Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
24ea39c4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24ea39c4
编写于
9月 15, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feature/eager_delete_tensor
上级
f86198e6
变更
21
显示空白变更内容
内联
并排
Showing
21 changed file
with
1023 addition
and
23 deletion
+1023
-23
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+11
-4
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+6
-0
paddle/fluid/framework/details/op_handle_base.h
paddle/fluid/framework/details/op_handle_base.h
+7
-0
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+123
-0
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+152
-0
paddle/fluid/framework/details/reference_count_pass.h
paddle/fluid/framework/details/reference_count_pass.h
+37
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+20
-0
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+72
-6
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+45
-0
paddle/fluid/framework/garbage_collector.h
paddle/fluid/framework/garbage_collector.h
+163
-0
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+183
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+47
-6
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+19
-1
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+12
-0
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+2
-0
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+2
-0
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+2
-2
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+3
-0
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+22
-1
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+82
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+13
-3
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
24ea39c4
...
...
@@ -29,13 +29,20 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
if
(
WITH_GPU
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass
)
endif
()
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle
)
cc_library
(
ssa_graph_builder_factory SRCS ssa_graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer ssa_graph_checker
)
if
(
WITH_GPU
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto reference_count_pass
)
else
()
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS graph framework_proto
)
endif
()
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto
)
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
24ea39c4
...
...
@@ -23,6 +23,8 @@
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -33,6 +35,10 @@ struct ComputationOpHandle : public OpHandleBase {
std
::
string
Name
()
const
override
;
const
Scope
*
GetScope
()
const
{
return
scope_
;
}
const
platform
::
Place
&
GetPlace
()
const
{
return
place_
;
}
protected:
void
RunImpl
()
override
;
...
...
paddle/fluid/framework/details/op_handle_base.h
浏览文件 @
24ea39c4
...
...
@@ -82,6 +82,13 @@ class OpHandleBase {
size_t
NoDummyInputSize
()
const
;
ir
::
Node
*
Node
()
{
return
node_
;
}
const
std
::
map
<
platform
::
Place
,
platform
::
DeviceContext
*>
&
GetDeviceContexts
()
const
{
return
dev_ctxes_
;
}
protected:
void
RunAndRecordEvent
(
const
std
::
function
<
void
()
>
&
callback
);
...
...
paddle/fluid/framework/details/reference_count_op_handle.h
0 → 100644
浏览文件 @
24ea39c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
int
>>
;
using
DeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
ReferenceCountMap
>>
;
using
AtomicDeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
AtomicReferenceCountMap
>>
;
using
DeviceGarbageCollectorMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
GarbageCollector
<
framework
::
Tensor
>>>
;
class
ReferenceCountOpHandle
:
public
OpHandleBase
{
public:
ReferenceCountOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
CUDAPlace
&
place
,
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
}
~
ReferenceCountOpHandle
()
{
if
(
IsStreamGarabageCollector
())
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
gpu_place
.
device
));
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
}
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
// protected:
void
RunImpl
()
override
{
auto
*
exec_scope_
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
LoDTensor
*>
tensors
;
for
(
auto
&
name
:
var_names_
)
{
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope_
->
FindVar
(
name
);
if
(
var
==
nullptr
||
!
var
->
IsType
<
LoDTensor
>
())
continue
;
if
(
it
->
second
.
fetch_sub
(
1
)
<=
1
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
if
(
!
tensors
.
empty
())
{
ClearTensors
(
tensors
);
}
}
private:
void
ClearTensors
(
const
std
::
vector
<
LoDTensor
*>
&
tensors
)
const
{
auto
*
gc
=
dynamic_cast
<
const
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
gc
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
tensors
,
callback_func
);
}
else
{
gc_
->
Add
(
tensors
);
}
}
bool
IsStreamGarabageCollector
()
const
{
return
dynamic_cast
<
const
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
)
!=
nullptr
;
}
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
vector
<
std
::
string
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass.cc
0 → 100644
浏览文件 @
24ea39c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
auto
&
cur_ref_cnts
=
Get
<
AtomicDeviceReferenceCountMap
>
(
kCurReferenceCount
);
auto
&
gcs
=
Get
<
DeviceGarbageCollectorMap
>
(
kGarbageCollector
);
// It is not easy to find the right reference counts of varaibles in graph
// Step 1: Find all variables in computation ops
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
std
::
vector
<
std
::
string
>
var_names_in_op
;
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
());
if
(
compute_op
==
nullptr
||
!
