"dst_type"
,
3
)
)
equal
=
(
core
.
GEOperatorFactory
.
create_operator
(
"equal"
+
self
.
_accumulated_op_id
(),
"Equal"
)
.
set_input
(
"x1"
,
pred
)
.
set_input
(
"x2"
,
label
)
)
cast
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
equal
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
acc
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mean"
+
self
.
_accumulated_op_id
(),
"ReduceMeanD"
)
.
set_input
(
"x"
,
cast
)
.
set_attr_bool
(
"keep_dims"
,
False
)
.
set_attr_vec_int32
(
"axes"
,
[])
)
correct
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sum"
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
cast
)
.
set_attr_bool
(
"keep_dims"
,
False
)
.
set_attr_vec_int32
(
"axes"
,
[])
)
ones_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"oneslike"
+
self
.
_accumulated_op_id
(),
"OnesLike"
).
set_input
(
"x"
,
label
)
ones_tensor
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
ones_tensor
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
total
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sum"
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
ones_tensor
)
.
set_attr_bool
(
"keep_dims"
,
False
)
.
set_attr_vec_int32
(
"axes"
,
[])
)
return
[
acc
,
correct
,
total
],
[[
0
],
[
1
],
[
2
]]
class
TopkParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"top_k"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
k
=
self
.
op
.
attr
(
"k"
)
tensor
=
self
.
_create_ge_tensor
([
1
],
2
,
k
)
const_k
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
cast_x
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"dst_type"
,
1
)
)
topk
=
(
core
.
GEOperatorFactory
.
create_operator
(
"topk"
+
self
.
_accumulated_op_id
(),
"TopK"
)
.
set_input
(
"x"
,
cast_x
)
.
set_input
(
"k"
,
const_k
)
)
value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
topk
,
0
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
index
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
topk
,
1
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
return
[
value
,
index
],
[[
1
],
[
0
]]
class
LookupTableParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"lookup_table"
def
_apply
(
self
):
ids
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
w
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
ids_squeeze
=
(
core
.
GEOperatorFactory
.
create_operator
(
"squeeze"
+
self
.
_accumulated_op_id
(),
"Squeeze"
)
.
set_input
(
"x"
,
ids
)
.
set_attr_vec_int32
(
"axes"
,
[
-
1
])
)
out
=
(
core
.
GEOperatorFactory
.
create_operator
(
"lookup"
+
self
.
_accumulated_op_id
(),
"Gather"
)
.
set_input
(
"x"
,
w
)
.
set_input
(
"indices"
,
ids_squeeze
)
)
return
[
out
],
[[
0
]]
class
StackParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"stack"
def
_apply
(
self
):
tiles
=
len
(
self
.
op
.
input_arg_names
)
data_x_lst
=
[]
for
index
in
range
(
tiles
):
data_x_lst
.
append
(
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
index
])
)
axis
=
self
.
op
.
attr
(
"axis"
)
data_x
=
data_x_lst
[
0
]
tensor
=
self
.
_create_ge_tensor
([
1
],
2
,
axis
)
tensor_axis
=
core
.
GEOperatorFactory
.
create_operator
(
"axis"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
expand
=
(
core
.
GEOperatorFactory
.
create_operator
(
"expand"
+
self
.
_accumulated_op_id
(),
"ExpandDims"
)
.
set_input
(
"x"
,
data_x
)
.
set_input
(
"axis"
,
tensor_axis
)
)
stack
=
(
core
.
GEOperatorFactory
.
create_operator
(
"stack"
+
self
.
_accumulated_op_id
(),
"TileWithAxis"
)
.
set_input
(
"x"
,
expand
)
.
set_attr_int32
(
"axis"
,
axis
)
.
set_attr_int32
(
"tiles"
,
tiles
)
)
return
[
stack
],
[[
0
]]
class
UnSqueezeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"unsqueeze2"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
'axes'
)
output
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
_accumulated_op_id
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
x
)
.
set_attr_vec_int32
(
"axes"
,
axes
)
)
shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
output
)
return
[
shape
,
output
],
[[
1
],
[
0
]]
# parallel
class
AllGatherParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_allgather"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
rank_size
=
self
.
op
.
attr
(
"rank_size"
)
group
=
self
.
op
.
attr
(
"group"
)
allgather
=
(
core
.
GEOperatorFactory
.
create_operator
(
"allgather"
+
self
.
_accumulated_op_id
(),
"HcomAllGather"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"rank_size"
,
rank_size
)
.
set_attr_string
(
"group"
,
group
)
)
return
[
allgather
],
[[
0
]]
class
AllReduceParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
,
reduction
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_allreduce_"
+
reduction
self
.
reduction
=
reduction
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
reduction
=
self
.
reduction
ring_id
=
self
.
op
.
attr
(
"ring_id"
)
group
=
"hcom_group_"
+
str
(
ring_id
)
fusion
=
None
# self.op.attr("fusion")
fusion_id
=
None
# self.op.attr("fusion_id")
allreduce
=
(
core
.
GEOperatorFactory
.
create_operator
(
"allreduce"
+
self
.
_accumulated_op_id
(),
"HcomAllReduce"
)
.
set_input
(
"x"
,
x
)
.
set_attr_string
(
"reduction"
,
reduction
)
.
set_attr_string
(
"group"
,
group
)
)
if
fusion
is
not
None
:
allreduce
.
set_attr_int32
(
"fusion"
,
fusion
)
if
fusion_id
is
not
None
:
allreduce
.
set_attr_int32
(
"fusion_id"
,
fusion_id
)
return
[
allreduce
],
[[
0
]]
class
AllReduceSumParser
(
AllReduceParser
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
,
'sum'
)
class
AllReduceMaxParser
(
AllReduceParser
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
,
'max'
)
class
BroadcastParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_broadcast"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
root_rank
=
self
.
op
.
attr
(
"root_rank"
)
group
=
self
.
op
.
attr
(
"group"
)
broadcast
=
(
core
.
GEOperatorFactory
.
create_operator
(
"broadcast"
+
self
.
