提交 26bc5b12 编写于 作者: C caoying03

add implementations.

上级 34ff7522
......@@ -97,6 +97,11 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_ = inputScore;
}
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data may
// occur. The selected indices should be stored in
// CpuSparseMatrix with SparseValueType set to NO_VALUE.
Matrix::resizeOrCreate(
output_.value,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
class SequenceSliceLayer : public Layer {
public:
explicit SequenceSliceLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
private:
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data
// may occur. The selected indices should be stored in CpuSparseMatrix
// with SparseValueType set to NO_VALUE.
MatrixPtr startIdsOnCpu_;
MatrixPtr endIdsOnCpu_;
std::vector<int> selectedRows_;
IVectorPtr rowIndice_;
std::vector<std::vector<int>> inputSeqInfoVec_;
std::vector<int> outSubSeqStartPos_;
std::vector<int> outSeqStartPos_;
void checkInputs();
void copySliceIdsToCpu();
void calSelectedRows(const MatrixPtr starts, const MatrixPtr ends);
};
REGISTER_LAYER(seq_slice, SequenceSliceLayer);
bool SequenceSliceLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_GE(inputLayers_.size(), 2U);
CHECK_LE(inputLayers_.size(), 3U);
setNeedSequenceInfo(false);
return true;
}
void SequenceSliceLayer::checkInputs() {
const Argument& inputSeq = getInput(0);
CHECK(inputSeq.hasSeq()) << "The first input of sequence slic layer "
<< "must be a sequence.";
// Check inputs
const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(indices1->getHeight(),
inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences())
<< "Height of the second input should be equal to number of sequence "
<< "in the first input.";
if (inputLayers_.size() == 3) {
const MatrixPtr indices2 = getInputValue(2);
CHECK_EQ(indices2->getHeight(), indices1->getHeight())
<< "start indices and end indices should have the same height.";
CHECK_EQ(indices2->getWidth(), indices1->getWidth())
<< "start indices and end indices should have the same Width.";
}
}
void SequenceSliceLayer::copySliceIdsToCpu() {
if (!useGpu_) {
if (inputLayers_.size() == 2U) {
if (config_.select_first()) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = nullptr;
} else {
startIdsOnCpu_ = nullptr;
endIdsOnCpu_ = getInputValue(1);
}
} else if (inputLayers_.size() == 3U) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2);
}
return;
}
const MatrixPtr indices1 = getInputValue(1);
if (inputLayers_.size() == 2U) {
if (config_.select_first()) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);
endIdsOnCpu_ = nullptr;
} else {
Matrix::resizeOrCreate(endIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices1);
startIdsOnCpu_ = nullptr;
}
} else if (inputLayers_.size() == 3U) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);
const MatrixPtr indices2 = getInputValue(2);
Matrix::resizeOrCreate(endIdsOnCpu_,
indices2->getHeight(),
indices2->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices2);
}
}
void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
const MatrixPtr ends) {
outSeqStartPos_.resize(1, 0);
outSubSeqStartPos_.resize(1, 0);
selectedRows_.clear();
size_t beamSize = starts ? starts->getWidth() : ends->getWidth();
// iterate over sequence
size_t rowIdx = 0;
for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) {
// iterate over sub-sequence in a sequence
for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) {
// iterate over each index for slicing.
for (size_t k = 0; k < beamSize; ++k) {
if (starts) {
if (starts->getElement(rowIdx, k) == -1.) break;
} else if (ends->getElement(rowIdx, k) == -1.)
break;
int begPos = inputSeqInfoVec_[i][j];
if (starts) begPos += starts->getElement(rowIdx, k);
int endPos = inputSeqInfoVec_[i][j + 1] - 1;
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);
int seqLen = endPos - begPos + 1;
CHECK(seqLen);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
inputSeqInfoVec_.size() > 1
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
: outSeqStartPos_.push_back(outSeqStartPos_.back() + seqLen);
}
rowIdx++;
}
if (inputSeqInfoVec_.size() > 1)
outSeqStartPos_.push_back(outSubSeqStartPos_.back());
}
if (useGpu_) {
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
} else {
rowIndice_ =
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
}
// create the sequence information for the output.
ICpuGpuVector::resizeOrCreate(
output_.sequenceStartPositions, outSeqStartPos_.size(), false);
output_.sequenceStartPositions->copyFrom(
outSeqStartPos_.data(), outSeqStartPos_.size(), false);
if (inputSeqInfoVec_.size() > 1) {
ICpuGpuVector::resizeOrCreate(
output_.subSequenceStartPositions, outSubSeqStartPos_.size(), false);
output_.subSequenceStartPositions->copyFrom(
outSubSeqStartPos_.data(), outSubSeqStartPos_.size(), false);
}
}
void SequenceSliceLayer::forward(PassType passType) {
Layer::forward(passType);
checkInputs();
const Argument& inputSeq = getInput(0);
inputSeqInfoVec_.clear();
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
copySliceIdsToCpu();
// calculate the selected row indices in a batch,
// and build the output sequence information.
calSelectedRows(startIdsOnCpu_ ? startIdsOnCpu_ : nullptr,
endIdsOnCpu_ ? endIdsOnCpu_ : nullptr);
resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
}
void SequenceSliceLayer::backward(const UpdateCallback& callback) {
MatrixPtr inputSeqGrad = getInputGrad(0);
MatrixPtr outputGrad = getOutputGrad();
outputGrad->addToRows(*inputSeqGrad, *rowIndice_);
}
} // namespace paddle
......@@ -52,11 +52,10 @@ private:
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
* [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
*/
void calSelectedCols(const MatrixPtr selectedIndices,
void calSelectedRows(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo);
// if the second input of this layer is on GPU memory, copy it to CPU memory.
