Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
24458ae3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24458ae3
编写于
12月 27, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into profiler_tool
上级
5837166c
94096ae5
变更
13
展开全部
显示空白变更内容
内联
并排
Showing
13 changed file
with
411 addition
and
338 deletion
+411
-338
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+4
-4
paddle/framework/data_transform.h
paddle/framework/data_transform.h
+7
-8
paddle/framework/operator.cc
paddle/framework/operator.cc
+33
-1
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+59
-59
paddle/operators/activation_op.h
paddle/operators/activation_op.h
+208
-179
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+11
-11
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+6
-6
python/paddle/v2/fluid/io.py
python/paddle/v2/fluid/io.py
+14
-2
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+1
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+10
-9
python/paddle/v2/fluid/tests/test_activation_op.py
python/paddle/v2/fluid/tests/test_activation_op.py
+54
-54
python/paddle/v2/fluid/tests/test_net.py
python/paddle/v2/fluid/tests/test_net.py
+2
-2
python/paddle/v2/fluid/tests/test_softmax_op.py
python/paddle/v2/fluid/tests/test_softmax_op.py
+2
-2
未找到文件。
paddle/framework/CMakeLists.txt
浏览文件 @
24458ae3
...
...
@@ -21,6 +21,8 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library
(
scope SRCS scope.cc DEPS glog
)
cc_test
(
scope_test SRCS scope_test.cc DEPS scope
)
cc_library
(
data_transform SRCS data_transform.cc DEPS tensor framework_proto
)
cc_test
(
data_transform_test SRCS data_transform_test.cc DEPS data_transform device_context
)
cc_library
(
attribute SRCS attribute.cc DEPS framework_proto
)
cc_test
(
program_desc_test SRCS program_desc_test.cc DEPS proto_desc
...
...
@@ -29,7 +31,8 @@ cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test
(
op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker
)
cc_library
(
op_info SRCS op_info.cc DEPS attribute framework_proto
)
cc_library
(
shape_inference SRCS shape_inference.cc DEPS ddim attribute
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform
)
cc_test
(
operator_test SRCS operator_test.cc DEPS operator op_registry init
)
cc_library
(
proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog
)
...
...
@@ -65,6 +68,3 @@ cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece)
cc_test
(
init_test SRCS init_test.cc DEPS init
)
cc_test
(
op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto
)
cc_library
(
data_transform SRCS data_transform.cc DEPS tensor framework_proto
)
cc_test
(
data_transform_test SRCS data_transform_test.cc DEPS data_transform device_context
)
paddle/framework/data_transform.h
浏览文件 @
24458ae3
...
...
@@ -32,17 +32,16 @@ using DataTransformFN =
const
Variable
&
in
,
Variable
*
out
)
>
;
using
KernelTypePair
=
std
::
pair
<
OpKernelType
,
OpKernelType
>
;
static
void
hash_combine
(
std
::
size_t
&
seed
,
const
OpKernelType
&
t
)
{
struct
KernelTypePairHash
{
static
void
HashCombine
(
const
OpKernelType
&
t
,
std
::
size_t
*
seed
)
{
OpKernelType
::
Hash
kernel_type_hasher
;
seed
^=
kernel_type_hasher
(
t
)
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
);
}
(
*
seed
)
^=
kernel_type_hasher
(
t
)
+
0x9e3779b9
+
(
*
seed
<<
6
)
+
(
*
seed
>>
2
);
}
struct
KernelTypePairHash
{
size_t
operator
()(
const
KernelTypePair
&
kernel_pair
)
const
{
std
::
size_t
seed
=
0
;
hash_combine
(
seed
,
kernel_pair
.
first
);
hash_combine
(
seed
,
kernel_pair
.
second
);
HashCombine
(
kernel_pair
.
first
,
&
seed
);
HashCombine
(
kernel_pair
.
second
,
&
seed
);
return
seed
;
}
};
...