_accumulated_op_id
(),
"HcomBroadcast"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"root_rank"
,
root_rank
)
.
set_attr_string
(
"group"
,
group
)
)
return
[
broadcast
],
[[
0
]]
class
ReduceScatterParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_reduce_scatter"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
reduction
=
self
.
op
.
attr
(
"reduction"
)
group
=
self
.
op
.
attr
(
"group"
)
rank_size
=
self
.
op
.
attr
(
"rank_size"
)
reduce_scatter
=
(
core
.
GEOperatorFactory
.
create_operator
(
"reducescatter"
+
self
.
_accumulated_op_id
(),
"HcomReduceScatter"
)
.
set_input
(
"x"
,
x
)
.
set_attr_string
(
"reduction"
,
reduction
)
.
set_attr_string
(
"group"
,
group
)
.
set_attr_int32
(
"rank_size"
,
rank_size
)
)
return
[
reduce_scatter
],
[[
0
]]
class
SendParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_send"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
sr_tag
=
self
.
op
.
attr
(
"sr_tag"
)
dest_rank
=
self
.
op
.
attr
(
"dest_rank"
)
group
=
self
.
op
.
attr
(
"group"
)
send
=
(
core
.
GEOperatorFactory
.
create_operator
(
"send"
+
self
.
_accumulated_op_id
(),
"HcomSend"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"sr_tag"
,
sr_tag
)
.
set_attr_int32
(
"dest_rank"
,
dest_rank
)
.
set_attr_string
(
"group"
,
group
)
)
return
[
send
],
[[
0
]]
class
ReceiveParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"c_receive"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
sr_tag
=
self
.
op
.
attr
(
"sr_tag"
)
src_rank
=
self
.
op
.
attr
(
"src_rank"
)
group
=
self
.
op
.
attr
(
"group"
)
shape
=
self
.
op
.
attr
(
"shape"
)
dtype
=
self
.
op
.
attr
(
"dtype"
)
receive
=
(
core
.
GEOperatorFactory
.
create_operator
(
"receive"
+
self
.
_accumulated_op_id
(),
"HcomReceive"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"sr_tag"
,
sr_tag
)
.
set_attr_int32
(
"src_rank"
,
src_rank
)
.
set_attr_string
(
"group"
,
group
)
.
set_attr_vec_int32
(
"shape"
,
shape
)
.
set_attr_int32
(
"dtype"
,
dtype
)
)
return
[
receive
],
[[
0
]]
class
RangeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"range"
def
_apply
(
self
):
# TODO not support range type yet
start
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
end
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
delta
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
ge_range
=
(
core
.
GEOperatorFactory
.
create_operator
(
"range"
+
self
.
_accumulated_op_id
(),
"Range"
)
.
set_input
(
"start"
,
end
)
.
set_input
(
"limit"
,
start
)
.
set_input
(
"delta"
,
delta
)
)
return
[
ge_range
],
[[
0
]]
class
UniformRandomParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"uniform_random"
def
_apply
(
self
):
shape
=
self
.
op
.
attr
(
"shape"
)
min_v
=
self
.
op
.
attr
(
"min"
)
max_v
=
self
.
op
.
attr
(
"max"
)
seed
=
self
.
op
.
attr
(
"seed"
)
dtype
=
self
.
op
.
attr
(
"dtype"
)
assert
max_v
>
min_v
,
(
"assert max_v > min_v, but received "
+
f
"as max_v=
{
max_v
}
, min_v=
{
min_v
}
"
)
tensor1
=
self
.
_create_ge_tensor
([
len
(
shape
)],
2
,
shape
)
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor1
)
ge_ur
=
(
core
.
GEOperatorFactory
.
create_operator
(
"uniform_random"
+
self
.
_accumulated_op_id
(),
"RandomUniform"
)
.
set_input
(
"shape"
,
shape_tensor
)
.
set_attr_dtype
(
"dtype"
,
self
.
ascend_helper
.
dtype2ge
(
dtype
))
.
set_attr_int32
(
"seed"
,
seed
)
.
set_attr_int32
(
"seed2"
,
seed
)
)
scale
=
max_v
-
min_v
scale_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
ge_ur
)
.
set_attr_float
(
"power"
,
1.0
)
.
set_attr_float
(
"scale"
,
scale
)
.
set_attr_float
(
"shift"
,
min_v
)
)
return
[
scale_value
],
[[
0
]]
class
EqualParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"equal"
def
_apply
(
self
):
data_x1
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
data_x2
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
equal
=
(
core
.
GEOperatorFactory
.
create_operator
(
"equal"
+
self
.
_accumulated_op_id
(),
"Equal"
)
.
set_input
(
"x1"
,
data_x1
)
.
set_input
(
"x2"
,
data_x2
)
)
return
[
equal
],
[[
0
]]
class
ExpandParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"expand"
def
_apply
(
self
):
data_x1_shape
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
expand_times
=
self
.
op
.
attr
(
'expand_times'
)
tensor
=
self
.
_create_ge_tensor
([
len
(
expand_times
)],
2
,
expand_times
)
expand_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
assign
=
(
core
.
GEOperatorFactory
.
create_operator
(
"tile"
+
self
.
_accumulated_op_id
(),
"Tile"
)
.
set_input
(
"x"
,
data_x1_shape
)
.
set_input
(
"multiples"
,
expand_tensor
)
)
return
[
assign
],
[[
0
]]
class
SqueezeParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"squeeze2"
def
_apply
(
self
):
tensor
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
"axes"
)
data_squeezed
=
(
core
.
GEOperatorFactory
.
create_operator
(
"squeeze"
+
self
.
_accumulated_op_id
(),
"Squeeze"
)
.
set_input
(
"x"
,
tensor
)
.
set_attr_vec_int32
(
"axes"
,
axes
)
)
shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
data_squeezed
)
return
[
shape
,
data_squeezed
],
[[
1
],
[
0
]]
# ****************************************************************#
# *************************** *************************#
# *************************** *************************#
# *************************** GradParser *************************#
# *************************** *************************#
# *************************** *************************#
# ****************************************************************#
# grad
class
ReduceSumGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"reduce_sum_grad"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
input
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
input
,
0
)
tensoron
=
self
.
