未验证 提交 2309aa58 编写于 作者: G gaoziyuan 提交者: GitHub

【Hackathon 78】为Paddle-TRT增加cumsum算子 (#52518)

上级 0baacc69
......@@ -2688,6 +2688,7 @@ USE_TRT_CONVERTER(expand_v2)
USE_TRT_CONVERTER(take_along_axis)
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
USE_TRT_CONVERTER(cumsum)
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
......
......@@ -106,6 +106,7 @@ list(
skip_groupnorm_act_op.cc
preln_groupnorm_act_op.cc
expand_v2_op.cc
cumsum_op.cc
temporal_shift_op.cc)
if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
......
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* Cumsum Op
*/
class CumsumOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
#if IS_TRT_VERSION_GE(7220)
VLOG(3) << "convert a cumsum op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
std::string input_x_name = op_desc.Input("X").front();
std::string output_name = op_desc.Output("Out").front();
auto* input_x_tensor = engine_->GetITensor(input_x_name);
auto dims = input_x_tensor->getDimensions();
auto rank = dims.nbDims;
int axis = 0;
if (op_desc.HasAttr("axis")) {
axis = PADDLE_GET_CONST(int, op_desc.GetAttr("axis"));
if (axis < 0) {
axis += rank;
}
}
// getAxisLength default is a scalar
auto getAxisLength =
[&](nvinfer1::ITensor* inpTensor, int axis, bool scalar = true) {
auto dims = inpTensor->getDimensions();
int d = dims.d[axis];
if (d >= 0) {
return Add1DConstantLayer(d, "", scalar);
} else {
nvinfer1::ITensor* inpShape = Shape(inpTensor);
return GetEleTensorOfShape(inpShape, d, scalar);
}
};
// Create "inputSliced" tensor that is sliced on dimension[axis] to length 1
nvinfer1::Dims start;
start.nbDims = rank;
std::vector<int32_t> start_vec(rank, 0);
std::fill(start.d, start.d + rank, 0);
nvinfer1::Dims size;
size.nbDims = rank;
nvinfer1::Dims stride;
stride.nbDims = rank;
auto axisLength = getAxisLength(input_x_tensor, axis, false);
auto starts_tensor =
Add1DConstantLayer(start_vec, output_name + "_start_tensor_");
auto sizes_tensor = axis == 0 ? Add1DConstantLayer(1)
: getAxisLength(input_x_tensor, 0, false);
auto strides_tensor = axis == 0 ? axisLength : Add1DConstantLayer(1);
for (int i = 1; i < rank; i++) {
if (i == axis) {
std::vector<nvinfer1::ITensor*> strides_itensors = {strides_tensor,
axisLength};
strides_tensor = Concat(strides_itensors);
std::vector<nvinfer1::ITensor*> sizes_itensors = {
sizes_tensor, Add1DConstantLayer(1)};
sizes_tensor = Concat(sizes_itensors);
} else {
auto currLength = getAxisLength(input_x_tensor, i, false);
std::vector<nvinfer1::ITensor*> strides_itensors = {
strides_tensor, Add1DConstantLayer(1)};
strides_tensor = Concat(strides_itensors);
std::vector<nvinfer1::ITensor*> sizes_itensors = {sizes_tensor,
currLength};
sizes_tensor = Concat(sizes_itensors);
}
}
auto inputSliced = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *input_x_tensor, start, size, stride);
inputSliced->setInput(1, *starts_tensor);
inputSliced->setInput(2, *sizes_tensor);
inputSliced->setInput(3, *strides_tensor);
auto inputSliced_output = inputSliced->getOutput(0);
// Scan through each slice across axis and add it to the running sum
auto loop = TRT_ENGINE_ADD_LAYER(engine_, Loop);
nvinfer1::ITensor* tripLimit = getAxisLength(input_x_tensor, axis);
loop->addTripLimit(*tripLimit, nvinfer1::TripLimit::kCOUNT);
auto iterator = loop->addIterator(*input_x_tensor, axis);
auto data = iterator->getOutput(0);
// Squeeze inputSliced down to same shape as `data`
auto sliced_dims = inputSliced_output->getDimensions();
std::vector<int32_t> subscripts(sliced_dims.nbDims);
std::iota(subscripts.begin(), subscripts.end(), 0);
auto p = std::remove_if(subscripts.begin(),
subscripts.end(),
[axis](int x) { return x == axis; });
subscripts.resize(p - subscripts.begin());
auto newDims = Gather(Shape(inputSliced_output), subscripts);
inputSliced_output = Reshape(inputSliced_output, newDims);
// creat ZeroTensor
std::vector<float> zero_vec{0.f};
auto zero = Add1DConstantLayer(zero_vec);
auto cast = TRT_ENGINE_ADD_LAYER(engine_, Identity, *zero);
cast->setOutputType(0, inputSliced_output->getType());
zero = TRT_ENGINE_ADD_LAYER(
engine_,
ElementWise,
*inputSliced_output,
*BroadcastTensors(cast->getOutput(0), inputSliced_output),
nvinfer1::ElementWiseOperation::kPROD)
->getOutput(0);
auto runningSum = loop->addRecurrence(*zero);
auto runningSumTensor = runningSum->getOutput(0);
auto curSum = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*data,
*runningSumTensor,
nvinfer1::ElementWiseOperation::kSUM);
runningSum->setInput(1, *curSum->getOutput(0));
auto reverseFlag = nvinfer1::LoopOutput::kCONCATENATE;
nvinfer1::ILoopOutputLayer* loopOut =
loop->addLoopOutput(*curSum->getOutput(0), reverseFlag, axis);