...
paddle/framework/operator.cc
浏览文件 @
24458ae3
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include <algorithm>
#include <atomic>
#include "paddle/framework/data_transform.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/operator.h"
...
...
@@ -411,7 +412,38 @@ void OperatorWithKernel::Run(const Scope& scope,
expected_kernel_key
);
}
if
(
actual_kernel_key
==
expected_kernel_key
)
{
kernel_iter
->
second
->
Compute
(
ctx
);
}
else
{
Scope
&
op_scope
=
scope
.
NewScope
();
auto
input_vars
=
this
->
InputVars
();
for
(
auto
var_name
:
input_vars
)
{
op_scope
.
Var
(
var_name
);
}
// TODO(qijun) get appropriate DeviceContext from DeviceContext pool
platform
::
DeviceContext
*
trans_dev_ctx
=
nullptr
;
std
::
vector
<
platform
::
DeviceContext
*>
trans_dev_ctx_vec
{
trans_dev_ctx
};
// TODO(qijun) get appropriate DataTransformFN from global map
framework
::
DataTransformFN
trans_fun
=
nullptr
;
// Wait for transform starting
dev_ctx
->
Wait
();
for
(
auto
var_name
:
input_vars
)
{
trans_fun
(
trans_dev_ctx_vec
,
*
(
scope
.
FindVar
(
var_name
)),
op_scope
.
FindVar
(
var_name
));
}
// Wait for data transform finishing
for
(
auto
ctx
:
trans_dev_ctx_vec
)
{
ctx
->
Wait
();
}
// Create a new ExecutionContext
ExecutionContext
op_ctx
(
*
this
,
op_scope
,
*
dev_ctx
);
kernel_iter
->
second
->
Compute
(
op_ctx
);
}
}
OpKernelType
OperatorWithKernel
::
GetActualKernelType
(
...
...
paddle/operators/activation_op.cc
浏览文件 @
24458ae3
...
...
@@ -22,8 +22,8 @@ class ActivationOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
"
Y
"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"
Y
"
);
ctx
->
SetOutputDim
(
"
Out
"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"
Out
"
);
}
};
...
...
@@ -32,7 +32,7 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"
Y
"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"
Out
"
));
}
};
...
...
@@ -41,11 +41,11 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
SigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of Sigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of Sigmoid operator"
);
AddComment
(
R"DOC(
Sigmoid Activation Operator
$$
y
= \frac{1}{1 + e^{-x}}$$
$$
out
= \frac{1}{1 + e^{-x}}$$
)DOC"
);
}
...
...
@@ -56,11 +56,11 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
LogSigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of LogSigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of LogSigmoid operator"
);
AddComment
(
R"DOC(
Logsigmoid Activation Operator
$$
y
= \log \frac{1}{1 + e^{-x}}$$
$$
out
= \log \frac{1}{1 + e^{-x}}$$
)DOC"
);
}
...
...
@@ -71,11 +71,11 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
ExpOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"
Y
"
,
"Output of Exp operator"
);
AddOutput
(
"
Out
"
,
"Output of Exp operator"
);
AddComment
(
R"DOC(
Exp Activation Operator.
$
y
= e^x$
$
out
= e^x$
)DOC"
);
}
...
...
@@ -86,11 +86,11 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
ReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"
Y
"
,
"Output of Relu operator"
);
AddOutput
(
"
Out
"
,
"Output of Relu operator"
);
AddComment
(
R"DOC(
Relu Activation Operator.
$
y
= \max(x, 0)$
$
out
= \max(x, 0)$
)DOC"
);
}
...
...
@@ -101,12 +101,12 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
LeakyReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of LeakyRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of LeakyRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of LeakyRelu operator"
);
AddAttr
<
float
>
(
"alpha"
,
"The small negative slope"
).
SetDefault
(
0.02
f
);
AddComment
(
R"DOC(
LeakyRelu Activation Operator.
$
y
= \max(x, \alpha * x)$
$
out
= \max(x, \alpha * x)$
)DOC"
);
}
...
...