_create_ge_tensor
([
1
],
2
,
-
1
)
const
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensoron
)
self
.
_mark_as_input
(
const
)
reduce_sum
=
(
core
.
GEOperatorFactory
.
create_operator
(
"broadcast_to_d"
+
self
.
_accumulated_op_id
(),
"BroadcastTo"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"shape"
,
shape_tensor
)
)
# reduce_sum = core.GEOperatorFactory.create_operator("expand" + self._accumulated_op_id(), "ExpandDims").set_input("x", reduce_sum).set_input("axis", const)
return
[
reduce_sum
],
[[
0
]]
class
MatMulGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"matmul_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
transpose_x
=
self
.
op
.
attr
(
"transpose_X"
)
transpose_y
=
self
.
op
.
attr
(
"transpose_Y"
)
out_grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
y_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
if
len
(
x_shape
)
>
2
:
if
transpose_y
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
,
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"adj_x1"
,
False
)
.
set_attr_bool
(
"adj_x2"
,
False
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
,
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
x
)
.
set_attr_bool
(
"adj_x1"
,
True
)
.
set_attr_bool
(
"adj_x2"
,
False
)
)
else
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
,
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"adj_x1"
,
False
)
.
set_attr_bool
(
"adj_x2"
,
True
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
,
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
out_grad
)
.
set_attr_bool
(
"adj_x1"
,
True
)
.
set_attr_bool
(
"adj_x2"
,
False
)
)
else
:
if
transpose_y
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"transpose_x1"
,
False
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
x
)
.
set_attr_bool
(
"transpose_x1"
,
True
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
else
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"transpose_x1"
,
False
)
.
set_attr_bool
(
"transpose_x2"
,
True
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
out_grad
)
.
set_attr_bool
(
"transpose_x1"
,
True
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
return
[
x_grad
,
y_grad
],
[[
0
],
[
1
]]
class
MulGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"mul_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
x_num_col_dims
=
self
.
op
.
attr
(
"x_num_col_dims"
)
y_num_col_dims
=
self
.
op
.
attr
(
"y_num_col_dims"
)
shape_out_grad
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
shape_x
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
shape_y
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
if
x_num_col_dims
==
1
and
y_num_col_dims
==
1
:
if
len
(
shape_x
)
==
2
and
len
(
shape_y
)
==
2
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"transpose_x1"
,
False
)
.
set_attr_bool
(
"transpose_x2"
,
True
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
out_grad
)
.
set_attr_bool
(
"transpose_x1"
,
True
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
elif
len
(
shape_x
)
==
3
and
len
(
shape_y
)
==
2
:
flatten_x
=
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"Flatten"
).
set_input
(
"x"
,
x
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y
)
.
set_attr_bool
(
"transpose_x1"
,
False
)
.
set_attr_bool
(
"transpose_x2"
,
True
)
)
if
len
(
shape_out_grad
)
==
2
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
_accumulated_op_id
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
x_grad
)
.
set_attr_vec_int32
(
"axes"
,
[
1
])
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
flatten_x
)
.
set_input
(
"x2"
,
out_grad
)
.
set_attr_bool
(
"transpose_x1"
,
True
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
else
:
if
len
(
shape_x
)
==
3
and
len
(
shape_y
)
==
2
:
assert
x_num_col_dims
==
2
,
"only support 2"
flatten_x
=
(
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"FlattenV2"
)
.
set_input
(
"x"
,
x
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"end_axis"
,
1
)
)
flatten_out_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"FlattenV2"
)
.
set_input
(
"x"
,
out_grad
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"end_axis"
,
1
)
)
y_unsqueeze
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
_accumulated_op_id
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
y
)
.
set_attr_vec_int32
(
"axes"
,
[
0
])
)
y_stack
=
(
core
.
GEOperatorFactory
.
create_operator
(
"stack"
+
self
.
_accumulated_op_id
(),
"TileWithAxis"
)
.
set_input
(
"x"
,
y_unsqueeze
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"tiles"
,
shape_out_grad
[
0
])
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"BatchMatMul"
,
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
y_stack
)
.
set_attr_bool
(
"adj_x1"
,
False
)
.
set_attr_bool
(
"adj_x2"
,
True
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"MatMul"
)
.
set_input
(
"x1"
,
flatten_x
)
.
set_input
(
"x2"
,
flatten_out_grad
)
.
set_attr_bool
(
"transpose_x1"
,
True
)
.
set_attr_bool
(
"transpose_x2"
,
False
)
)
return
[
x_grad
,
y_grad
],
[[
0
],
[
1
]]
class
ReluGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"relu_grad"
def
_apply
(
self
):
out
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
relu_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"ReluGrad"
)
.
set_input
(
"gradients"
,
out_grad
)
.
set_input
(
"features"
,
out
)
)
return
[
relu_grad
],
[[
0
]]
class
SoftmaxWithCrossEntropyGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"softmax_with_cross_entropy_grad"
def
_apply
(
self
):
label
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
loss_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
softmax
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
cls_num
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
[
1
]
label_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
loss_grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
softmax_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
tensoron
=
self
.
_create_ge_tensor
([
1
],
5
,
1
)
on
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensoron
)
tensoroff
=
self
.
_create_ge_tensor
([
1
],
5
,
0
)
off
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensoroff
)
self
.
_mark_as_input
(
on
)
self
.
_mark_as_input
(
off
)
label
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
label
)
.
set_attr_int32
(
"dst_type"
,
3
)
)
onehot
=
(
core
.
GEOperatorFactory
.
create_operator
(
"onehot"
+
self
.
_accumulated_op_id
(),
"OneHotD"
)
.
set_input
(
"x"
,
label
)
.
set_input
(
"on_value"
,
on
)
.
set_input
(
"off_value"
,
off
)
.
set_attr_int32
(
"depth"
,
cls_num
)
)
squeeze
=
core
.
