Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
22555e96
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
22555e96
编写于
11月 24, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
11月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pad3d and pad3d_grad op for xpu, test=kunlun (#48306)
上级
ac8a4b16
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
999 addition
and
1 deletion
+999
-1
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-0
paddle/phi/kernels/xpu/pad3d_grad_kernel.cc
paddle/phi/kernels/xpu/pad3d_grad_kernel.cc
+108
-0
paddle/phi/kernels/xpu/pad3d_kernel.cc
paddle/phi/kernels/xpu/pad3d_kernel.cc
+187
-0
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
+701
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
22555e96
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.su.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022112
0
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022112
4
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
22555e96
...
...
@@ -433,6 +433,8 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
{
"p_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"p_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"pad3d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"pad3d"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"pool2d_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
...
...
paddle/phi/kernels/xpu/pad3d_grad_kernel.cc
0 → 100644
浏览文件 @
22555e96
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/pad3d_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Pad3dGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out_grad
,
const
IntArray
&
paddings
,
const
std
::
string
&
mode
,
float
pad_value
,
const
std
::
string
&
data_format
,
DenseTensor
*
x_grad
)
{
T
value
=
static_cast
<
T
>
(
pad_value
);
std
::
vector
<
int64_t
>
pads
=
paddings
.
GetData
();
auto
*
d_out
=
&
out_grad
;
auto
*
d_in
=
x_grad
;
auto
d_in_dims
=
d_in
->
dims
();
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
T
*
d_in_data
=
dev_ctx
.
template
Alloc
<
T
>(
d_in
);
bool
is_ncdhw
=
true
;
if
(
data_format
==
"NDHWC"
)
{
is_ncdhw
=
false
;
}
const
int
num
=
d_in_dims
[
0
];
// n
int
channels
=
d_in_dims
[
1
];
// c
int
in_depth
=
d_in_dims
[
2
];
// xd
int
in_height
=
d_in_dims
[
3
];
// xh
int
in_width
=
d_in_dims
[
4
];
// xw
if
(
data_format
==
"NDHWC"
)
{
channels
=
d_in_dims
[
4
];
in_depth
=
d_in_dims
[
1
];
in_height
=
d_in_dims
[
2
];
in_width
=
d_in_dims
[
3
];
}
std
::
vector
<
int
>
pads_xpu
(
6
);
pads_xpu
[
0
]
=
pads
[
4
];
// pf
pads_xpu
[
1
]
=
pads
[
5
];
// pb
pads_xpu
[
2
]
=
pads
[
2
];
// pt
pads_xpu
[
3
]
=
pads
[
3
];
// pd
pads_xpu
[
4
]
=
pads
[
0
];
// pl
pads_xpu
[
5
]
=
pads
[
1
];
// pr
if
(
mode
==
"reflect"
)
{
int
r
=
xpu
::
reflection_pad3d_grad
(
dev_ctx
.
x_context
(),
d_out_data
,
d_in_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"reflection_pad3d_grad"
);
}
else
if
(
mode
==
"replicate"
)
{
int
r
=
xpu
::
replication_pad3d_grad
(
dev_ctx
.
x_context
(),
d_out_data
,
d_in_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"replication_pad3d_grad"
);
}
else
if
(
mode
==
"constant"
)
{
int
r
=
xpu
::
constant_pad3d_grad
(
dev_ctx
.
x_context
(),
d_out_data
,
d_in_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
value
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant_pad3d_grad"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
pad3d_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
Pad3dGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/pad3d_kernel.cc
0 → 100644
浏览文件 @
22555e96
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/pad3d_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
Pad3dKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
paddings
,
const
std
::
string
&
mode
,
float
pad_value
,
const
std
::
string
&
data_format
,
DenseTensor
*
out
)
{
T
value
=
static_cast
<
T
>
(
pad_value
);
std
::
vector
<
int64_t
>
pads
=
paddings
.
GetData
();
auto
in_dims
=
x
.
dims
();
const
T
*
in_data
=
x
.