@@ -117,13 +117,13 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
SoftShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softshrink operator"
);
AddOutput
(
"
Y
"
,
"Output of Softshrink operator"
);
AddOutput
(
"
Out
"
,
"Output of Softshrink operator"
);
AddAttr
<
float
>
(
"lambda"
,
"non-negative offset"
).
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
Softshrink Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
...
...
@@ -139,11 +139,11 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
TanhOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"
Y
"
,
"Output of Tanh operator"
);
AddOutput
(
"
Out
"
,
"Output of Tanh operator"
);
AddComment
(
R"DOC(
Tanh Activation Operator.
$$
y
= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$
out
= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"
);
}
...
...
@@ -154,11 +154,11 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
TanhShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddOutput
(
"
Y
"
,
"Output of TanhShrink operator"
);
AddOutput
(
"
Out
"
,
"Output of TanhShrink operator"
);
AddComment
(
R"DOC(
TanhShrink Activation Operator.
$$
y
= x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$
out
= x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"
);
}
...
...
@@ -169,14 +169,14 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
HardShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of HardShrink operator"
);
AddOutput
(
"
Y
"
,
"Output of HardShrink operator"
);
AddOutput
(
"
Out
"
,
"Output of HardShrink operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
.
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
HardShrink Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x, \text{if } x > \lambda \\
x, \text{if } x < -\lambda \\
0, \text{otherwise}
...
...
@@ -192,11 +192,11 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
SqrtOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"
Y
"
,
"Output of Sqrt operator"
);
AddOutput
(
"
Out
"
,
"Output of Sqrt operator"
);
AddComment
(
R"DOC(
Sqrt Activation Operator.
$
y
= \sqrt{x}$
$
out
= \sqrt{x}$
)DOC"
);
}
...
...
@@ -207,11 +207,11 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AbsOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"
Y
"
,
"Output of Abs operator"
);
AddOutput
(
"
Out
"
,
"Output of Abs operator"
);
AddComment
(
R"DOC(
Abs Activation Operator.
$
y
= |x|$
$
out
= |x|$
)DOC"
);
}
...
...
@@ -222,11 +222,11 @@ class CeilOpMaker : public framework::OpProtoAndCheckerMaker {
CeilOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Ceil operator"
);
AddOutput
(
"
Y
"
,
"Output of Ceil operator"
);
AddOutput
(
"
Out
"
,
"Output of Ceil operator"
);
AddComment
(
R"DOC(
Ceil Activation Operator.
$
y
= ceil(x)$
$
out
= ceil(x)$
)DOC"
);
}
...
...
@@ -237,11 +237,11 @@ class FloorOpMaker : public framework::OpProtoAndCheckerMaker {
FloorOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Floor operator"
);
AddOutput
(
"
Y
"
,
"Output of Floor operator"
);
AddOutput
(
"
Out
"
,
"Output of Floor operator"
);
AddComment
(
R"DOC(
Floor Activation Operator.
$
y
= floor(x)$
$
out
= floor(x)$
)DOC"
);
}
...
...
@@ -252,11 +252,11 @@ class RoundOpMaker : public framework::OpProtoAndCheckerMaker {
RoundOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Round operator"
);
AddOutput
(
"
Y
"
,
"Output of Round operator"
);
AddOutput
(
"
Out
"
,
"Output of Round operator"
);
AddComment
(
R"DOC(
Round Activation Operator.
$
y
= [x]$
$
out
= [x]$
)DOC"
);
}
...
...
@@ -267,11 +267,11 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
ReciprocalOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"
Y
"
,
"Output of Reciprocal operator"
);
AddOutput
(
"
Out
"
,
"Output of Reciprocal operator"
);
AddComment
(
R"DOC(
Reciprocal Activation Operator.
$$
y
= \frac{1}{x}$$
$$
out
= \frac{1}{x}$$
)DOC"
);
}
...
...
@@ -282,11 +282,11 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
LogOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"
Y
"
,
"Output of Log operator"
);
AddOutput
(
"
Out
"
,
"Output of Log operator"
);
AddComment
(
R"DOC(
Log Activation Operator.