GEOperatorFactory
.
create_operator
(
"suqeeze"
+
self
.
_accumulated_op_id
(),
"Squeeze"
).
set_input
(
"x"
,
onehot
)
sub
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sub"
+
self
.
_accumulated_op_id
(),
"Sub"
)
.
set_input
(
"x1"
,
softmax
)
.
set_input
(
"x2"
,
squeeze
)
)
grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
loss_grad
)
.
set_input
(
"x2"
,
sub
)
)
return
[
on
,
off
,
label
,
onehot
,
grad
],
[[
-
1
]]
class
DotMulGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_mul_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_1
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
out_2
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
out_grad
)
.
set_input
(
"x2"
,
out_2
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
out_1
)
.
set_input
(
"x2"
,
out_grad
)
)
return
[
x_grad
,
y_grad
],
[[
0
],
[
1
]]
class
DotAddGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_add_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_1
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
out_2
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
out_grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
out_1_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
out_2_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
x_grad
=
out_grad
cur_time_x
=
len
(
out_grad_shape
)
-
len
(
out_1_shape
)
for
i
in
range
(
cur_time_x
):
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
x_grad
)
.
set_attr_vec_int32
(
"axes"
,
[
0
])
.
set_attr_bool
(
"keep_dims"
,
False
)
)
for
axis
,
size
in
enumerate
(
out_1_shape
):
if
size
==
1
:
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
,
)
.
set_input
(
"x"
,
x_grad
)
.
set_attr_vec_int32
(
"axes"
,
[
axis
])
.
set_attr_bool
(
"keep_dims"
,
True
)
)
y_grad
=
out_grad
cur_time_y
=
len
(
out_grad_shape
)
-
len
(
out_2_shape
)
for
i
in
range
(
cur_time_y
):
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
y_grad
)
.
set_attr_vec_int32
(
"axes"
,
[
0
])
.
set_attr_bool
(
"keep_dims"
,
False
)
)
for
axis
,
size
in
enumerate
(
out_2_shape
):
if
size
==
1
:
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
,
)
.
set_input
(
"x"
,
y_grad
)
.
set_attr_vec_int32
(
"axes"
,
[
axis
])
.
set_attr_bool
(
"keep_dims"
,
True
)
)
return
[
x_grad
,
y_grad
],
[[
0
],
[
1
]]
class
DotDivGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"elementwise_div_grad"
def
_apply
(
self
):
out
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
3
])
y_power
=
(
core
.
GEOperatorFactory
.
create_operator
(
"power"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
y
)
.
set_attr_float
(
"power"
,
-
1
)
)
tensor_zeros
=
core
.
GEOperatorFactory
.
create_operator
(
"zeroslike"
+
self
.
_accumulated_op_id
(),
"ZerosLike"
).
set_input
(
"x"
,
x
)
x_zero
=
(
core
.
GEOperatorFactory
.
create_operator
(
"equal"
+
self
.
_accumulated_op_id
(),
"Equal"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
tensor_zeros
)
)
x_nozero
=
core
.
GEOperatorFactory
.
create_operator
(
"logical_not"
+
self
.
_accumulated_op_id
(),
"LogicalNot"
).
set_input
(
"x"
,
x_zero
)
x_nozero_f
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x_nozero
)
.
set_attr_int32
(
"dst_type"
,
0
)
)
x_grad_w
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
x_nozero_f
)
.
set_input
(
"x2"
,
y_power
)
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
x_grad_w
)
.
set_input
(
"x2"
,
out_grad
)
)
y_grad_w
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
out
)
.
set_input
(
"x2"
,
y_power
)
)
y_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mul"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
y_grad_w
)
.
set_input
(
"x2"
,
out_grad
)
)
return
[
x_grad
,
y_grad
],
[[
0
],
[
1
]]
class
SoftmaxGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"softmax_grad"
def
_apply
(
self
):
out
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"SoftmaxGrad"
)
.
set_input
(
"softmax"
,
out
)
.
set_input
(
"grad_softmax"
,
out_grad
)
)
return
[
x_grad
],
[[
0
]]
class
ReshapeGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"reshape2_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x_shape
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
x_shape_list
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
if
x_shape_list
[
0
]
==
0
:
x_shape_delzero
=
x_shape_list
[
1
:]
tensor
=
self
.
_create_ge_tensor
(
[
len
(
x_shape_delzero
)],
2
,
x_shape_delzero
)
const_shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"reshape"
+
self
.
_accumulated_op_id
(),
"Reshape"
)
.
set_input
(
"x"
,
out_grad
)
.
set_input
(
"shape"
,
const_shape
)
)
return
[
x_grad
],
[[
0
]]
class
GatherGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"gather_grad"
def
_apply
(
self
):
index
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
index_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
out_grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
if
len
(
index_shape
)
==
1
:
index
=
(
core
.
GEOperatorFactory
.
create_operator
(
"unsqueeze"
+
self
.
_accumulated_op_id
(),
"Unsqueeze"
)
.
set_input
(
"x"
,
index
)
.
set_attr_vec_int32
(
"axes"
,
[
1
])
)
tensor_zeros
=
core
.
GEOperatorFactory
.
create_operator
(
"zeroslike"
+
self
.
_accumulated_op_id
(),
"ZerosLike"
).
set_input
(
"x"
,
x
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scatter"
+
self
.
_accumulated_op_id
(),
"TensorScatterUpdate"
)
.
set_input
(
"x"
,
tensor_zeros
)
.
set_input
(
"indices"
,
index
)
.
set_input
(
"updates"
,
out_grad
)
)
return
[
tensor_zeros
,
x_grad
],
[[
-
1
]]
class
TransposeGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"transpose2_grad"
def
_apply
(
self
):
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
perm
=
self
.
op
.
attr
(
"axis"
)
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
[
1
:]
out_grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
assert
[
out_grad_shape
[
x
]
for
x
in
perm
]
==
list
(
x_shape
)
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"transpose"
+
self
.