data
<
T
>
();
bool
is_ncdhw
=
true
;
if
(
data_format
==
"NCDHW"
)
{
out
->
Resize
({
in_dims
[
0
],
in_dims
[
1
],
in_dims
[
2
]
+
pads
[
4
]
+
pads
[
5
],
in_dims
[
3
]
+
pads
[
2
]
+
pads
[
3
],
in_dims
[
4
]
+
pads
[
0
]
+
pads
[
1
]});
}
else
{
is_ncdhw
=
false
;
out
->
Resize
({
in_dims
[
0
],
in_dims
[
1
]
+
pads
[
4
]
+
pads
[
5
],
in_dims
[
2
]
+
pads
[
2
]
+
pads
[
3
],
in_dims
[
3
]
+
pads
[
0
]
+
pads
[
1
],
in_dims
[
4
]});
}
T
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
int
num
=
in_dims
[
0
];
// n
int
channels
=
in_dims
[
1
];
// c
int
in_depth
=
in_dims
[
2
];
// xd
int
in_height
=
in_dims
[
3
];
// xh
int
in_width
=
in_dims
[
4
];
// xw
if
(
data_format
==
"NDHWC"
)
{
channels
=
in_dims
[
4
];
in_depth
=
in_dims
[
1
];
in_height
=
in_dims
[
2
];
in_width
=
in_dims
[
3
];
}
if
(
mode
==
"circular"
)
{
PADDLE_THROW
(
phi
::
errors
::
External
(
"XPU is not support circular padding mode in pad3d"
));
}
if
(
mode
==
"reflect"
)
{
PADDLE_ENFORCE_GT
(
in_depth
,
pads
[
4
],
errors
::
InvalidArgument
(
"The depth of Input(X)'s dimension should be "
"greater than pad_front"
" in reflect mode"
", but received depth(%d) and pad_front(%d)."
,
in_depth
,
pads
[
4
]));
PADDLE_ENFORCE_GT
(
in_depth
,
pads
[
5
],
errors
::
InvalidArgument
(
"The depth of Input(X)'s dimension should be "
"greater than pad_back"
" in reflect mode"
", but received depth(%d) and pad_back(%d)."
,
in_depth
,
pads
[
5
]));
PADDLE_ENFORCE_GT
(
in_height
,
pads
[
2
],
errors
::
InvalidArgument
(
"The height of Input(X)'s dimension should be "
"greater than pad_top"
" in reflect mode"
", but received depth(%d) and pad_top(%d)."
,
in_height
,
pads
[
2
]));
PADDLE_ENFORCE_GT
(
in_height
,
pads
[
3
],
errors
::
InvalidArgument
(
"The height of Input(X)'s dimension should be "
"greater than pad_bottom"
" in reflect mode"
", but received depth(%d) and pad_bottom(%d)."
,
in_height
,
pads
[
3
]));
PADDLE_ENFORCE_GT
(
in_width
,
pads
[
0
],
errors
::
InvalidArgument
(
"The width of Input(X)'s dimension should be "
"greater than pad_left"
" in reflect mode"
", but received depth(%d) and pad_left(%d)."
,
in_width
,
pads
[
0
]));
PADDLE_ENFORCE_GT
(
in_width
,
pads
[
1
],
errors
::
InvalidArgument
(
"The width of Input(X)'s dimension should be "
"greater than pad_right"
" in reflect mode"
", but received depth(%d) and pad_right(%d)."
,
in_width
,
pads
[
1
]));
}
else
if
(
mode
==
"replicate"
)
{
PADDLE_ENFORCE_NE
(
in_depth
*
in_height
*
in_width
,
0
,
errors
::
InvalidArgument
(
"The input tensor size can not be 0 for circular "
"or replicate padding mode."
));
}
std
::
vector
<
int
>
pads_xpu
(
6
);
pads_xpu
[
0
]
=
pads
[
4
];
// pf
pads_xpu
[
1
]
=
pads
[
5
];
// pb
pads_xpu
[
2
]
=
pads
[
2
];
// pt
pads_xpu
[
3
]
=
pads
[
3
];
// pd
pads_xpu
[
4
]
=
pads
[
0
];
// pl
pads_xpu
[
5
]
=
pads
[
1
];
// pr
if
(
mode
==
"reflect"
)
{
int
r
=
xpu
::
reflection_pad3d
(
dev_ctx
.
x_context
(),
in_data
,
out_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"reflection_pad3d"
);
}
else
if
(
mode
==
"replicate"
)
{
int
r
=
xpu
::
replication_pad3d
(
dev_ctx
.
x_context
(),
in_data
,
out_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"replication_pad3d"
);
}
else
if
(
mode
==
"constant"
)
{
int
r
=
xpu
::
constant_pad3d
(
dev_ctx
.
x_context
(),
in_data
,
out_data
,
num
,
channels
,
in_depth
,
in_height
,
in_width
,
pads_xpu
,
value
,
is_ncdhw
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant_pad3d"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
pad3d
,
XPU
,
ALL_LAYOUT
,
phi
::
Pad3dKernel
,
float
)
{}
python/paddle/fluid/tests/unittests/xpu/test_pad3d_op_xpu.py
0 → 100644
浏览文件 @
22555e96
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
(
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
,
)
from
paddle.fluid
import
Program
,
program_guard
,
Executor
,
default_main_program
paddle
.
