Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
26bc5b12
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
26bc5b12
编写于
8月 08, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add implementations.
上级
34ff7522
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
278 addition
and
23 deletion
+278
-23
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
+5
-0
paddle/gserver/layers/SequenceSliceLayer.cpp
paddle/gserver/layers/SequenceSliceLayer.cpp
+228
-0
paddle/gserver/layers/SubNestedSequenceLayer.cpp
paddle/gserver/layers/SubNestedSequenceLayer.cpp
+10
-6
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
+17
-8
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+18
-9
未找到文件。
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
浏览文件 @
26bc5b12
...
...
@@ -97,6 +97,11 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_
=
inputScore
;
}
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data may
// occur. The selected indices should be stored in
// CpuSparseMatrix with SparseValueType set to NO_VALUE.
Matrix
::
resizeOrCreate
(
output_
.
value
,
input
.
hasSubseq
()
?
input
.
getNumSubSequences
()
:
input
.
getNumSequences
(),
...
...
paddle/gserver/layers/SequenceSliceLayer.cpp
0 → 100644
浏览文件 @
26bc5b12
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
class
SequenceSliceLayer
:
public
Layer
{
public:
explicit
SequenceSliceLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
private:
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data
// may occur. The selected indices should be stored in CpuSparseMatrix
// with SparseValueType set to NO_VALUE.
MatrixPtr
startIdsOnCpu_
;
MatrixPtr
endIdsOnCpu_
;
std
::
vector
<
int
>
selectedRows_
;
IVectorPtr
rowIndice_
;
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
std
::
vector
<
int
>
outSubSeqStartPos_
;
std
::
vector
<
int
>
outSeqStartPos_
;
void
checkInputs
();
void
copySliceIdsToCpu
();
void
calSelectedRows
(
const
MatrixPtr
starts
,
const
MatrixPtr
ends
);
};
REGISTER_LAYER
(
seq_slice
,
SequenceSliceLayer
);
bool
SequenceSliceLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_GE
(
inputLayers_
.
size
(),
2U
);
CHECK_LE
(
inputLayers_
.
size
(),
3U
);
setNeedSequenceInfo
(
false
);
return
true
;
}
void
SequenceSliceLayer
::
checkInputs
()
{
const
Argument
&
inputSeq
=
getInput
(
0
);
CHECK
(
inputSeq
.
hasSeq
())
<<
"The first input of sequence slic layer "
<<
"must be a sequence."
;
// Check inputs
const
MatrixPtr
indices1
=
getInputValue
(
1
);
CHECK_EQ
(
indices1
->
getHeight
(),
inputSeq
.
hasSubseq
()
?
inputSeq
.
getNumSubSequences
()
:
inputSeq
.
getNumSequences
())
<<
"Height of the second input should be equal to number of sequence "
<<
"in the first input."
;
if
(
inputLayers_
.
size
()
==
3
)
{
const
MatrixPtr
indices2
=
getInputValue
(
2
);
CHECK_EQ
(
indices2
->
getHeight
(),
indices1
->
getHeight
())
<<
"start indices and end indices should have the same height."
;
CHECK_EQ
(
indices2
->
getWidth
(),
indices1
->
getWidth
())
<<
"start indices and end indices should have the same Width."
;
}
}
void
SequenceSliceLayer
::
copySliceIdsToCpu
()
{
if
(
!
useGpu_
)
{
if
(
inputLayers_
.
size
()
==
2U
)
{
if
(
config_
.
select_first
())
{
startIdsOnCpu_
=
getInputValue
(
1
);
endIdsOnCpu_
=
nullptr
;
}
else
{
startIdsOnCpu_
=
nullptr
;
endIdsOnCpu_
=
getInputValue
(
1
);
}
}
else
if
(
inputLayers_
.
size
()
==
3U
)
{
startIdsOnCpu_
=
getInputValue
(
1
);
endIdsOnCpu_
=
getInputValue
(
2
);
}
return
;
}
const
MatrixPtr
indices1
=
getInputValue
(
1
);
if
(
inputLayers_
.