$
y
= \ln(x)$
$
out
= \ln(x)$
Natural logarithm of x.
...
...
@@ -299,11 +299,11 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
SquareOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"
Y
"
,
"Output of Square operator"
);
AddOutput
(
"
Out
"
,
"Output of Square operator"
);
AddComment
(
R"DOC(
Square Activation Operator.
$
y
= x^2$
$
out
= x^2$
)DOC"
);
}
...
...
@@ -314,11 +314,11 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
SoftplusOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddOutput
(
"
Y
"
,
"Output of Softplus operator"
);
AddOutput
(
"
Out
"
,
"Output of Softplus operator"
);
AddComment
(
R"DOC(
Softplus Activation Operator.
$
y
= \ln(1 + e^{x})$
$
out
= \ln(1 + e^{x})$
)DOC"
);
}
...
...
@@ -329,11 +329,11 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
SoftsignOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddOutput
(
"
Y
"
,
"Output of Softsign operator"
);
AddOutput
(
"
Out
"
,
"Output of Softsign operator"
);
AddComment
(
R"DOC(
Softsign Activation Operator.
$$
y
= \frac{x}{1 + |x|}$$
$$
out
= \frac{x}{1 + |x|}$$
)DOC"
);
}
...
...
@@ -344,7 +344,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
BReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of BRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of BRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of BRelu operator"
);
AddAttr
<
float
>
(
"t_min"
,
"The min marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
float
>
(
0
));
AddAttr
<
float
>
(
"t_max"
,
"The max marginal value of BRelu"
)
...
...
@@ -352,7 +352,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
BRelu Activation Operator.
$
y
= \max(\min(x, t_{min}), t_{max})$
$
out
= \max(\min(x, t_{min}), t_{max})$
)DOC"
);
}
...
...
@@ -363,13 +363,13 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
SoftReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SoftRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of SoftRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of SoftRelu operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
40.0
f
);
AddComment
(
R"DOC(
SoftRelu Activation Operator.
$
y
= \ln(1 + \exp(\max(\min(x, threshold), threshold))$
$
out
= \ln(1 + \exp(\max(\min(x, threshold), threshold))$
)DOC"
);
}
...
...
@@ -380,7 +380,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
ELUOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of ELU operator"
);
AddOutput
(
"
Y
"
,
"Output of ELU operator"
);
AddOutput
(
"
Out
"
,
"Output of ELU operator"
);
AddAttr
<
float
>
(
"alpha"
,
"The alpha value of ELU"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
ELU Activation Operator.
...
...
@@ -388,7 +388,7 @@ ELU Activation Operator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
$
y
= \max(0, x) + \min(0, \alpha * (e^x - 1))$
$
out
= \max(0, x) + \min(0, \alpha * (e^x - 1))$
)DOC"
);
}
...
...
@@ -399,13 +399,13 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
Relu6OpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Relu6 operator"
);
AddOutput
(
"
Y
"
,
"Output of Relu6 operator"
);
AddOutput
(
"
Out
"
,
"Output of Relu6 operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold value of Relu6"
)
.
SetDefault
(
6.0
f
);
AddComment
(
R"DOC(
Relu6 Activation Operator.
$
y
= \min(\max(0, x), 6)$
$
out
= \min(\max(0, x), 6)$
)DOC"
);
}
...
...
@@ -416,12 +416,12 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
PowOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Pow operator"
);
AddOutput
(
"
Y
"
,
"Output of Pow operator"
);
AddOutput
(
"
Out
"
,
"Output of Pow operator"
);
AddAttr
<
float
>
(
"factor"
,
"The exponential factor of Pow"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
Pow Activation Operator.
$
y
= x^{factor}$
$
out
= x^{factor}$
)DOC"
);
}
...
...