enable_static
()
class
XPUTestPad3dOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'pad3d'
class
TestPad3dOp
(
XPUOpTest
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
op_type
=
"pad3d"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
value
=
0.0
self
.
initTestCase
()
self
.
python_api
=
paddle
.
nn
.
functional
.
pad
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)}
self
.
attrs
=
{}
if
self
.
variable_paddings
:
self
.
attrs
[
'paddings'
]
=
[]
self
.
inputs
[
'Paddings'
]
=
(
np
.
array
(
self
.
paddings
).
flatten
().
astype
(
"int32"
)
)
else
:
self
.
attrs
[
'paddings'
]
=
(
np
.
array
(
self
.
paddings
).
flatten
().
astype
(
"int32"
)
)
self
.
attrs
[
'value'
]
=
self
.
value
self
.
attrs
[
'mode'
]
=
self
.
mode
self
.
attrs
[
'data_format'
]
=
self
.
data_format
if
self
.
data_format
==
"NCDHW"
:
paddings
=
[
(
0
,
0
),
(
0
,
0
),
(
self
.
paddings
[
4
],
self
.
paddings
[
5
]),
(
self
.
paddings
[
2
],
self
.
paddings
[
3
]),
(
self
.
paddings
[
0
],
self
.
paddings
[
1
]),
]
else
:
paddings
=
[
(
0
,
0
),
(
self
.
paddings
[
4
],
self
.
paddings
[
5
]),
(
self
.
paddings
[
2
],
self
.
paddings
[
3
]),
(
self
.
paddings
[
0
],
self
.
paddings
[
1
]),
(
0
,
0
),
]
if
self
.
mode
==
"constant"
:
out
=
np
.
pad
(
self
.
inputs
[
'X'
],
paddings
,
mode
=
self
.
mode
,
constant_values
=
self
.
value
,
)
elif
self
.
mode
==
"reflect"
:
out
=
np
.
pad
(
self
.
inputs
[
'X'
],
paddings
,
mode
=
self
.
mode
)
elif
self
.
mode
==
"replicate"
:
out
=
np
.
pad
(
self
.
inputs
[
'X'
],
paddings
,
mode
=
"edge"
)
elif
self
.
mode
==
"circular"
:
out
=
np
.
pad
(
self
.
inputs
[
'X'
],
paddings
,
mode
=
"wrap"
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
True
)
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
0
,
0
,
0
,
0
,
0
]
self
.
mode
=
"constant"
self
.
data_format
=
"NCDHW"
self
.
pad_value
=
0.0
self
.
variable_paddings
=
False
class
TestCase1
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
mode
=
"constant"
self
.
data_format
=
"NCDHW"
self
.
value
=
1.0
self
.
variable_paddings
=
False
class
TestCase2
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
1
,
1
,
1
,
1
,
1
,
1
]
self
.
mode
=
"constant"
self
.
data_format
=
"NDHWC"
self
.
value
=
1.0
self
.
variable_paddings
=
False
class
TestCase3
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
1
,
1
,
0
,
2
,
3
]
self
.
mode
=
"reflect"
self
.
data_format
=
"NCDHW"
self
.
variable_paddings
=
False
class
TestCase4
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
4
,
4
,
4
,
4
,
4
)
self
.
paddings
=
[
0
,
1
,
2
,
1
,
2
,
3
]
self
.
mode
=
"reflect"
self
.
data_format
=
"NDHWC"
self
.
variable_paddings
=
False
class
TestCase5
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
1
,
2
,
3
,
2
,
1
]
self
.
mode
=
"replicate"
self
.
data_format
=
"NCDHW"
self
.
variable_paddings
=
False
class
TestCase6
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
4
,
4
,
4
,
4
,
4
)
self
.
paddings
=
[
5
,
4
,
2
,
1
,
2
,
3
]
self
.
mode
=
"replicate"
self
.
data_format
=
"NDHWC"
self
.
variable_paddings
=
False
class
TestCase7
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
mode
=
"constant"
self
.
data_format
=
"NCDHW"
self
.
value
=
1.0
self
.
variable_paddings
=
True
class
TestCase8
(
TestPad3dOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
3
,
4
,
5
,
6
)
self
.
paddings
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
mode
=
"constant"
self
.
data_format
=
"NDHWC"
self
.
value
=
1.0
self
.
variable_paddings
=
True
class
TestPadAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
dtype
=
self
.
in_type
def
check_static_result_1
(
self
,
place
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
pad
=
[
1
,
2
,
1
,
1
,
3
,
4
]
mode
=
"constant"
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
fluid
.
