Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
276017bb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
276017bb
编写于
3月 21, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
3月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
conv2d support FP16 on xpu and update unittest for conv2d, test=kunlun (#40395)
上级
1eb96eec
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
382 addition
and
338 deletion
+382
-338
paddle/fluid/operators/conv_op_xpu.cc
paddle/fluid/operators/conv_op_xpu.cc
+51
-26
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+8
-4
python/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
...on/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
+323
-308
未找到文件。
paddle/fluid/operators/conv_op_xpu.cc
浏览文件 @
276017bb
...
@@ -19,14 +19,16 @@ namespace operators {
...
@@ -19,14 +19,16 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
GemmConvXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GemmConvXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped in the calculations,
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
...
@@ -53,11 +55,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
...
@@ -53,11 +55,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d
<
float
,
float
,
float
,
int16_t
>
(
const
XPUT
*
input_data
=
reinterpret_cast
<
const
XPUT
*>
(
input
->
data
<
T
>
());
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
const
XPUT
*
filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter
.
data
<
T
>
());
output
->
data
<
float
>
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
XPUT
*
output_data
=
reinterpret_cast
<
XPUT
*>
(
output
->
data
<
T
>
());
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d
<
XPUT
,
XPUT
,
XPUT
,
int16_t
>
(
dev_ctx
.
x_context
(),
input_data
,
filter_data
,
output_data
,
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
...
@@ -67,14 +74,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
...
@@ -67,14 +74,16 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
GemmConvGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GemmConvGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
// The filter and filter_grad will be reshaped in the calculations,
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// so here use an assignment operation,
...
@@ -107,19 +116,27 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
...
@@ -107,19 +116,27 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_h
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
img_w
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
const
int
f
=
static_cast
<
int
>
(
filter
.
dims
()[
0
]);
const
XPUT
*
input_data
=
reinterpret_cast
<
const
XPUT
*>
(
input
->
data
<
T
>
());
const
XPUT
*
filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter
.
data
<
T
>
());
const
XPUT
*
output_grad_data
=
reinterpret_cast
<
const
XPUT
*>
(
output_grad
->
data
<
T
>
());
XPUT
*
input_grad_data
=
nullptr
;
if
(
input_grad
)
{
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad_data
=
reinterpret_cast
<
XPUT
*>
(
input_grad
->
data
<
T
>
());
}
}
XPUT
*
filter_grad_data
=
nullptr
;
if
(
filter_grad
)
{
if
(
filter_grad
)
{
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
filter_grad_data
=
reinterpret_cast
<
XPUT
*>
(
filter_grad
->
data
<
T
>
());
}
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
conv2d_grad
<
float
,
float
,
float
,
int16_t
>
(
int
r
=
xpu
::
conv2d_grad
<
XPUT
,
XPUT
,
XPUT
,
int16_t
>
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
filter
.
data
<
T
>
(),
dev_ctx
.
x_context
(),
input_data
,
filter_data
,
output_grad_data
,
output_grad
->
data
<
T
>
(),
input_grad
?
input_grad
->
data
<
T
>
()
:
nullptr
,
input_grad_data
,
filter_grad_data
,
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
filter_grad
?
filter_grad
->
data
<
T
>
()
:
nullptr
,
batch_size
,
img_c
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
img_h
,
img_w
,
f
,
ksize
,
strides
,
paddings
,
dilations
,
groups
,
nullptr
,
nullptr
,
nullptr
,
true
);
nullptr
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d %s]"
,
...
@@ -130,14 +147,22 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
...
@@ -130,14 +147,22 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d
,
conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
REGISTER_OP_XPU_KERNEL
(
paddle
::
platform
::
float16
>
);
conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
REGISTER_OP_XPU_KERNEL
(
conv2d_grad
,
conv2d_grad
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
REGISTER_OP_XPU_KERNEL
(
depthwise_conv2d_grad
,
depthwise_conv2d_grad
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GemmConvGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
276017bb
...
@@ -51,16 +51,20 @@ XPUOpMap& get_kl2_ops() {
...