platform
::
is_gpu_place
(
compute_op
->
GetPlace
()))
return
var_names_in_op
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
if
(
!
platform
::
is_gpu_place
(
var_handle
->
place_
)
||
boost
::
get
<
platform
::
CUDAPlace
>
(
var_handle
->
place_
)
!=
place
)
continue
;
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
// This is wierd but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
if
(
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
)
==
nullptr
)
continue
;
}
else
{
if
(
var_desc
->
Persistable
()
||
var_desc
->
Proto
()
->
type
().
type
()
!=
proto
::
VarType
::
LOD_TENSOR
)
continue
;
}
// compute op only runs in one device
if
(
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
else
(
*
ref_cnts
[
place
.
device
])[
var_name
]
=
1
;
names
.
insert
(
var_name
);
var_names_in_op
.
push_back
(
var_name
);
}
return
var_names_in_op
;
};
auto
update_ref_cnts_from_non_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
if
(
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
())
!=
nullptr
)
return
;
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
auto
var_name
=
var_handle
->
Node
()
->
Name
();
auto
var_place
=
var_handle
->
place_
;
if
(
!
platform
::
is_gpu_place
(
var_place
))
continue
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
var_place
);
if
(
names
.
count
(
var_name
)
==
0
)
continue
;
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
}
}
};
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
&
all_ops
=
graph
->
Get
<
GraphOps
>
(
kGraphOps
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
auto
out_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Outputs
());
if
(
in_var_names
.
empty
()
&&
out_var_names
.
empty
())
continue
;
in_var_names
.
insert
(
in_var_names
.
end
(),
out_var_names
.
begin
(),
out_var_names
.
end
());
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
.
get
());
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
ref_cnt_handle
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
}
for
(
auto
&
op
:
all_ops
)
{
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Inputs
());
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Outputs
());
}
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
new_all_ops
;
new_all_ops
.
reserve
(
compute_ref_cnt_map
.
size
()
+
all_ops
.
size
());
for
(
auto
&
op
:
all_ops
)
{
auto
it
=
compute_ref_cnt_map
.
find
(
op
.
get
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
new_all_ops
.
emplace_back
(
std
::
unique_ptr
<
OpHandleBase
>
(
it
->
second
));
}
else
{
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
}
}
all_ops
.
swap
(
new_all_ops
);
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
reference_count_pass
,
paddle
::
framework
::
details
::
ReferenceCountPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGlobalReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kCurReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
paddle/fluid/framework/details/reference_count_pass.h
0 → 100644
浏览文件 @
24ea39c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
constexpr
char
kGlobalReferenceCount
[]
=
"reference_count"
;
constexpr
char
kCurReferenceCount
[]
=
"current_reference_count"
;
constexpr
char
kGarbageCollector
[]
=
"garbage_collector"
;
class
ReferenceCountPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
24ea39c4
...
...
@@ -16,6 +16,10 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -56,12 +60,28 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
auto
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
drop_scope_counter_
+=
1
;
#ifdef PADDLE_WITH_CUDA
const
std
::
string
gc_name
=
"garbage_collector"
;
DeviceGarbageCollectorMap
*
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
#endif
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
=
0
;
// Wait All computational streams
for
(
auto
p
:
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
#ifdef PADDLE_WITH_CUDA
if
(
gc
!=
nullptr
&&
platform
::
is_gpu_place
(
p
))
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
);
auto
&
gc_at_place
=
gc
->
at
(
gpu_place
.
device
);
gc_at_place
->
Wait
();
gc_at_place
->
Reset
();
}
#endif
}
for
(
auto
&
scope
:
local_scopes_
)
{
auto
&
local_scope
=
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
24ea39c4
...