@@ -432,7 +432,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
STanhOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of STanh operator"
);
AddOutput
(
"
Y
"
,
"Output of STanh operator"
);
AddOutput
(
"
Out
"
,
"Output of STanh operator"
);
AddAttr
<
float
>
(
"scale_a"
,
"The scale parameter of a for the input"
)
.
SetDefault
(
2.0
f
/
3.0
f
);
AddAttr
<
float
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
...
...
@@ -440,7 +440,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
STanh Activation Operator.
$$
y
= b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
$$
out
= b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
)DOC"
);
}
...
...
@@ -451,14 +451,14 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
ThresholdedReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of ThresholdedRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of ThresholdedRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of ThresholdedRelu operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold location of activation"
)
.
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
ThresholdedRelu Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x, \text{if } x > threshold \\
0, \text{otherwise}
\end{cases}
...
...
@@ -473,7 +473,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
HardSigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of HardSigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of HardSigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of HardSigmoid operator"
);
AddAttr
<
float
>
(
"slope"
,
"Slope for linear approximation of sigmoid"
)
.
SetDefault
(
0.2
f
);
AddAttr
<
float
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
...
...
@@ -484,7 +484,7 @@ HardSigmoid Activation Operator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
$
y
= \max(0, \min(1, slope * x + shift))$
$
out
= \max(0, \min(1, slope * x + shift))$
The slope should be positive. The offset can be either positive or negative.
The default slope and shift are set according to the above reference.
...
...
@@ -499,12 +499,12 @@ class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
SwishOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Swish operator"
);
AddOutput
(
"
Y
"
,
"Output of Swish operator"
);
AddOutput
(
"
Out
"
,
"Output of Swish operator"
);
AddAttr
<
float
>
(
"beta"
,
"Constant beta of swish operator"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
Swish Activation Operator.
$$
y
= \frac{x}{1 + e^{- \beta x}}$$
$$
out
= \frac{x}{1 + e^{- \beta x}}$$
)DOC"
);
}
...
...
paddle/operators/activation_op.h
浏览文件 @
24458ae3
此差异已折叠。
点击以展开。
paddle/operators/softmax_op.cc
浏览文件 @
24458ae3
...
...
@@ -24,13 +24,13 @@ class SoftmaxOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SoftmaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
Y
"
),
"Output(
Y
) of SoftmaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
Out
"
),
"Output(
Out
) of SoftmaxOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
2UL
,
"The input of softmax op must be a matrix."
);
ctx
->
SetOutputDim
(
"
Y
"
,
x_dims
);
ctx
->
SetOutputDim
(
"
Out
"
,
x_dims
);
}
};
...
...
@@ -41,7 +41,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor of softmax. "
"2-D with shape [batch_size, input_feature_dimensions]."
);
AddOutput
(
"
Y
"
,
"The normalized values with the same shape as X."
);
AddOutput
(
"
Out
"
,
"The normalized values with the same shape as X."
);
AddComment
(
R"DOC(
Softmax Operator.
...
...
@@ -59,7 +59,7 @@ exponential values of all the other dimensions is the output of the softmax
operator.
For each row $i$ and each column $j$ in Input(X), we have:
$$
Y
[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
$$
Out
[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
)DOC"
);
}
...
...
@@ -70,12 +70,12 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"
Y"
),
"Input(Y
) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"
Y
"
)),
"Input(
Y
@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"
Y
"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"
Y
"
)),
"Input(
Y
) and its gradients should have a same shape."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"
Out"
),
"Input(Out
) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"
Out
"
)),
"Input(
Out
@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"
Out
"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"
Out
"
)),
"Input(
Out
) and its gradients should have a same shape."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
...
...
paddle/operators/softmax_op.h
浏览文件 @
24458ae3
...
...
@@ -26,13 +26,13 @@ class SoftmaxKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
Tensor
>
(
"Y
"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out
"
);
// allocate memory on device.
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
X
,
Y
);
context
.
template
device_context
<
DeviceContext
>(),
X
,
Out
);
}
};
...
...
@@ -40,15 +40,15 @@ template <typename DeviceContext, typename T>
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
Y
=
context
.