_accumulated_op_id
(),
"TransposeD"
)
.
set_input
(
"x"
,
out_grad
)
.
set_attr_vec_int32
(
"perm"
,
perm
)
)
return
[
x_grad
],
[[
0
]]
class
LayerNormGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"layer_norm_grad"
def
_apply
(
self
):
bias
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
mean
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
scale
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
variance
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
3
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
4
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
5
])
x_dtype
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
4
]).
dtype
x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
self
.
parser_name
+
self
.
_accumulated_op_id
(),
"LayerNormGrad"
)
.
set_input
(
"dy"
,
out_grad
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"variance"
,
variance
)
.
set_input
(
"mean"
,
mean
)
.
set_input
(
"gamma"
,
scale
)
)
cast_dtype
=
(
0
if
self
.
ascend_helper
.
dtype2paddle_inv_map
[
str
(
x_dtype
)]
==
0
else
1
)
out_x_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x_grad
,
0
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
out_scale_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x_grad
,
1
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
out_bias_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"cast"
+
self
.
_accumulated_op_id
(),
"Cast"
)
.
set_input
(
"x"
,
x_grad
,
2
)
.
set_attr_int32
(
"dst_type"
,
cast_dtype
)
)
return
[
out_x_grad
,
out_scale_grad
,
out_bias_grad
],
[[
2
],
[
1
],
[
0
]]
class
TanhGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
'tanh_grad'
def
_apply
(
self
):
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
tanh_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"tanh_grad"
+
self
.
_accumulated_op_id
(),
"TanhGrad"
)
.
set_input
(
"y"
,
y
)
.
set_input
(
"dy"
,
out_grad
)
)
return
[
tanh_grad
],
[[
0
]]
class
LogGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
'log_grad'
def
_apply
(
self
):
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
input
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
log_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"log_grad"
+
self
.
_accumulated_op_id
(),
"DivNoNan"
)
.
set_input
(
"x1"
,
grad
)
.
set_input
(
"x2"
,
input
)
)
return
[
log_grad
],
[[
0
]]
class
SqrtGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"sqrt_grad"
def
_apply
(
self
):
y
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
out_grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
sqrt_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"sqrt_grad"
+
self
.
_accumulated_op_id
(),
"SqrtGrad"
)
.
set_input
(
"y"
,
y
)
.
set_input
(
"dy"
,
out_grad
)
)
return
[
sqrt_grad
]
class
PowGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"pow_grad"
def
_apply
(
self
):
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
factor
=
self
.
op
.
attr
(
"factor"
)
shape_tensor
=
self
.
_create_shape_tensor
()
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
x
)
factor_scale
=
self
.
_create_ge_tensor
([
1
],
5
,
factor
)
factor_scale
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
factor_scale
)
factor_tensor
=
(
core
.
GEOperatorFactory
.
create_operator
(
"broadcast_to_d"
+
self
.
_accumulated_op_id
(),
"BroadcastTo"
)
.
set_input
(
"x"
,
factor_scale
)
.
set_input
(
"shape"
,
shape_tensor
)
)
x_power
=
(
core
.
GEOperatorFactory
.
create_operator
(
"x_power"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
x
)
.
set_attr_float
(
"power"
,
factor
-
1
)
)
x_power_mul_factor
=
(
core
.
GEOperatorFactory
.
create_operator
(
"x_power_mul_factor"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
x
)
.
set_input
(
"x2"
,
factor_tensor
)
)
x_power_mul_factor_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"x_power_mul_factor_grad"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
x_power_mul_factor
)
.
set_input
(
"x2"
,
grad
)
)
return
[
x_power_mul_factor_grad
],
[[
0
]]
class
GeluGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"gelu_grad"
def
_apply
(
self
):
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
y
=
core
.
GEOperatorFactory
.
create_operator
(
"gelu"
+
self
.
_accumulated_op_id
(),
"Gelu"
).
set_input
(
"x"
,
x
)
gelu_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"gelu_grad"
+
self
.
_accumulated_op_id
(),
"GeluGrad"
)
.
set_input
(
"x"
,
x
)
.
set_input
(
"dy"
,
grad
)
.
set_input
(
"y"
,
y
)
)
return
[
gelu_grad
],
[[
0
]]
class
MeanGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"mean_grad"
def
_apply
(
self
):
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
ones_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"one_tensor"
+
self
.
_accumulated_op_id
(),
"OnesLike"
).
set_input
(
"x"
,
x
)
sum
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mean"
+
self
.
_accumulated_op_id
(),
"ReduceSumD"
)
.
set_input
(
"x"
,
ones_tensor
)
.
set_attr_bool
(
"keep_dims"
,
False
)
.
set_attr_vec_int32
(
"axes"
,
[])
)
mean
=
(
core
.
GEOperatorFactory
.
create_operator
(
"x_power"
+
self
.
_accumulated_op_id
(),
"Power"
)
.
set_input
(
"x"
,
sum
)
.
set_attr_float
(
"power"
,
-
1
)
)
mean_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"mean_grad"
+
self
.
_accumulated_op_id
(),
"Mul"
)
.
set_input
(
"x1"
,
mean
)
.
set_input
(
"x2"
,
grad
)
)
return
[
mean_grad
],
[[
0
]]
class
SliceGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"slice_grad"
def
_apply
(
self
):
x
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
axes
=
self
.
op
.
attr
(
"axes"
)
starts
=
self
.
op
.
attr
(
"starts"
)
ends
=
self
.
op
.
attr
(
"ends"
)
x_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
grad_shape
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
len_shape
=
len
(
x_shape
)
axes_cor
=
list
(
range
(
len_shape
))
starts_cor
,
ends_cor
=
[],
[]
cnt
=
0
for
i
in
range
(
len_shape
):
starts_cor
.
append
(
starts
[
cnt
]
if
i
in
axes
else
0
)
if
i
in
axes
and
ends
[
cnt
]
<=
x_shape
[
i
]:
ends_cor
.
append
(
x_shape
[
i
]
-
ends
[
cnt
])
else
:
ends_cor
.
append
(
0
)
if
i
in
axes
:
cnt
+=
1
starts_cor
[
0
]
=
0
ends_cor
[
0
]
=
0
paddings
=
[[
s
,
e
]
for
(
s
,
e
)
in
zip
(
starts_cor
,
ends_cor
)]
slice_value
=
(
core
.