@@ -51,16 +51,20 @@ XPUOpMap& get_kl2_ops() {
{
"clip"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"clip"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"concat"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
{
"conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"conv2d_transpose_grad"
,
{
"conv2d_transpose_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"conv2d_transpose"
,
{
"conv2d_transpose"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"depthwise_conv2d_grad"
,
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"depthwise_conv2d"
,
{
"depthwise_conv2d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"dropout_grad"
,
{
"dropout_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"dropout"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"dropout"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_conv2d_op_xpu.py
浏览文件 @
276017bb
...
@@ -23,6 +23,7 @@ import paddle.fluid as fluid
...
@@ -23,6 +23,7 @@ import paddle.fluid as fluid
from
op_test_xpu
import
XPUOpTest
from
op_test_xpu
import
XPUOpTest
import
paddle
import
paddle
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid
import
Program
,
program_guard
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
def
conv2d_forward_naive
(
input
,
def
conv2d_forward_naive
(
input
,
...
@@ -159,320 +160,334 @@ def create_test_padding_VALID_class(parent):
...
@@ -159,320 +160,334 @@ def create_test_padding_VALID_class(parent):
globals
()[
cls_name
]
=
TestPaddingVALIDCase
globals
()[
cls_name
]
=
TestPaddingVALIDCase
class
TestConv2DOp
(
XPUOpTest
):
class
XPUTestConv2DOp
(
XPUOpTestWrapper
):
def
setUp
(
self
):
def
__init__
(
self
):
self
.
op_type
=
"conv2d"
self
.
op_name
=
'conv2d'
self
.
use_cudnn
=
False
self
.
use_dynamic_create_class
=
False
self
.
exhaustive_search
=
False
self
.
use_cuda
=
False
class
TestConv2DOp
(
XPUOpTest
):
self
.
use_mkldnn
=
False
def
setUp
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
False
self
.
dtype
=
self
.
in_type
self
.
data_format
=
"AnyLayout"
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
dtype
=
np
.
float32
self
.
op_type
=
"conv2d"
self
.
init_kernel_type
()
self
.
use_cudnn
=
False
self
.
init_group
()
self
.
exhaustive_search
=
False
self
.
init_dilation
()
self
.
use_cuda
=
False
self
.
init_test_case
()
self
.
use_mkldnn
=
False
conv2d_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
if
not
self
.
has_cuda
():
self
.
fuse_relu_before_depthwise_conv
=
False
self
.
fuse_relu_before_depthwise_conv
=
False
if
self
.
fuse_relu_before_depthwise_conv
:
self
.
data_format
=
"AnyLayout"
input
=
input
-
0.5
self
.
init_kernel_type
()
input
-=
(
input
<
0
)
*
0.1
self
.
init_group
()
input
+=
(
input
>=
0
)
*
0.1
self
.
init_dilation
()
input2
=
np
.
maximum
(
input
,
0.0
)
self
.
init_test_case
()
else
:
input2
=
input
conv2d_param
=
{
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input2
,
filter
,
self
.
groups
,
'dilation'
:
self
.
dilations
conv2d_param
)
}
output
=
output
.
astype
(
self
.
dtype
)
np
.
random
.
seed
(
100
)
self
.
inputs
=
{
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
'Input'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
),
if
not
self
.
has_cuda
():
'Filter'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
filter
)
self
.
fuse_relu_before_depthwise_conv
=
False
}
if
self
.
fuse_relu_before_depthwise_conv
:
self
.
attrs
=
{
input
=
input
-
0.5
'strides'
:
self
.
stride
,
input
-=
(
input
<
0
)
*
0.1
'paddings'
:
self
.
pad
,
input
+=
(
input
>=
0
)
*
0.1
'groups'
:
self
.
groups
,
input2
=
np
.
maximum
(
input
,
0.0
)
'dilations'
:
self
.
dilations
,
else
:
'use_cudnn'
:
self
.
use_cudnn
,
input2
=
input
'use_mkldnn'
:
self
.
use_mkldnn
,
np
.
random
.
seed
(
1
)
'data_format'
:
self
.
data_format
,
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
'fuse_relu_before_depthwise_conv'
:
self
.
filter_size
).
astype
(
self
.
dtype
)
self
.
fuse_relu_before_depthwise_conv
,
'exhaustive_search'
:
self
.
exhaustive_search
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input2
,
filter
,
}
self
.
groups
,
conv2d_param
)
self
.
outputs
=
{
'Output'
:
output
}
output
=
output
.
astype
(
self
.
dtype
)
def
has_cuda
(
self
):
self
.
inputs
=
{
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
'Input'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
),
self
.
use_cuda
)
'Filter'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
def
test_check_output
(
self
):
self
.
attrs
=
{
if
core
.
is_compiled_with_xpu
():
'strides'
:
self
.
stride
,
paddle
.
enable_static
()
'paddings'
:
self
.
pad
,
place
=
paddle
.