...
@@ -37,7 +37,9 @@ int kProgramId = -1;
ExecutorPrepareContext
::
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{}
:
prog_
(
prog
),
block_id_
(
block_id
),
ref_cnts_
(
GetNonPersistableReferenceCount
<
int
>
(
prog
,
block_id
))
{}
ExecutorPrepareContext
::~
ExecutorPrepareContext
()
{
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
...
...
@@ -335,20 +337,84 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
CreateVariables
(
ctx
->
prog_
,
local_scope
,
ctx
->
block_id_
);
}
std
::
shared_ptr
<
std
::
vector
<
framework
::
LoDTensor
*>>
erase_tensors
(
new
std
::
vector
<
framework
::
LoDTensor
*>
());
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
if
(
max_memory_size
>=
0
)
{
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
}
for
(
auto
&
op
:
ctx
->
ops_
)
{
VLOG
(
4
)
<<
place_
<<
" "
<<
op
->
DebugStringEx
(
local_scope
);
op
->
Run
(
*
local_scope
,
place_
);
// NOTE! Please do not delete this line, it's usefull because the debug
// string before and after op.run are different, after run the output
// will have right shape which is usefull for debug.
VLOG
(
3
)
<<
place_
<<
" "
<<
op
->
DebugStringEx
(
local_scope
);
#ifdef PADDLE_WITH_CUDA
if
(
gc
!=
nullptr
)
{
std
::
vector
<
std
::
string
>
erase_vars
;
for
(
auto
&
input
:
op
->
Inputs
())
{
for
(
auto
&
input_name
:
input
.
second
)
{
auto
it
=
ctx
->
ref_cnts_
.
find
(
input_name
);
if
(
it
==
ctx
->
ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
// should delete it
erase_vars
.
emplace_back
(
input_name
);
ctx
->
ref_cnts_
.
erase
(
input_name
);
}
else
{
--
(
it
->
second
);
}
}
}
for
(
auto
&
output
:
op
->
Outputs
())
{
for
(
auto
&
output_name
:
output
.
second
)
{
auto
it
=
ctx
->
ref_cnts_
.
find
(
output_name
);
if
(
it
==
ctx
->
ref_cnts_
.
end
())
continue
;
if
(
it
->
second
==
1
)
{
erase_vars
.
emplace_back
(
output_name
);
ctx
->
ref_cnts_
.
erase
(
output_name
);
}
else
{
--
(
it
->
second
);
}
}
}
if
(
!
erase_vars
.
empty
())
{
std
::
vector
<
framework
::
LoDTensor
*>
erase_tensors
;
for
(
auto
&
name
:
erase_vars
)
{
auto
*
var
=
local_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
erase_tensors
.
push_back
(
tensor
);
}
}
if
(
!
erase_tensors
.
empty
())
gc
->
Add
(
erase_tensors
);
}
}
#endif
if
(
FLAGS_benchmark
)
{
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
}
}
if
(
gc
!=
nullptr
)
gc
->
Wait
();
else
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
if
(
local_scope
!=
scope
)
{
scope
->
DeleteScope
(
local_scope
);
}
else
{
...
...
paddle/fluid/framework/executor.h
浏览文件 @
24ea39c4
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -27,6 +28,48 @@ namespace paddle {
namespace
framework
{
extern
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
);
int64_t
GetEagerDeletionThreshold
();
template
<
typename
T
>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_set
<
std
::
string
>
ignored_vars
;
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
for
(
auto
var_desc
:
block
.
AllVars
())
{
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
||
var_desc
->
Persistable
())
{
ignored_vars
.
insert
(
var_desc
->
Name
());
// ignore persistable vars
}
}
for
(
auto
op_desc
:
block
.