data
(
name
=
"x"
,
shape
=
input_shape
)
result
=
F
.
pad
(
x
=
x
,
pad
=
pad
,
value
=
value
,
mode
=
mode
,
data_format
=
"NCDHW"
)
exe
=
Executor
(
place
)
fetches
=
exe
.
run
(
default_main_program
(),
feed
=
{
"x"
:
input_data
},
fetch_list
=
[
result
],
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
)
np
.
testing
.
assert_allclose
(
fetches
[
0
],
np_out
,
rtol
=
1e-05
)
def
check_static_result_2
(
self
,
place
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
input_shape
=
(
2
,
3
,
4
,
5
,
6
)
pad
=
[
1
,
2
,
1
,
1
,
1
,
2
]
mode
=
"reflect"
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
fluid
.
data
(
name
=
"x"
,
shape
=
input_shape
)
result1
=
F
.
pad
(
x
=
x
,
pad
=
pad
,
mode
=
mode
,
data_format
=
"NCDHW"
)
result2
=
F
.
pad
(
x
=
x
,
pad
=
pad
,
mode
=
mode
,
data_format
=
"NDHWC"
)
exe
=
Executor
(
place
)
fetches
=
exe
.
run
(
default_main_program
(),
feed
=
{
"x"
:
input_data
},
fetch_list
=
[
result1
,
result2
],
)
np_out1
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
data_format
=
"NCDHW"
)
np_out2
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
data_format
=
"NDHWC"
)
np
.
testing
.
assert_allclose
(
fetches
[
0
],
np_out1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
fetches
[
1
],
np_out2
,
rtol
=
1e-05
)
def
check_static_result_3
(
self
,
place
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
input_shape
=
(
2
,
3
,
4
,
5
,
6
)
pad
=
[
1
,
2
,
1
,
1
,
3
,
4
]
mode
=
"replicate"
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
fluid
.
data
(
name
=
"x"
,
shape
=
input_shape
)
result1
=
F
.
pad
(
x
=
x
,
pad
=
pad
,
mode
=
mode
,
data_format
=
"NCDHW"
)
result2
=
F
.
pad
(
x
=
x
,
pad
=
pad
,
mode
=
mode
,
data_format
=
"NDHWC"
)
exe
=
Executor
(
place
)
fetches
=
exe
.
run
(
default_main_program
(),
feed
=
{
"x"
:
input_data
},
fetch_list
=
[
result1
,
result2
],
)
np_out1
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
data_format
=
"NCDHW"
)
np_out2
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
data_format
=
"NDHWC"
)
np
.
testing
.
assert_allclose
(
fetches
[
0
],
np_out1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
fetches
[
1
],
np_out2
,
rtol
=
1e-05
)
def
_get_numpy_out
(
self
,
input_data
,
pad
,
mode
,
value
=
0
,
data_format
=
"NCDHW"
):
if
mode
==
"constant"
and
len
(
pad
)
==
len
(
input_data
.
shape
)
*
2
:
pad
=
np
.
reshape
(
pad
,
(
-
1
,
2
)).
tolist
()
elif
data_format
==
"NCDHW"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
4
],
pad
[
5
]),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
]
elif
data_format
==
"NDHWC"
:
pad
=
[
(
0
,
0
),
(
pad
[
4
],
pad
[
5
]),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
elif
data_format
==
"NCHW"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
]
elif
data_format
==
"NHWC"
:
pad
=
[
(
0
,
0
),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
elif
data_format
==
"NCL"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
0
],
pad
[
1
]),
]
elif
data_format
==
"NLC"
:
pad
=
[
(
0
,
0
),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
if
mode
==
"constant"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
,
constant_values
=
value
)
elif
mode
==
"reflect"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
)
elif
mode
==
"replicate"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"edge"
)
elif
mode
==
"circular"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"wrap"
)
return
out
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result_1
(
place
=
place
)
self
.
check_static_result_2
(
place
=
place
)
self
.
check_static_result_3
(
place
=
place
)
def
test_dygraph_1
(
self
):
paddle
.
disable_static
()
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
pad
=
[
1
,
2
,
1
,
1
,
3
,
4
]
pad_3
=
[
1
,
2
,
1
,
1
,
3
,
4
,
5
,
6
,
7
,
8
]
mode
=
"constant"
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
np_out1
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NCDHW"
)
np_out2
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NDHWC"
)
np_out3
=
self
.