XPUPlace
(
0
)
'groups'
:
self
.
groups
,
self
.
check_output_with_place
(
place
)
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
,
def
test_check_grad
(
self
):
'use_mkldnn'
:
self
.
use_mkldnn
,
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
'data_format'
:
self
.
data_format
,
self
.
no_need_check_grad
==
True
):
'fuse_relu_before_depthwise_conv'
:
return
self
.
fuse_relu_before_depthwise_conv
,
if
core
.
is_compiled_with_xpu
():
'exhaustive_search'
:
self
.
exhaustive_search
paddle
.
enable_static
()
}
place
=
paddle
.
XPUPlace
(
0
)
self
.
outputs
=
{
'Output'
:
output
}
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Filter'
},
'Output'
)
def
has_cuda
(
self
):
def
test_check_grad_no_filter
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
use_cuda
)
self
.
no_need_check_grad
==
True
):
return
def
test_check_output
(
self
):
if
core
.
is_compiled_with_xpu
():
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
self
.
place
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad
(
self
):
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
def
test_check_grad_no_input
(
self
):
self
.
no_need_check_grad
==
True
):
if
self
.
dtype
==
np
.
float16
or
(
hasattr
(
self
,
"no_need_check_grad"
)
and
return
self
.
no_need_check_grad
==
True
):
if
core
.
is_compiled_with_xpu
():
return
paddle
.
enable_static
()
if
core
.
is_compiled_with_xpu
():
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
paddle
.
enable_static
()
'Output'
)
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
def
test_check_grad_no_filter
(
self
):
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
def
init_test_case
(
self
):
return
self
.
pad
=
[
0
,
0
]
if
core
.
is_compiled_with_xpu
():
self
.
stride
=
[
1
,
1
]
paddle
.
enable_static
()
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
check_grad_with_place
(
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
place
,
[
'Input'
],
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
'Output'
,
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
no_grad_set
=
set
([
'Filter'
]))
def
init_test_case_2
(
self
):
def
test_check_grad_no_input
(
self
):
pass
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
no_need_check_grad
==
True
):
def
init_dilation
(
self
):
return
self
.
dilations
=
[
1
,
1
]
if
core
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
def
init_group
(
self
):
self
.
check_grad_with_place
(
self
.
groups
=
1
self
.
place
,
[
'Filter'
],
'Output'
,
def
init_kernel_type
(
self
):
no_grad_set
=
set
([
'Input'
]))
pass
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
class
TestWithPad
(
TestConv2DOp
):
self
.
stride
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
pad
=
[
1
,
1
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
self
.
stride
=
[
1
,
1
]
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWithStride
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWith1x1
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_op_type(self):
# self.op_type = "conv_cudnn"
# ---- test asymmetric padding ----
def
init_test_case_2
(
self
):
pass
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_kernel_type
(
self
):
pass
class
TestWithPad
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWithStride
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
class
TestWith1x1
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
120
,
f_c
,
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
class
TestConv2DOp_v2
(
XPUOpTest
):
def
setUp
(
self
):
# ---- test asymmetric padding ----
self
.
op_type
=
"conv2d"
class
XPUTestConv2DOp_v2
(
XPUOpTestWrapper
):
self
.
use_cudnn
=
False
def
__init__
(
self
):
self
.
exhaustive_search
=
False
self
.
op_name
=
'conv2d'
self
.
use_cuda
=
False
self
.
use_dynamic_create_class
=
False
self
.
use_mkldnn
=
False
self
.
fuse_relu_before_depthwise_conv
=
False
class
TestConv2DOp_v2
(
XPUOpTest
):
self
.