AllOps
())
{
for
(
auto
&
input
:
op_desc
->
Inputs
())
{
for
(
auto
&
input_name
:
input
.
second
)
{
if
(
!
ignored_vars
.
count
(
input_name
))
{
if
(
ref_cnts
.
count
(
input_name
))
++
ref_cnts
[
input_name
];
else
ref_cnts
[
input_name
]
=
1
;
}
}
}
for
(
auto
&
output
:
op_desc
->
Outputs
())
{
for
(
auto
output_name
:
output
.
second
)
{
if
(
!
ignored_vars
.
count
(
output_name
))
{
if
(
ref_cnts
.
count
(
output_name
))
++
ref_cnts
[
output_name
];
else
ref_cnts
[
output_name
]
=
1
;
}
}
}
}
return
ref_cnts
;
}
struct
ExecutorPrepareContext
{
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
);
~
ExecutorPrepareContext
();
...
...
@@ -34,6 +77,8 @@ struct ExecutorPrepareContext {
const
framework
::
ProgramDesc
&
prog_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
int
>
ref_cnts_
;
};
class
Executor
{
...
...
paddle/fluid/framework/garbage_collector.h
0 → 100644
浏览文件 @
24ea39c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
// T should have memory_size() and clear() method
template
<
typename
T
>
class
GarbageCollector
{
public:
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
(
std
::
max
(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
virtual
~
GarbageCollector
()
{}
void
Reset
()
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
cur_memory_size_
=
0
;
}
template
<
typename
Container
>
void
Add
(
const
Container
&
objs
)
{
Add
(
objs
,
[]()
{});
}
template
<
typename
Container
,
typename
Callback
>
void
Add
(
const
Container
&
objs
,
Callback
&&
callback
)
{
std
::
shared_ptr
<
std
::
deque
<
T
*>>
clear_deque
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
*
obj
:
objs
)
{
garbages_
->
push_back
(
obj
);
cur_memory_size_
+=
obj
->
memory_size
();
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
clear_deque
=
garbages_
;
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
}
}
if
(
clear_deque
!=
nullptr
)
{
callback
();
ClearCallback
([
=
]()
{
for
(
auto
*
obj
:
*
clear_deque
)
obj
->
clear
();
});
}
}
virtual
void
Wait
()
const
{}
protected:
virtual
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
=
0
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
shared_ptr
<
std
::
deque
<
T
*>>
garbages_
;
mutable
std
::
mutex
mutex_
;
const
size_t
max_memory_size_
;
size_t
cur_memory_size_
=
0
;
};
template
<
typename
T
>
class
CPUGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
callback
();
}
};
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
cudaStream_t
stream
()
const
{
return
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
stream
();
}
void
Wait
()
const
override
{
this
->
dev_ctx_
->
Wait
();
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
};
template
<
typename
T
>
class
StreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
public:
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
void
Wait
()
const
override
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
Wait
();
}
cudaStream_t
stream
()
const
{
return
stream_
;
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
AddCallback
(
callback
);
}
private:
cudaStream_t
stream_
;
std
::
unique_ptr
<
platform
::
StreamCallbackManager
>
callback_manager_
;
};
#endif
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
0 → 100644
浏览文件 @
24ea39c4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/variant.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* The graph is a Directed Acyclic Single Static Assignment Graph.
*
* In more detail, the following properties must hold:
*
* The graph shouldn't contain cycle. Each node is a black-box to the graph
* so the node itself could be a loop operator.
*
* Each Variable-type node has only one input (thus single static assignment).
*
* The output/input of operator is variable and the output/input of variable
* is operator.
*
* The following data harzards in Program are addressed in the Graph:
*
* Write-After-Read
* a = op1(x)
* x = op2(b)
* A control-dependency connection is created bettwen op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Write-After-Write
* x = op1(a)
* x = op2(b)
* A control-dependency connection is created between op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Other properties currently hold, but is not enforced yet:
*
* Variable-type node (not control dep) with the same variable name share
* the same underlying VarDesc.
*/
class
Graph
{
public:
explicit
Graph
(
const
ProgramDesc
&
program
);
virtual
~
Graph
()
{
for
(
auto
&
attr
:
attrs_
)
{
attr_dels_
[
attr
.
first
]();
}
attrs_
.
clear
();
attr_dels_
.
clear
();
}
bool
Has
(
const
std
::
string
&
attr_name
)
const
{
return
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
();
}
template
<
typename
AttrType
>
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
PADDLE_ENFORCE
(
Has
(
attr_name
),
"%s attr not registered for graph."