size
()
==
2U
)
{
if
(
config_
.
select_first
())
{
Matrix
::
resizeOrCreate
(
startIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
startIdsOnCpu_
->
copyFrom
(
*
indices1
);
endIdsOnCpu_
=
nullptr
;
}
else
{
Matrix
::
resizeOrCreate
(
endIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
endIdsOnCpu_
->
copyFrom
(
*
indices1
);
startIdsOnCpu_
=
nullptr
;
}
}
else
if
(
inputLayers_
.
size
()
==
3U
)
{
Matrix
::
resizeOrCreate
(
startIdsOnCpu_
,
indices1
->
getHeight
(),
indices1
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
startIdsOnCpu_
->
copyFrom
(
*
indices1
);
const
MatrixPtr
indices2
=
getInputValue
(
2
);
Matrix
::
resizeOrCreate
(
endIdsOnCpu_
,
indices2
->
getHeight
(),
indices2
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
endIdsOnCpu_
->
copyFrom
(
*
indices2
);
}
}
void
SequenceSliceLayer
::
calSelectedRows
(
const
MatrixPtr
starts
,
const
MatrixPtr
ends
)
{
outSeqStartPos_
.
resize
(
1
,
0
);
outSubSeqStartPos_
.
resize
(
1
,
0
);
selectedRows_
.
clear
();
size_t
beamSize
=
starts
?
starts
->
getWidth
()
:
ends
->
getWidth
();
// iterate over sequence
size_t
rowIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
inputSeqInfoVec_
.
size
();
++
i
)
{
// iterate over sub-sequence in a sequence
for
(
size_t
j
=
0
;
j
<
inputSeqInfoVec_
[
i
].
size
()
-
1
;
++
j
)
{
// iterate over each index for slicing.
for
(
size_t
k
=
0
;
k
<
beamSize
;
++
k
)
{
if
(
starts
)
{
if
(
starts
->
getElement
(
rowIdx
,
k
)
==
-
1.
)
break
;
}
else
if
(
ends
->
getElement
(
rowIdx
,
k
)
==
-
1.
)
break
;
int
begPos
=
inputSeqInfoVec_
[
i
][
j
];
if
(
starts
)
begPos
+=
starts
->
getElement
(
rowIdx
,
k
);
int
endPos
=
inputSeqInfoVec_
[
i
][
j
+
1
]
-
1
;
if
(
ends
)
endPos
=
inputSeqInfoVec_
[
i
][
j
]
+
ends
->
getElement
(
rowIdx
,
k
);
int
seqLen
=
endPos
-
begPos
+
1
;
CHECK
(
seqLen
);
for
(
int
m
=
begPos
;
m
<=
endPos
;
++
m
)
selectedRows_
.
push_back
(
m
);
inputSeqInfoVec_
.
size
()
>
1
?
outSubSeqStartPos_
.
push_back
(
outSubSeqStartPos_
.
back
()
+
seqLen
)
:
outSeqStartPos_
.
push_back
(
outSeqStartPos_
.
back
()
+
seqLen
);
}
rowIdx
++
;
}
if
(
inputSeqInfoVec_
.
size
()
>
1
)
outSeqStartPos_
.
push_back
(
outSubSeqStartPos_
.
back
());
}
if
(
useGpu_
)
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
size
(),
useGpu_
);
rowIndice_
->
copyFrom
(
selectedRows_
.
data
(),
selectedRows_
.
size
());
}
else
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
data
(),
selectedRows_
.
size
(),
useGpu_
);
}
// create the sequence information for the output.