Input
<
Tensor
>
(
"Y
"
);
auto
*
d
Y
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y
"
));
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out
"
);
auto
*
d
Out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out
"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
Y
,
dY
,
dX
);
context
.
template
device_context
<
DeviceContext
>(),
Out
,
dOut
,
dX
);
}
};
...
...
python/paddle/v2/fluid/io.py
浏览文件 @
24458ae3
...
...
@@ -180,10 +180,22 @@ def save_inference_model(dirname,
:return: None
"""
if
isinstance
(
feeded_var_names
,
basestring
):
feeded_var_names
=
[
feeded_var_names
]
else
:
if
not
(
bool
(
feeded_var_names
)
and
all
(
isinstance
(
name
,
basestring
)
for
name
in
feeded_var_names
)):
raise
ValueError
(
"'feed_var_names' should be a list of str."
)
if
isinstance
(
target_vars
,
Variable
):
feeded_var_names
=
[
feeded_var_names
]
else
:
if
not
(
bool
(
target_vars
)
and
all
(
isinstance
(
var
,
Variable
)
for
var
in
target_vars
)):
raise
ValueError
(
"'target_vars' should be a list of Variable."
)
if
main_program
is
None
:
main_program
=
default_main_program
()
if
not
isinstance
(
target_vars
,
list
):
target_vars
=
[
target_vars
]
if
not
os
.
path
.
isdir
(
dirname
):
os
.
makedirs
(
dirname
)
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
24458ae3
...
...
@@ -184,7 +184,7 @@ class LayerHelper(object):
self
.
append_op
(
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
outputs
=
{
"
Y
"
:
[
tmp
]},
outputs
=
{
"
Out
"
:
[
tmp
]},
attrs
=
act
)
return
tmp
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
24458ae3
...
...
@@ -386,7 +386,8 @@ def square_error_cost(input, label, **kwargs):
square_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Y'
:
[
square_out
]})
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Out'
:
[
square_out
]})
return
square_out
...
...
python/paddle/v2/fluid/tests/test_activation_op.py
浏览文件 @
24458ae3
...
...
@@ -10,13 +10,13 @@ class TestExp(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSigmoid
(
OpTest
):
...
...
@@ -25,13 +25,13 @@ class TestSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestLogSigmoid
(
OpTest
):
...
...
@@ -40,13 +40,13 @@ class TestLogSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestTanh
(
OpTest
):
...
...
@@ -55,13 +55,13 @@ class TestTanh(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestTanhShrink
(
OpTest
):
...
...
@@ -70,13 +70,13 @@ class TestTanhShrink(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestHardShrink
(
OpTest
):
...
...
@@ -90,13 +90,13 @@ class TestHardShrink(OpTest):
t
=
np
.
copy
(
x
)
t
[(
t
>=
-
threshold
)
&
(
t
<=
threshold
)]
=
0
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.005
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.005
)
class
TestSoftShrink
(
OpTest
):
...
...
@@ -110,13 +110,13 @@ class TestSoftShrink(OpTest):
y
=
np
.
copy
(
self
.
inputs
[
'X'
])
y
=
(
y
<
-
lambda_val
)
*
(
y
+
lambda_val
)
+
(
y
>
lambda_val
)
*
(
y
-
lambda_val
)
self
.
outputs
=
{
'
Y
'
:
y
}
self
.
outputs
=
{
'
Out
'
:
y
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSqrt
(
OpTest
):
...
...
@@ -125,13 +125,13 @@ class TestSqrt(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestAbs
(
OpTest
):
...
...
@@ -144,13 +144,13 @@ class TestAbs(OpTest):
# we should avoid this
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestCeil
(
OpTest
):
...
...
@@ -158,13 +158,13 @@ class TestCeil(OpTest):
self
.
op_type
=
"ceil"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestFloor
(
OpTest
):
...
...