,
attr_name
);
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
template
<
typename
AttrType
>
void
Set
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
PADDLE_ENFORCE
(
attrs_
.
count
(
attr_name
)
==
0
,
"%s already set in the graph"
,
attr_name
);
attrs_
[
attr_name
]
=
attr
;
attr_dels_
[
attr_name
]
=
[
attr
,
attr_name
]()
{
VLOG
(
3
)
<<
"deleting "
<<
attr_name
;
delete
attr
;
};
}
template
<
typename
AttrType
>
void
SetNotOwned
(
const
std
::
string
&
attr_name
,
AttrType
*
attr
)
{
PADDLE_ENFORCE
(
attrs_
.
count
(
attr_name
)
==
0
,
"%s already set in the graph"
,
attr_name
);
attrs_
[
attr_name
]
=
attr
;
attr_dels_
[
attr_name
]
=
[]()
{};
}
const
std
::
unordered_set
<
ir
::
Node
*>
&
Nodes
()
const
{
return
node_set_
;
}
// Create a normal variable with non-null VarDesc.
ir
::
Node
*
CreateVarNode
(
VarDesc
*
var_desc
)
{
PADDLE_ENFORCE
(
var_desc
);
return
AddNode
(
new
ir
::
Node
(
var_desc
));
}
// Create a normal runnable operator with OpDesc.
ir
::
Node
*
CreateOpNode
(
OpDesc
*
op_desc
)
{
PADDLE_ENFORCE
(
op_desc
);
return
AddNode
(
new
ir
::
Node
(
op_desc
));
}
// Create a control dependency var that connects 2 operations. The
// var doesn't hold any data. Other than that, it's no different from
// other var, considering dependency analysis.
ir
::
Node
*
CreateControlDepVar
()
{
// TODO(panyx0718): control var name should be really unique.
const
std
::
string
name
=
string
::
Sprintf
(
"%s@%llu"
,
ir
::
Node
::
kControlDepVarName
,
node_set_
.
size
());
return
AddNode
(
new
ir
::
Node
(
name
,
ir
::
Node
::
Type
::
kVariable
));
}
// A more free style way of creating a graph node. Mostly use for test
// or "copy" from another node. Avoid using it if possible.
ir
::
Node
*
CreateEmptyNode
(
const
std
::
string
&
name
,
ir
::
Node
::
Type
type
)
{
return
AddNode
(
new
ir
::
Node
(
name
,
type
));
}
// Clear all node information of the graph and return the ownership of the
// nodes.
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ReleaseNodes
()
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Node
>>
ret
;
for
(
auto
&
n
:
nodes_
)
{
ret
.
emplace_back
(
n
.
second
.
release
());
}
nodes_
.
clear
();
node_set_
.
clear
();
return
ret
;
}
void
RemoveNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
!=
node_set_
.
end
());
node_set_
.
erase
(
node
);
nodes_
.
erase
(
node
);
}
// NOTE low performance, but simple and secure.
Node
*
RetriveNode
(
int
id
)
{
for
(
auto
&
node
:
nodes_
)
{
if
(
node
.
second
->
id
()
==
id
)
{
return
node
.
second
.
get
();
}
}
return
nullptr
;
}
private:
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
nodes_
[
node
].
reset
(
node
);
node_set_
.
insert
(
node
);
return
node
;
}
// NOTE: program_ shouldn't be exposed to user.
const
ProgramDesc
program_
;
std
::
map
<
std
::
string
,
boost
::
any
>
attrs_
;
std
::
map
<
std
::
string
,
std
::
function
<
void
(
void
)
>>
attr_dels_
;
std
::
map
<
ir
::
Node
*
,
std
::
unique_ptr
<
ir
::
Node
>>
nodes_
;
std
::
unordered_set
<
ir
::
Node
*>
node_set_
;
};
bool
IsControlDepVar
(
const
ir
::
Node
&
var
);
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
24ea39c4
...