ICpuGpuVector
::
resizeOrCreate
(
output_
.
sequenceStartPositions
,
outSeqStartPos_
.
size
(),
false
);
output_
.
sequenceStartPositions
->
copyFrom
(
outSeqStartPos_
.
data
(),
outSeqStartPos_
.
size
(),
false
);
if
(
inputSeqInfoVec_
.
size
()
>
1
)
{
ICpuGpuVector
::
resizeOrCreate
(
output_
.
subSequenceStartPositions
,
outSubSeqStartPos_
.
size
(),
false
);
output_
.
subSequenceStartPositions
->
copyFrom
(
outSubSeqStartPos_
.
data
(),
outSubSeqStartPos_
.
size
(),
false
);
}
}
void
SequenceSliceLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
checkInputs
();
const
Argument
&
inputSeq
=
getInput
(
0
);
inputSeqInfoVec_
.
clear
();
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
copySliceIdsToCpu
();
// calculate the selected row indices in a batch,
// and build the output sequence information.
calSelectedRows
(
startIdsOnCpu_
?
startIdsOnCpu_
:
nullptr
,
endIdsOnCpu_
?
endIdsOnCpu_
:
nullptr
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
}
void
SequenceSliceLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
MatrixPtr
inputSeqGrad
=
getInputGrad
(
0
);
MatrixPtr
outputGrad
=
getOutputGrad
();
outputGrad
->
addToRows
(
*
inputSeqGrad
,
*
rowIndice_
);
}
}
// namespace paddle
paddle/gserver/layers/SubNestedSequenceLayer.cpp
浏览文件 @
26bc5b12
...
...
@@ -52,11 +52,10 @@ private:
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
* [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
*/
void
calSelected
Col
s
(
const
MatrixPtr
selectedIndices
,
void
calSelected
Row
s
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
);
// if the second input of this layer is on GPU memory, copy it to CPU memory.
...
...
@@ -67,7 +66,7 @@ private:
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
// the final selected row indices in a batch,
// rowI
dx
_ and selectedRows_ actually share a same memory.
// rowI
ndice
_ and selectedRows_ actually share a same memory.
IVectorPtr
rowIndice_
;
std
::
vector
<
int
>
selectedRows_
;
};
...
...
@@ -83,7 +82,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return
true
;
}
void
SubNestedSequenceLayer
::
calSelected
Col
s
(
void
SubNestedSequenceLayer
::
calSelected
Row
s
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
)
{
selectedRows_
.
clear
();
...
...
@@ -96,6 +95,11 @@ void SubNestedSequenceLayer::calSelectedCols(
for
(
size_t
i
=
0
;
i
<
seqNum
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
beamSize
;
++
j
)
{
if
(
selectedIndices
->
getElement
(
i
,
j
)
==
-
1.
)
break
;
// TODO(caoying)
// Here selSubSeqIdx is automatically converted from real to int
// This is very dangerous if user fill this matrix himself, invalid data
// may occur. The selected indices should be stored in
// CpuSparseMatrix with SparseValueType set to NO_VALUE.
int
selSubSeqIdx
=
selectedIndices
->
getElement
(
i
,
j
);
CHECK_GT
(
inputSeqInfoVec_
[
i
].
size
()
-
1
,
selSubSeqIdx
);
...
...
@@ -160,7 +164,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
calSelected
Col
s
(
selIdsCpu_
,
inputSeqInfoVec_
);
calSelected
Row
s
(
selIdsCpu_
,
inputSeqInfoVec_
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
...
...
paddle/gserver/tests/test_SeqSliceLayerGrad.cpp
浏览文件 @
26bc5b12
...
...
@@ -26,9 +26,9 @@ using namespace std; // NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
const
int
MAX_SEQ_NUM
=
5
;
const
int
MAX_SEQ_LEN
=
5
;
const
int
MAX_BEAM_SIZE
=
3
;
const
int
MAX_SEQ_NUM
=
17
;
const
int
MAX_SEQ_LEN
=
23
;
const
int
MAX_BEAM_SIZE
=
1
3
;
vector
<
real
>
randSampling
(
real
range
,
int
n
)
{
CHECK_GE
(
range
,
n
);
...
...