@@ -173,13 +173,13 @@ class TestFloor(OpTest):
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
# numpy floor need +1
self
.
outputs
=
{
'
Y
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
self
.
outputs
=
{
'
Out
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRound
(
OpTest
):
...
...
@@ -187,13 +187,13 @@ class TestRound(OpTest):
self
.
op_type
=
"round"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRelu
(
OpTest
):
...
...
@@ -203,13 +203,13 @@ class TestRelu(OpTest):
# The same reason with TestAbs
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestBRelu
(
OpTest
):
...
...
@@ -227,13 +227,13 @@ class TestBRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
t_min
]
=
t_min
t
[
t
>
t_max
]
=
t_max
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestRelu6
(
OpTest
):
...
...
@@ -248,14 +248,14 @@ class TestRelu6(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
'
Out
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSoftRelu
(
OpTest
):
...
...
@@ -271,13 +271,13 @@ class TestSoftRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
-
threshold
]
=
-
threshold
t
[
t
>
threshold
]
=
threshold
self
.
outputs
=
{
'
Y
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestELU
(
OpTest
):
...
...
@@ -290,27 +290,27 @@ class TestELU(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'alpha'
:
alpha
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
'
Out
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'
Y
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.01
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
...
...
@@ -319,13 +319,13 @@ class TestLog(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
...
...
@@ -334,13 +334,13 @@ class TestSquare(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestPow
(
OpTest
):
...
...
@@ -348,13 +348,13 @@ class TestPow(OpTest):
self
.
op_type
=
"pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
attrs
=
{
'factor'
:
3.0
}
self
.
outputs
=
{
'
Y
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
self
.
outputs
=
{
'
Out
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSTanh
(
OpTest
):
...
...
@@ -366,13 +366,13 @@ class TestSTanh(OpTest):
scale_a
=
2.0
/
3.0
scale_b
=
1.7159
self
.
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
}
self
.
outputs
=
{
'
Y
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
self
.
outputs
=
{
'
Out
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftplus
(
OpTest
):
...
...
@@ -381,13 +381,13 @@ class TestSoftplus(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftsign
(
OpTest
):
...
...
@@ -397,14 +397,14 @@ class TestSoftsign(OpTest):
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
'
Out
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestThresholdedRelu
(
OpTest
):
...
...
@@ -419,13 +419,13 @@ class TestThresholdedRelu(OpTest):
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
(
X
>
threshold
)
*
X
}
self
.
outputs
=
{
'
Out
'
:
(
X
>
threshold
)
*
X
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
self
.
relative_error
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
self
.
relative_error
)
class
TestHardSigmoid
(
OpTest
):
...
...
@@ -447,13 +447,13 @@ class TestHardSigmoid(OpTest):
upper_threshold
-
0.2
temp
=
X
*
slope
+
offset
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.002
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.002
)
class
TestSwish
(
OpTest
):
...
...
@@ -462,13 +462,13 @@ class TestSwish(OpTest):
X
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'beta'
:
2.3
}
self
.
outputs
=
{
'
Y
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
self
.
outputs
=
{
'
Out
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/fluid/tests/test_net.py
浏览文件 @
24458ae3
...
...
@@ -7,7 +7,7 @@ def fc(X, W, Y):
ret_v
=
core
.
Net
.
create
()
ret_v
.
append_op
(
Operator
(
"mul"
,
X
=
"X"
,
Y
=
"W"
,
Out
=
"pre_activation"
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Y
=
Y
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Out
=
Y
))
ret_v
.
complete_add_op
(
True
)
return
ret_v
...
...
@@ -30,7 +30,7 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Y
[fc.out]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Out
[fc.out]}.
'''
self
.
assertEqual
(
expected
,
"
\n
"
+
str
(
net
))
...
...
python/paddle/v2/fluid/tests/test_softmax_op.py
浏览文件 @
24458ae3
...
...
@@ -17,14 +17,14 @@ class TestSoftmaxOp(OpTest):
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
'X'
])
'
Out
'
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
'X'
])
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
)
self
.
check_grad
([
'X'
],
'
Out
'
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录