GEOperatorFactory
.
create_operator
(
"slice_grad"
+
self
.
_accumulated_op_id
(),
"PadD"
)
.
set_input
(
"x"
,
grad
)
.
set_attr_vec_vec_int64
(
"paddings"
,
paddings
)
)
return
[
slice_value
],
[[
0
]]
class
LookUpTableGradParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"lookup_table_grad"
def
_apply
(
self
):
ids
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
embedding
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
shape_ids
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
0
]).
shape
shape_grad
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
1
]).
shape
shape_embedding
=
self
.
op
.
block
.
var
(
self
.
op
.
input_arg_names
[
2
]).
shape
ids_flatten
=
(
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"FlattenV2"
)
.
set_input
(
"x"
,
ids
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"end_axis"
,
1
)
)
grad_flatten
=
(
core
.
GEOperatorFactory
.
create_operator
(
"flatten"
+
self
.
_accumulated_op_id
(),
"FlattenV2"
)
.
set_input
(
"x"
,
grad
)
.
set_attr_int32
(
"axis"
,
0
)
.
set_attr_int32
(
"end_axis"
,
1
)
)
tensor_zeros
=
core
.
GEOperatorFactory
.
create_operator
(
"zeroslike"
+
self
.
_accumulated_op_id
(),
"ZerosLike"
).
set_input
(
"x"
,
embedding
)
embedding_grad
=
(
core
.
GEOperatorFactory
.
create_operator
(
"scatteradd"
+
self
.
_accumulated_op_id
(),
"TensorScatterAdd"
)
.
set_input
(
"x"
,
tensor_zeros
)
.
set_input
(
"indices"
,
ids_flatten
)
.
set_input
(
"updates"
,
grad_flatten
)
)
return
[
embedding_grad
],
[[
0
]]
class
SGDParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"sgd"
def
_apply
(
self
):
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
lr
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
param
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
sgd
=
(
core
.
GEOperatorFactory
.
create_operator
(
"momentum"
+
self
.
_accumulated_op_id
(),
"ApplyGradientDescent"
)
.
set_input
(
"var"
,
param
)
.
set_input
(
"alpha"
,
lr
)
.
set_input
(
"delta"
,
grad
)
)
return
[
sgd
],
[[
0
]]
class
AdamParser
(
AscendParserBase
):
def
__init__
(
self
,
graph
,
var2geop
):
super
().
__init__
(
graph
,
var2geop
)
self
.
parser_name
=
"adam"
def
_apply
(
self
):
beta1_power
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
beta2_power
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
1
])
grad
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
2
])
lr
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
3
])
moment1
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
4
])
moment2
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
5
])
param
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
6
])
beta1
=
self
.
op
.
attr
(
'beta1'
)
beta2
=
self
.
op
.
attr
(
'beta2'
)
epsilon
=
self
.
op
.
attr
(
'epsilon'
)
beta1
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
self
.
_create_ge_tensor
([
1
],
5
,
beta1
))
beta2
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
self
.
_create_ge_tensor
([
1
],
5
,
beta2
))
epsilon
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
self
.
_create_ge_tensor
([
1
],
5
,
epsilon
))
adam
=
(
core
.
GEOperatorFactory
.
create_operator
(
"adam"
+
self
.
_accumulated_op_id
(),
"ApplyAdam"
)
.
set_input
(
"var"
,
param
)
.
set_input
(
"m"
,
moment1
)
.
set_input
(
"v"
,
moment2
)
.
set_input
(
"beta1_power"
,
beta1_power
)
.
set_input
(
"beta2_power"
,
beta2_power
)
.
set_input
(
"lr"
,
lr
)
.
set_input
(
"beta1"
,
beta1
)
.
set_input
(
"beta2"
,
beta2
)
.
set_input
(
"epsilon"
,
epsilon
)
.
set_input
(
"grad"
,
grad
)
)
return
[
adam
],
[[
0
]]
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
27a601e8
...
...
@@ -743,7 +743,6 @@ class ShardingOptimizer(MetaOptimizerBase):
)
def
_init_npu_pipeline_comm
(
self
,
startup_block
):
# NOTE(wangxi): some bug with hccl, must set pp_degree be even number
assert
(
self
.
pp_degree
%
2
)
==
0
max_ring_id
=
-
1
...
...
python/paddle/fluid/tests/unittests/ascend_group.py
已删除
100644 → 0
浏览文件 @
23f87442
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
collections
import
namedtuple
import
paddle
from
paddle
import
fluid
from
paddle.distributed
import
fleet
from
paddle.distributed.fleet.meta_optimizers.ascend
import
ascend_optimizer
from
paddle.fluid
import
core
,
unique_name
from
paddle.fluid.layer_helper
import
LayerHelper
Block
=
namedtuple
(
'Block'
,
[
'program'
])
Loss
=
namedtuple
(
'Loss'
,
[
'block'
])
paddle
.
enable_static
()
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
OP_ROLE_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
OP_ROLE_VAR_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
role
=
fleet
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
def
init_communicator
(
startup_program
,
main_program
,
current_endpoint
,
endpoints
,
ring_id
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
group_rank
=
endpoints
.
index
(
current_endpoint
)
assert
group_rank
>=
0
block
=
startup_program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
group_rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
group_rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
},
)
# add input op for test
fill_var_name
=
"tensor@Filled"
fill_var
=
block
.
create_var
(
name
=
fill_var_name
,
shape
=
[
10
,
10
],
dtype
=
'float32'
,
persistable
=
False
,
stop_gradient
=
True
,
)
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
fill_var_name
},
attrs
=
{
"shape"
:
[
10
,
10
],
"dtype"
:
fill_var
.
dtype
,
"value"
:
1.0
,
"place_type"
:
1
,
},
)
with
fluid
.
program_guard
(
main_program
):
op_type
=
"c_allreduce_sum"
data
=
paddle
.