@@ -46,8 +46,7 @@ void genSeqInfo(vector<int>& seqStartPos, vector<int>& subSeqStartPos) {
seqStartPos
.
resize
(
1
,
0
);
subSeqStartPos
.
resize
(
1
,
0
);
// srand((size_t)(time(NULL)));
srand
(
1
);
srand
((
size_t
)(
time
(
NULL
)));
int
seqNum
=
1
+
(
rand
()
%
MAX_SEQ_NUM
);
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqNum
=
1
+
(
rand
()
%
MAX_SEQ_NUM
);
...
...
@@ -105,7 +104,7 @@ void genTestData(vector<int>& seqStartPos,
vector
<
vector
<
real
>>&
starts
,
vector
<
vector
<
real
>>&
ends
,
bool
hasSubseq
)
{
size_t
beamSize
=
MAX_BEAM_SIZE
;
size_t
beamSize
=
1
+
(
rand
()
%
MAX_BEAM_SIZE
)
;
genSeqInfo
(
seqStartPos
,
subSeqStartPos
);
genStarts
(
hasSubseq
?
subSeqStartPos
:
seqStartPos
,
starts
,
beamSize
);
...
...
@@ -167,16 +166,21 @@ void testSeqSliceLayer(bool hasSubseq,
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"starts"
,
startMatrixPtr
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_select_first
(
true
);
}
// add end indices
if
(
ends
.
size
())
{
vector
<
real
>
endsToVec
;
flatten2dVector
(
ends
,
endsToVec
);
MatrixPtr
endMatrixPtr
=
Matrix
::
create
(
ends
.
size
(),
ends
[
0
].
size
(),
false
,
false
);
endMatrixPtr
->
copyFrom
(
endsToVec
.
data
(),
endsToVec
.
size
());
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"ends"
,
endMatrixPtr
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_select_first
(
false
);
}
testLayerGrad
(
config
,
"seq_slice"
,
/*batchSize*/
100
,
false
,
useGpu
,
false
);
...
...
@@ -188,10 +192,15 @@ TEST(Layer, SeqSliceLayer) {
vector
<
vector
<
real
>>
starts
;
vector
<
vector
<
real
>>
ends
;
std
::
vector
<
bool
>
mode
=
{
false
};
#ifndef PADDLE_ONLY_CPU
mode
.
push_back
(
true
);
#endif
genSeqInfo
(
seqStartPos
,
subSeqStartPos
);
for
(
bool
hasSubseq
:
{
false
,
true
})
{
for
(
bool
hasSubseq
:
{
true
,
false
})
{
LOG
(
INFO
)
<<
"hasSubSeq : "
<<
hasSubseq
;
genTestData
(
seqStartPos
,
subSeqStartPos
,
starts
,
ends
,
hasSubseq
);
for
(
bool
useGpu
:
{
false
,
true
}
)
{
for
(
bool
useGpu
:
mode
)
{
vector
<
vector
<
real
>>
tmp
;
testSeqSliceLayer
(
hasSubseq
,
useGpu
,
seqStartPos
,
subSeqStartPos
,
tmp
,
ends
);
...
...
paddle/parameter/Argument.cpp
浏览文件 @
26bc5b12
...
...
@@ -670,10 +670,13 @@ void Argument::reorganizeSeqInfo(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
)
{
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
CHECK
(
seqStartPos
);
int
seqNum
=
seqStartPos
->
getSize
()
-
1
;
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
if
(
subSeqStartPos
)
{
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
reorganizedSeqInfo
.
resize
(
seqNum
,
std
::
vector
<
int
>
());
int
seqIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
subSeqStartPos
->
getSize
();
++
i
)
{
...
...
@@ -684,6 +687,12 @@ void Argument::reorganizeSeqInfo(
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
}
}
}
else
{
reorganizedSeqInfo
.
resize
(
1
,
std
::
vector
<
int
>
(
seqNum
+
1
,
0
));
memcpy
(
reorganizedSeqInfo
[
0
].
data
(),
seqStarts
,
sizeof
(
int
)
*
seqStartPos
->
getSize
());
}
}
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录