...
@@ -19,9 +19,15 @@ limitations under the License. */
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_pass.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
...
...
@@ -115,17 +121,39 @@ ParallelExecutor::ParallelExecutor(
build_strategy
);
if
(
member_
->
use_cuda_
)
{
#ifdef PADDLE_WITH_CUDA
builder_factory
.
SetNCCLContextMap
(
member_
->
nccl_ctxs_
.
get
());
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
ApplyParallelExecutorPass
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
build_strategy
,
member_
->
nccl_ctxs_
.
get
());
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
for
(
auto
&
place
:
member_
->
places_
)
{
if
(
!
platform
::
is_gpu_place
(
place
))
continue
;
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
if
(
gcs_
[
gpu_place
.
device
]
==
nullptr
)
{
ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
ReferenceCountMap
());
cur_ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
AtomicReferenceCountMap
());
gcs_
[
gpu_place
.
device
].
reset
(
new
StreamGarbageCollector
<
Tensor
>
(
gpu_place
,
max_memory_size
));
}
}
if
(
!
gcs_
.
empty
())
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
graph
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
}
}
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
}
builder_
=
builder_factory
.
Create
();
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
builder_
->
Build
(
main_program
)));
member_
->
executor_
.
reset
(
new
details
::
ScopeBufferedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
std
::
move
(
var_infos
),
member_
->
places_
,
std
::
move
(
member_
->
executor_
)));
...
...
@@ -216,6 +244,11 @@ void ParallelExecutor::BCastParamsToGPUs(
void
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
)
{
platform
::
RecordBlock
b
(
0
);
#ifdef PADDLE_WITH_CUDA
if
(
!
gcs_
.
empty
())
{
ResetReferenceCount
();
}
#endif
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
fetch_data
;
...
...
@@ -265,3 +298,11 @@ ParallelExecutor::~ParallelExecutor() {
}
// namespace framework
}
// namespace paddle
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
multi_devices_pass
);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
#ifdef PADDLE_WITH_CUDA
USE_PASS
(
reference_count_pass
);
#endif
paddle/fluid/framework/parallel_executor.h
浏览文件 @
24ea39c4
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <atomic>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
...
...
@@ -70,7 +72,23 @@ class ParallelExecutor {
private:
ParallelExecutorPrivate
*
member_
;
std
::
unique_ptr
<
details
::
SSAGraphBuilder
>
builder_
;
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// keeps unchanged
// Before each iteration, cur_ref_cnts_ is reset to ref_cnts_
details
::
DeviceReferenceCountMap
ref_cnts_
;
details
::
AtomicDeviceReferenceCountMap
cur_ref_cnts_
;
details
::
DeviceGarbageCollectorMap
gcs_
;
void
ResetReferenceCount
()
{
for
(
auto
&
pair1
:
ref_cnts_
)
{
for
(
auto
&
pair2
:
*
(
pair1
.
second
))
{
(
*
(
cur_ref_cnts_
[
pair1
.
first
]))[
pair2
.
first
]
=
pair2
.
second
;
}
}
}
#endif
};
}
// namespace framework
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
24ea39c4
...
...
@@ -31,9 +31,21 @@ DEFINE_bool(
"Delete local scope eagerly. It will reduce GPU memory usage but "
"slow down the destruction of variables.(around 1% performance harm)"
);
DEFINE_double
(
eager_delete_tensor_GB
,
-
1.0
,
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0"
);
namespace
paddle
{
namespace
framework
{
int64_t
GetEagerDeletionThreshold
()
{
return
FLAGS_eager_delete_tensor_GB
<
0
?
-
1
:
static_cast
<
int64_t
>
(
FLAGS_eager_delete_tensor_GB
*
(
static_cast
<
int64_t
>
(
1
)
<<
30
));
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
...
...
paddle/fluid/framework/scope.h
浏览文件 @
24ea39c4
...
...