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
2.5
)
helper
=
LayerHelper
(
op_type
,
**
locals
())
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
data
]},
outputs
=
{
'Out'
:
[
data
]},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
},
)
print
(
"startup program:"
,
startup_program
)
print
(
"main program:"
,
main_program
)
def
train
(
world_endpoints
,
world_device_ids
,
local_device_ids
,
local_rank
):
startup_programs
=
[]
main_programs
=
[]
# trainer_endpoints=["127.0.0.1:6071","127.0.0.1:6072","127.0.0.1:6073","127.0.0.1:6074"]
trainer_endpoints
=
world_endpoints
groups
=
[[],
[],
[]]
groups
[
0
]
=
[
trainer_endpoints
[
0
],
trainer_endpoints
[
1
]]
groups
[
1
]
=
[
trainer_endpoints
[
2
],
trainer_endpoints
[
3
]]
groups
[
2
]
=
[
trainer_endpoints
[
0
],
trainer_endpoints
[
2
]]
print
(
"groups:"
,
groups
)
for
i
in
range
(
len
(
trainer_endpoints
)):
startup_programs
.
append
(
fluid
.
Program
())
main_programs
.
append
(
fluid
.
Program
())
for
idx
,
group
in
enumerate
(
groups
):
for
te
in
group
:
te_idx
=
trainer_endpoints
.
index
(
te
)
startup_program
=
startup_programs
[
te_idx
]
main_program
=
main_programs
[
te_idx
]
init_communicator
(
startup_program
,
main_program
,
te
,
group
,
idx
)
print
(
len
(
startup_programs
))
print
(
startup_programs
[
local_rank
])
print
(
main_programs
[
local_rank
])
print
(
"local rank: "
,
local_rank
)
print
(
"local startup program: "
,
startup_programs
[
local_rank
])
startup_program
=
startup_programs
[
local_rank
]
main_program
=
main_programs
[
local_rank
]
loss
=
Loss
(
Block
(
main_program
))
optimizer
=
ascend_optimizer
.
AscendOptimizer
(
None
,
fetch_list
=
[])
optimizer
.
minimize
(
loss
,
startup_program
,
auto_dp
=
True
,
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
)
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
exe
.
run
(
startup_program
)
exe
.
run
(
main_program
)
worker_endpoints
=
fleet
.
worker_endpoints
()
world_device_ids
=
fleet
.
world_device_ids
()
local_device_ids
=
fleet
.
local_device_ids
()
local_rank
=
int
(
fleet
.
local_rank
())
print
(
"worker_endpoints:"
,
worker_endpoints
)
print
(
"world_device_ids:"
,
world_device_ids
)
print
(
"local_device_ids:"
,
local_device_ids
)
print
(
"local_rank:"
,
local_rank
)
train
(
worker_endpoints
,
world_device_ids
,
local_device_ids
,
local_rank
)
python/paddle/fluid/tests/unittests/hccl_tools.py
已删除
100644 → 0
浏览文件 @
23f87442
# -*- coding:UTF-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""generate hccl config file script"""
import
json
import
os
import
socket
import
sys
from
argparse
import
ArgumentParser
def
parse_args
():
"""
parse args .
Args:
Returns:
args.
Examples:
>>> parse_args()
"""
parser
=
ArgumentParser
(
description
=
"mindspore distributed training launch "
"helper utilty that will generate hccl"
" config file"
)
parser
.
add_argument
(
"--device_num"
,
type
=
str
,
default
=
"[0,8)"
,
help
=
"The number of the Ascend accelerators used. please note that the Ascend accelerators"
"used must be continuous, such [0,4) means to use four chips "
"0,1,2,3; [0,1) means to use chip 0; The first four chips are"
"a group, and the last four chips are a group. In addition to"
"the [0,8) chips are allowed, other cross-group such as [3,6)"
"are prohibited."
,
)
parser
.
add_argument
(
"--visible_devices"
,
type
=
str
,
default
=
"0,1,2,3,4,5,6,7"
,
help
=
"will use the visible devices sequentially"
,
)
parser
.
add_argument
(
"--server_ip"
,
type
=
str
,
default
=
""
,
help
=
"server ip"
)
args
=
parser
.
parse_args
()
return
args
def
get_host_ip
():
"""
get host ip
"""
ip
=
None
try
:
hostname
=
socket
.
gethostname
()
ip
=
socket
.
gethostbyname
(
hostname
)
except
EOFError
:
pass
return
ip
def
main
():
print
(
"start"
,
__file__
)
args
=
parse_args
()
# visible_devices
visible_devices
=
args
.
visible_devices
.
split
(
','
)
print
(
f
'visible_devices:
{
visible_devices
}
'
)
# server_id
ip
=
get_host_ip
()
if
args
.
server_ip
:
server_id
=
args
.
server_ip
elif
ip
:
server_id
=
ip
else
:
raise
ValueError
(
"please input server ip!"
)
print
(
f
'server_id:
{
server_id
}
'
)
# device_num
first_num
=
int
(
args
.
device_num
[
1
])
last_num
=
int
(
args
.
device_num
[
3
])
if
first_num
<
0
or
last_num
>
8
:
raise
ValueError
(
f
"device num
{
args
.
device_num
}
must be in range [0,8] !"
)
if
first_num
>
last_num
:
raise
ValueError
(
"First num {} of device num {} must less than last num {} !"
.
format
(
first_num
,
args
.
device_num
,
last_num
)
)
if
first_num
<
4
:
if
last_num
>
4
:
if
first_num
==
0
and
last_num
==
8
:
pass
else
:
raise
ValueError
(
"device num {} must be in the same group of [0,4] or [4,8] !"