dtype
=
np
.
float32
def
setUp
(
self
):
self
.
init_kernel_type
()
self
.
dtype
=
self
.
in_type
self
.
init_group
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_dilation
()
self
.
op_type
=
"conv2d"
self
.
init_data_format
()
self
.
use_cudnn
=
False
self
.
init_test_case
()
self
.
exhaustive_search
=
False
self
.
init_paddings
()
self
.
use_cuda
=
False
self
.
init_test_case_2
()
self
.
use_mkldnn
=
False
conv2d_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
if
not
self
.
has_cuda
():
self
.
fuse_relu_before_depthwise_conv
=
False
self
.
fuse_relu_before_depthwise_conv
=
False
if
self
.
fuse_relu_before_depthwise_conv
:
self
.
init_kernel_type
()
input
=
input
-
0.5
self
.
init_group
()
input
-=
(
input
<
0
)
*
0.1
self
.
init_dilation
()
input
+=
(
input
>=
0
)
*
0.1
self
.
init_data_format
()
input2
=
np
.
maximum
(
input
,
0.0
)
self
.
init_test_case
()
else
:
self
.
init_paddings
()
input2
=
input
self
.
init_test_case_2
()
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
filter_size
).
astype
(
self
.
dtype
)
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
conv2d_param
=
{
input2
,
filter
,
self
.
groups
,
conv2d_param
,
self
.
padding_algorithm
,
'stride'
:
self
.
stride
,
self
.
data_format
)
'pad'
:
self
.
pad
,
output
=
output
.
astype
(
self
.
dtype
)
'dilation'
:
self
.
dilations
}
self
.
inputs
=
{
'Input'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
),
np
.
random
.
seed
(
100
)
'Filter'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
filter
)
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
}
if
not
self
.
has_cuda
():
self
.
attrs
=
{
self
.
fuse_relu_before_depthwise_conv
=
False
'strides'
:
self
.
stride
,
if
self
.
fuse_relu_before_depthwise_conv
:
'paddings'
:
self
.
pad
,
input
=
input
-
0.5
'padding_algorithm'
:
self
.
padding_algorithm
,
input
-=
(
input
<
0
)
*
0.1
'groups'
:
self
.
groups
,
input
+=
(
input
>=
0
)
*
0.1
'dilations'
:
self
.
dilations
,
input2
=
np
.
maximum
(
input
,
0.0
)
'use_cudnn'
:
self
.
use_cudnn
,
else
:
'use_mkldnn'
:
self
.
use_mkldnn
,
input2
=
input
'data_format'
:
self
.
data_format
,
np
.
random
.
seed
(
8
)
'fuse_relu_before_depthwise_conv'
:
filter
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
fuse_relu_before_depthwise_conv
,
self
.
filter_size
).
astype
(
self
.
dtype
)
'exhaustive_search'
:
self
.
exhaustive_search
output
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
}
input2
,
filter
,
self
.
groups
,
conv2d_param
,
self
.
outputs
=
{
'Output'
:
output
}
self
.
padding_algorithm
,
self
.
data_format
)
output
=
output
.
astype
(
self
.
dtype
)
def
has_cuda
(
self
):
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
self
.
inputs
=
{
self
.
use_cuda
)
'Input'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Filter'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
filter
)
def
test_check_output
(
self
):
}
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self
.
attrs
=
{
if
core
.
is_compiled_with_xpu
():
'strides'
:
self
.
stride
,
paddle
.
enable_static
()
'paddings'
:
self
.
pad
,
place
=
paddle
.
XPUPlace
(
0
)
'padding_algorithm'
:
self
.
padding_algorithm
,
self
.
check_output_with_place
(
place
)
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
def
test_check_grad
(
self
):
'use_cudnn'
:
self
.
use_cudnn
,
# TODO(wangzhongpu): support mkldnn op in dygraph mode
'use_mkldnn'
:
self
.
use_mkldnn
,
if
self
.
dtype
==
np
.
float16
:
'data_format'
:
self
.
data_format
,
return
'fuse_relu_before_depthwise_conv'
:
if
core
.
is_compiled_with_xpu
():
self
.
fuse_relu_before_depthwise_conv
,
paddle
.
enable_static
()
'exhaustive_search'
:
self
.
exhaustive_search
place
=
paddle
.