@@ -26,6 +26,8 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
int64_t
GetEagerDeletionThreshold
();
class
Scope
;
/**
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
24ea39c4
...
...
@@ -149,6 +149,8 @@ class Tensor {
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
void
clear
()
{
holder_
=
nullptr
;
}
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a template
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
24ea39c4
...
...
@@ -45,8 +45,8 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library
(
device_context SRCS device_context.cc init.cc DEPS malloc
place eigen3 stringpiece cpu_helper
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
cc_library
(
device_context SRCS device_context.cc init.cc DEPS
simple_threadpool
malloc
place eigen3 stringpiece cpu_helper
cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
cc_test
(
init_test SRCS init_test.cc DEPS device_context
)
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
24ea39c4
...
...
@@ -159,11 +159,14 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
}
else
{
cudnn_handle_
=
nullptr
;
}
callback_manager_
.
reset
(
new
StreamCallbackManager
(
stream_
));
}
CUDADeviceContext
::~
CUDADeviceContext
()
{
SetDeviceId
(
place_
.
device
);
Wait
();
WaitStreamCallback
();
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
if
(
cudnn_handle_
!=
nullptr
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroy
(
cudnn_handle_
));
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
24ea39c4
...
...
@@ -31,8 +31,13 @@ limitations under the License. */
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
#include "unsupported/Eigen/CXX11/Tensor"
DECLARE_bool
(
clear_gpu_memory_when_unused
);
namespace
paddle
{
namespace
platform
{
...
...
@@ -106,6 +111,17 @@ class CUDADeviceContext : public DeviceContext {
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
}
template
<
typename
Callback
>
void
AddStreamCallback
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
WaitStreamCallback
()
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
Wait
();
}
private:
CUDAPlace
place_
;
...
...
@@ -119,7 +135,12 @@ class CUDADeviceContext : public DeviceContext {
int
multi_process
;
int
max_threads_per_mp
;
std
::
mutex
mtx_
;
mutable
std
::
mutex
mtx_
;
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable
std
::
mutex
callback_mtx_
;
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
};
template
<
>
...
...
paddle/fluid/platform/stream_callback_manager.h
0 → 100644
浏览文件 @
24ea39c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda.h>
#include <cuda_runtime.h>
#include <functional>
#include <memory>
#include "ThreadPool.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
using
StreamCallback
=
std
::
function
<
void
(
cudaStream_t
,
cudaError_t
)
>
;
class
StreamCallbackManager
;
struct
StreamCallbackContext
{
template
<
typename
Callback
>
inline
StreamCallbackContext
(
const
StreamCallbackManager
*
manager
,
Callback
&&
callback
)
:
manager_
(
manager
),
callback_
(
callback
)
{}
const
StreamCallbackManager
*
manager_
;
// do not own
StreamCallback
callback_
;
};
class
StreamCallbackManager
{
public:
explicit
inline
StreamCallbackManager
(
cudaStream_t
stream
=
nullptr
)
:
stream_
(
stream
),
thread_pool_
(
new
ThreadPool
(
1
))
{}
template
<
typename
Callback
>
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
AddCallbackWithStreamAndErrorInfo
(
[
=
](
cudaStream_t
,
cudaError_t
)
{
callback
();
});
}
template
<
typename
Callback
>
inline
void
AddCallbackWithStreamAndErrorInfo
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
callback
);
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
private:
const
cudaStream_t
stream_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// thread_pool here
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
{
auto
*
callback_context_ptr
=
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
callback_context_ptr
);
callback_context
->
callback_
(
stream
,
status
);
});
}
};
}
// namespace platform
}
// namespace paddle
python/paddle/fluid/__init__.py
浏览文件 @
24ea39c4
...
...
@@ -117,9 +117,19 @@ def __bootstrap__():
os
.
environ
[
'OMP_NUM_THREADS'
]
=
str
(
num_threads
)
read_env_flags
=
[
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'cpu_deterministic'
,
'eager_delete_tensor_GB'
,
]
if
core
.
is_compiled_with_cuda
():
read_env_flags
+=
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录