......@@ -67,7 +66,7 @@ private:
std::vector<std::vector<int>> inputSeqInfoVec_;
// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
// rowIndice_ and selectedRows_ actually share a same memory.
IVectorPtr rowIndice_;
std::vector<int> selectedRows_;
};
......@@ -83,7 +82,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return true;
}
void SubNestedSequenceLayer::calSelectedCols(
void SubNestedSequenceLayer::calSelectedRows(
const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo) {
selectedRows_.clear();
......@@ -96,6 +95,11 @@ void SubNestedSequenceLayer::calSelectedCols(
for (size_t i = 0; i < seqNum; ++i) {
for (size_t j = 0; j < beamSize; ++j) {
if (selectedIndices->getElement(i, j) == -1.) break;
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data
// may occur. The selected indices should be stored in
// CpuSparseMatrix with SparseValueType set to NO_VALUE.
int selSubSeqIdx = selectedIndices->getElement(i, j);
CHECK_GT(inputSeqInfoVec_[i].size() - 1, selSubSeqIdx);
......@@ -160,7 +164,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
calSelectedCols(selIdsCpu_, inputSeqInfoVec_);
calSelectedRows(selIdsCpu_, inputSeqInfoVec_);
resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
......
......@@ -26,9 +26,9 @@ using namespace std; // NOLINT
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);
const int MAX_SEQ_NUM = 5;
const int MAX_SEQ_LEN = 5;
const int MAX_BEAM_SIZE = 3;
const int MAX_SEQ_NUM = 17;
const int MAX_SEQ_LEN = 23;
const int MAX_BEAM_SIZE = 13;
vector<real> randSampling(real range, int n) {
CHECK_GE(range, n);
......@@ -46,8 +46,7 @@ void genSeqInfo(vector<int>& seqStartPos, vector<int>& subSeqStartPos) {
seqStartPos.resize(1, 0);
subSeqStartPos.resize(1, 0);
// srand((size_t)(time(NULL)));
srand(1);
srand((size_t)(time(NULL)));
int seqNum = 1 + (rand() % MAX_SEQ_NUM);
for (int i = 0; i < seqNum; ++i) {
int subSeqNum = 1 + (rand() % MAX_SEQ_NUM);
......@@ -105,7 +104,7 @@ void genTestData(vector<int>& seqStartPos,
vector<vector<real>>& starts,
vector<vector<real>>& ends,
bool hasSubseq) {
size_t beamSize = MAX_BEAM_SIZE;
size_t beamSize = 1 + (rand() % MAX_BEAM_SIZE);
genSeqInfo(seqStartPos, subSeqStartPos);
genStarts(hasSubseq ? subSeqStartPos : seqStartPos, starts, beamSize);
......@@ -167,16 +166,21 @@ void testSeqSliceLayer(bool hasSubseq,
config.inputDefs.push_back(
{INPUT_SELF_DEFINE_DATA, "starts", startMatrixPtr});
config.layerConfig.add_inputs();
config.layerConfig.set_select_first(true);
}
// add end indices
if (ends.size()) {
vector<real> endsToVec;
flatten2dVector(ends, endsToVec);
MatrixPtr endMatrixPtr =
Matrix::create(ends.size(), ends[0].size(), false, false);
endMatrixPtr->copyFrom(endsToVec.data(), endsToVec.size());
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "ends", endMatrixPtr});
config.layerConfig.add_inputs();
config.layerConfig.set_select_first(false);
}
testLayerGrad(config, "seq_slice", /*batchSize*/ 100, false, useGpu, false);
......@@ -188,10 +192,15 @@ TEST(Layer, SeqSliceLayer) {
vector<vector<real>> starts;
vector<vector<real>> ends;
std::vector<bool> mode = {false};
#ifndef PADDLE_ONLY_CPU
mode.push_back(true);
#endif
genSeqInfo(seqStartPos, subSeqStartPos);
for (bool hasSubseq : {false, true}) {
for (bool hasSubseq : {true, false}) {
LOG(INFO) << "hasSubSeq : " << hasSubseq;
genTestData(seqStartPos, subSeqStartPos, starts, ends, hasSubseq);
for (bool useGpu : {false, true}) {
for (bool useGpu : mode) {
vector<vector<real>> tmp;
testSeqSliceLayer(
hasSubseq, useGpu, seqStartPos, subSeqStartPos, tmp, ends);
......
......@@ -670,10 +670,13 @@ void Argument::reorganizeSeqInfo(
const ICpuGpuVectorPtr seqStartPos,
const ICpuGpuVectorPtr subSeqStartPos,
std::vector<std::vector<int>>& reorganizedSeqInfo) {
int* seqStarts = seqStartPos->getMutableData(false);
int* subSeqStarts = subSeqStartPos->getMutableData(false);
CHECK(seqStartPos);
int seqNum = seqStartPos->getSize() - 1;
int* seqStarts = seqStartPos->getMutableData(false);
if (subSeqStartPos) {
int* subSeqStarts = subSeqStartPos->getMutableData(false);
reorganizedSeqInfo.resize(seqNum, std::vector<int>());
int seqIdx = 0;
for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) {
......@@ -684,6 +687,12 @@ void Argument::reorganizeSeqInfo(
reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]);
}
}
} else {
reorganizedSeqInfo.resize(1, std::vector<int>(seqNum + 1, 0));
memcpy(reorganizedSeqInfo[0].data(),
seqStarts,
sizeof(int) * seqStartPos->getSize());
}
}
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册