XPUPlace
(
0
)
}
self
.
check_grad_with_place
(
place
,
{
'Input'
,
'Filter'
},
'Output'
)
self
.
outputs
=
{
'Output'
:
output
}
def
test_check_grad_no_filter
(
self
):
def
has_cuda
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
return
core
.
is_compiled_with_cuda
()
and
(
self
.
use_cudnn
or
if
self
.
dtype
==
np
.
float16
:
self
.
use_cuda
)
return
if
core
.
is_compiled_with_xpu
():
def
test_check_output
(
self
):
paddle
.
enable_static
()
# TODO(wangzhongpu): support mkldnn op in dygraph mode
place
=
paddle
.
XPUPlace
(
0
)
if
core
.
is_compiled_with_xpu
():
self
.
check_grad_with_place
(
paddle
.
enable_static
()
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
self
.
check_output_with_place
(
place
=
self
.
place
)
def
test_check_grad_no_input
(
self
):
def
test_check_grad
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if
self
.
dtype
==
np
.
float16
:
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
return
self
.
no_need_check_grad
==
True
):
if
core
.
is_compiled_with_xpu
():
return
paddle
.
enable_static
()
if
core
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
paddle
.
enable_static
()
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
self
.
place
,
{
'Input'
,
'Filter'
},
place
,
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
'Output'
)
def
init_test_case
(
self
):
def
test_check_grad_no_filter
(
self
):
self
.
pad
=
[
0
,
0
]
# TODO(wangzhongpu): support mkldnn op in dygraph mode
self
.
stride
=
[
1
,
2
]
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
no_need_check_grad
==
True
):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
return
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
if
core
.
is_compiled_with_xpu
():
self
.
filter_size
=
[
6
,
f_c
,
4
,
3
]
paddle
.
enable_static
()
self
.
check_grad_with_place
(
def
init_dilation
(
self
):
self
.
place
,
[
'Input'
],
self
.
dilations
=
[
1
,
1
]
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
init_group
(
self
):
self
.
groups
=
1
def
test_check_grad_no_input
(
self
):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
def
init_kernel_type
(
self
):
if
(
hasattr
(
self
,
"no_need_check_grad"
)
and
pass
self
.
no_need_check_grad
==
True
):
return
def
init_paddings
(
self
):
if
core
.
is_compiled_with_xpu
():
self
.
pad
=
[
0
,
0
]
paddle
.
enable_static
()
self
.
padding_algorithm
=
"EXPLICIT"
self
.
check_grad_with_place
(
self
.
place
,
[
'Filter'
],
def
init_data_format
(
self
):
'Output'
,
self
.
data_format
=
"NCHW"
no_grad_set
=
set
([
'Input'
]))
def
init_test_case_2
(
self
):
def
init_test_case
(
self
):
pass
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
class
TestConv2DOp_AsyPadding
(
TestConv2DOp_v2
):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
def
init_paddings
(
self
):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
pad
=
[
0
,
0
,
0
,
0
]
self
.
filter_size
=
[
6
,
f_c
,
4
,
3
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
class
TestWithPad_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
def
init_group
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
def
init_kernel_type
(
self
):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
pass
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_paddings
(
self
):
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
pad
=
[
1
,
1
,
1
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
self
.
padding_algorithm
=
"EXPLICIT"
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
class
TestWithStride_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
def
init_test_case_2
(
self
):
self
.
stride
=
[
2
,
2
]
pass
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
class
TestConv2DOp_AsyPadding
(
TestConv2DOp_v2
):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
def
init_paddings
(
self
):
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
pad
=
[
0
,
0
,
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
1
,
1
]
class
TestWithPad_AsyPadding
(
TestConv2DOp_v2
):
self
.
padding_algorithm
=
"EXPLICIT"
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
1
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestWithStride_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
6
,
6
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
1
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
support_types
=
get_xpu_op_support_types
(
'conv2d'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestConv2DOp
,
stype
)
create_test_class
(
globals
(),
XPUTestConv2DOp_v2
,
stype
)
#---------- test SAME VALID -----------
#---------- test SAME VALID -----------
#create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
#create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录