loopOut->setInput(1, *tripLimit);
RreplenishLayerAndOutput(loopOut, "cumsum", {output_name}, test_mode);
#else
VLOG(3) << "Cumsum is not supported when TensorRT < 7.2.2";
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(cumsum, CumsumOpConverter);
......@@ -416,6 +416,52 @@ class OpConverter {
return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
}
nvinfer1::ITensor* Reshape(nvinfer1::ITensor* input,
nvinfer1::ITensor* newShape) {
nvinfer1::ITensor* oldShape = Shape(input);
if (oldShape == newShape) {
return input;
}
auto* shuffle = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
shuffle->setInput(1, *newShape);
return shuffle->getOutput(0);
}
nvinfer1::ITensor* BroadcastTensor(nvinfer1::ITensor* input,
const int nbDims) {
auto oldShape = Shape(input);
auto oldShapeDims = oldShape->getDimensions();
const int rank = oldShapeDims.nbDims;
if (rank > nbDims) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Cannot broadcast a higher rank tensor to a lower rank tensor."));
}
if (rank < nbDims) {
nvinfer1::ITensor* concat_shape_tensor;
auto* one_rank_tensor =
Add1DConstantLayer(std::vector<int32_t>(nbDims - rank, 1));
std::vector<nvinfer1::ITensor*> itensors;
itensors.push_back(one_rank_tensor);
itensors.push_back(oldShape);
concat_shape_tensor = Concat(itensors);
input = Reshape(input, concat_shape_tensor);
}
return input;
}
nvinfer1::ITensor* BroadcastTensors(nvinfer1::ITensor* a,
nvinfer1::ITensor* b) {
const int aDims = a->getDimensions().nbDims;
const int bDims = b->getDimensions().nbDims;
if (aDims == bDims) {
VLOG(3) << "Broadcast two equal rank tensors";
}
if (aDims > bDims) {
return BroadcastTensor(b, aDims);
}
return BroadcastTensor(a, bDims);
}
// Concat not make rank changed
nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
int axis = 0) {
......
......@@ -2705,6 +2705,25 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}
if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
return false;
#endif
if (!with_dynamic_shape) {
VLOG(3) << "the cumsum does not support "
"static shape yet";
return false;
}
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
}
if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
......@@ -2906,7 +2925,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift",
"grid_sampler"};
"grid_sampler",
"cumsum"};
std::unordered_set<std::string> teller_set{
"mul",
......@@ -3064,7 +3084,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift",
"grid_sampler"};
"grid_sampler",
"cumsum"};
};
struct GenericPluginTeller : public Teller {
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertCumsum(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return False
return True
def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824
def generate_input1():
if self.dims == 2:
self.input_shape = [2, 3]
return np.random.random([2, 3]).astype(np.int32)
elif self.dims == 3:
self.input_shape = [2, 3, 4]
return np.random.random([2, 3, 4]).astype(np.int64)
elif self.dims == 4:
self.input_shape = [4, 3, 32, 32]
return np.random.random([4, 3, 32, 32]).astype(np.float32) - 0.5
for dims in [2, 3, 4]:
for axis in range(-1, dims):
for type in ["int32", "int64", "float32", "float64"]:
self.dims = dims
ops_config = [
{
"op_type": "cumsum",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": {"axis": axis, "dtype": type},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1)
),
},
outputs=["output_data"],
)
yield program_config
# no op_attrs
for dims in [2, 3, 4]:
self.dims = dims
ops_config = [
{
"op_type": "cumsum",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": {},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1)
),
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape():
if self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input_data": [2, 3],
}
self.dynamic_shape.max_input_shape = {
"input_data": [2, 3],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 3],
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input_data": [2, 3, 4],
}
self.dynamic_shape.max_input_shape = {
"input_data": [2, 3, 4],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 3, 4],
}
elif self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [4, 3, 32, 32],
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 3, 32, 32],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [4, 3, 32, 32],
}
def generate_trt_nodes_num(attrs, dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return 0, 3
return 1, 2
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
# for dynamic_shape
generate_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-2
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册