.
format
(
args
.
device_num
)
)
device_num_list
=
list
(
range
(
first_num
,
last_num
))
print
(
"device_num_list:"
,
device_num_list
)
assert
len
(
visible_devices
)
>=
len
(
device_num_list
)
# construct hccn_table
device_ips
=
{}
with
open
(
'/etc/hccn.conf'
,
'r'
)
as
fin
:
for
hccn_item
in
fin
.
readlines
():
if
hccn_item
.
strip
().
startswith
(
'address_'
):
device_id
,
device_ip
=
hccn_item
.
split
(
'='
)
device_id
=
device_id
.
split
(
'_'
)[
1
]
device_ips
[
device_id
]
=
device_ip
.
strip
()
hccn_table
=
{
'version'
:
'1.0'
,
'server_count'
:
'1'
,
'server_list'
:
[]}
device_list
=
[]
rank_id
=
0
for
instance_id
in
device_num_list
:
device_id
=
visible_devices
[
instance_id
]
device_ip
=
device_ips
[
device_id
]
device
=
{
'device_id'
:
device_id
,
'device_ip'
:
device_ip
,
'rank_id'
:
str
(
rank_id
),
}
print
(
'rank_id:{}, device_id:{}, device_ip:{}'
.
format
(
rank_id
,
device_id
,
device_ip
)
)
rank_id
+=
1
device_list
.
append
(
device
)
hccn_table
[
'server_list'
].
append
(
{
'server_id'
:
server_id
,
'device'
:
device_list
,
'host_nic_ip'
:
'reserve'
,
}
)
hccn_table
[
'status'
]
=
'completed'
# save hccn_table to file
table_path
=
os
.
getcwd
()
table_fn
=
os
.
path
.
join
(
table_path
,
'hccl_{}p_{}_{}.json'
.
format
(
len
(
device_num_list
),
""
.
join
(
map
(
str
,
device_num_list
)),
server_id
),
)
with
open
(
table_fn
,
'w'
)
as
table_fp
:
json
.
dump
(
hccn_table
,
table_fp
,
indent
=
4
)
sys
.
stdout
.
flush
()
print
(
"Completed: hccl file was save in :"
,
table_fn
)
if
__name__
==
"__main__"
:
main
()
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
27a601e8
...
...
@@ -700,11 +700,7 @@ class TestParallelDyGraphRunnerBase:
nranks
=
len
(
args
.
endpoints
.
split
(
","
))
if
args
.
endpoints
else
1
# if args.update_method == "nccl2":
if
(
args
.
update_method
==
"nccl2"
or
args
.
update_method
==
"bkcl"
or
args
.
update_method
==
"hccl"
):
if
args
.
update_method
==
"nccl2"
or
args
.
update_method
==
"bkcl"
:
strategy
=
paddle
.
distributed
.
parallel
.
ParallelStrategy
()
strategy
.
nranks
=
nranks
strategy
.
local_rank
=
args
.
trainer_id
...
...
@@ -818,12 +814,12 @@ class TestParallelDyGraphRunnerBase:
strategy
.
find_unused_parameters
=
True
# 3. init parallel env
if
args
.
update_method
==
"nccl2"
or
"bkcl"
or
"hccl"
:
if
args
.
update_method
==
"nccl2"
or
"bkcl"
:
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
# 4. train model
model
,
train_reader
,
opt
=
self
.
get_model
()
if
args
.
update_method
==
"nccl2"
or
"bkcl"
or
"hccl"
:
if
args
.
update_method
==
"nccl2"
or
"bkcl"
:
opt
=
fleet
.
distributed_optimizer
(
opt
)
model
=
fleet
.
distributed_model
(
model
)
...
...
@@ -860,7 +856,6 @@ def runtime_main(test_class):
"local"
,
"nccl2_reduce_layer"
,
"gloo"
,
"hccl"
,
],
)
parser
.
add_argument
(
'--trainer_id'
,
type
=
int
,
required
=
False
,
default
=
0
)
...
...
@@ -968,7 +963,6 @@ class TestDistBase(unittest.TestCase):
self
.
_nccl2_mode
=
False
self
.
_bkcl_mode
=
False
self
.
_gloo_mode
=
False
# now, support gloo backend
self
.
_hccl_mode
=
False
self
.
_pipeline_mode
=
False
self
.
_mp_mode
=
False
self
.
_diff_batch
=
False
...
...
@@ -1767,14 +1761,6 @@ class TestDistBase(unittest.TestCase):
check_error_log
=
check_error_log
,
log_name
=
log_name
,
)
elif
self
.
_hccl_mode
:
tr0_losses
,
tr1_losses
=
self
.
_run_cluster_nccl2
(
model_file
,
required_envs
,
update_method
=
'hccl'
,
check_error_log
=
check_error_log
,
log_name
=
log_name
,
)
elif
self
.
_pipeline_mode
:
tr0_losses
,
tr1_losses
=
self
.
_run_pipeline
(
model_file
,
required_envs
,
check_error_log
,
log_name
=
log_name
...
...
python/setup.py.in
浏览文件 @
27a601e8
...
...
@@ -411,7 +411,6 @@ packages=['paddle',
'paddle.distributed.fleet.elastic',
'paddle.distributed.fleet.meta_optimizers',
'paddle.distributed.fleet.meta_optimizers.sharding',
'paddle.distributed.fleet.meta_optimizers.ascend',
'paddle.distributed.fleet.meta_optimizers.dygraph_optimizer',
'paddle.distributed.fleet.runtime',
'paddle.distributed.rpc',
...
...
setup.py
浏览文件 @
27a601e8
...
...
@@ -1387,7 +1387,6 @@ def get_setup_parameters():
'paddle.distributed.fleet.elastic'
,
'paddle.distributed.fleet.meta_optimizers'
,
'paddle.distributed.fleet.meta_optimizers.sharding'
,
'paddle.distributed.fleet.meta_optimizers.ascend'
,
'paddle.distributed.fleet.meta_optimizers.dygraph_optimizer'
,
'paddle.distributed.fleet.runtime'
,
'paddle.distributed.rpc'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录