_get_numpy_out
(
input_data
,
pad_3
,
mode
,
value
,
data_format
=
"NCDHW"
)
tensor_data
=
paddle
.
to_tensor
(
input_data
)
y1
=
F
.
pad
(
tensor_data
,
pad
=
pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCDHW"
,
)
y2
=
F
.
pad
(
tensor_data
,
pad
=
pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NDHWC"
,
)
y3
=
F
.
pad
(
tensor_data
,
pad
=
pad_3
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCDHW"
,
)
np
.
testing
.
assert_allclose
(
y1
.
numpy
(),
np_out1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y2
.
numpy
(),
np_out2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y3
.
numpy
(),
np_out3
,
rtol
=
1e-05
)
def
test_dygraph_2
(
self
):
paddle
.
disable_static
()
input_shape
=
(
2
,
3
,
4
,
5
)
pad
=
[
1
,
1
,
3
,
4
]
pad_3
=
[
1
,
2
,
1
,
1
,
3
,
4
,
5
,
6
]
mode
=
"constant"
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
np_out1
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NCHW"
)
np_out2
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NHWC"
)
np_out3
=
self
.
_get_numpy_out
(
input_data
,
pad_3
,
mode
,
value
,
data_format
=
"NCHW"
)
tensor_data
=
paddle
.
to_tensor
(
input_data
)
tensor_pad
=
paddle
.
to_tensor
(
pad
,
dtype
=
"int32"
)
y1
=
F
.
pad
(
tensor_data
,
pad
=
tensor_pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCHW"
,
)
y2
=
F
.
pad
(
tensor_data
,
pad
=
tensor_pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NHWC"
,
)
y3
=
F
.
pad
(
tensor_data
,
pad
=
pad_3
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCHW"
,
)
np
.
testing
.
assert_allclose
(
y1
.
numpy
(),
np_out1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y2
.
numpy
(),
np_out2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y3
.
numpy
(),
np_out3
,
rtol
=
1e-05
)
def
test_dygraph_3
(
self
):
paddle
.
disable_static
()
input_shape
=
(
3
,
4
,
5
)
pad
=
[
3
,
4
]
pad_3
=
[
3
,
4
,
5
,
6
,
7
,
8
]
mode
=
"constant"
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
np_out1
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NCL"
)
np_out2
=
self
.
_get_numpy_out
(
input_data
,
pad
,
mode
,
value
,
data_format
=
"NLC"
)
np_out3
=
self
.
_get_numpy_out
(
input_data
,
pad_3
,
mode
,
value
,
data_format
=
"NCL"
)
tensor_data
=
paddle
.
to_tensor
(
input_data
)
tensor_pad
=
paddle
.
to_tensor
(
pad
,
dtype
=
"int32"
)
y1
=
F
.
pad
(
tensor_data
,
pad
=
tensor_pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCL"
,
)
y2
=
F
.
pad
(
tensor_data
,
pad
=
tensor_pad
,
mode
=
mode
,
value
=
value
,
data_format
=
"NLC"
,
)
y3
=
F
.
pad
(
tensor_data
,
pad
=
pad_3
,
mode
=
mode
,
value
=
value
,
data_format
=
"NCL"
,
)
np
.
testing
.
assert_allclose
(
y1
.
numpy
(),
np_out1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y2
.
numpy
(),
np_out2
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
y3
.
numpy
(),
np_out3
,
rtol
=
1e-05
)
class
TestPad3dAPI
(
unittest
.
TestCase
):
def
_get_numpy_out
(
self
,
input_data
,
pad
,
mode
,
value
=
0.0
,
data_format
=
"NCDHW"
):
if
data_format
==
"NCDHW"
:
pad
=
[
(
0
,
0
),
(
0
,
0
),
(
pad
[
4
],
pad
[
5
]),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
]
else
:
pad
=
[
(
0
,
0
),
(
pad
[
4
],
pad
[
5
]),
(
pad
[
2
],
pad
[
3
]),
(
pad
[
0
],
pad
[
1
]),
(
0
,
0
),
]
if
mode
==
"constant"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
,
constant_values
=
value
)
elif
mode
==
"reflect"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
mode
)
elif
mode
==
"replicate"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"edge"
)
elif
mode
==
"circular"
:
out
=
np
.
pad
(
input_data
,
pad
,
mode
=
"wrap"
)
return
out
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
dtype
=
self
.
in_type
def
test_class
(
self
):
paddle
.
disable_static
()
for
place
in
self
.
places
:
input_shape
=
(
3
,
4
,
5
,
6
,
7
)
pad
=
[
1
,
2
,
2
,
1
,
1
,
0
]
pad_int
=
1
value
=
100
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
pad_reflection
=
nn
.
Pad3D
(
padding
=
pad
,
mode
=
"reflect"
)
pad_replication
=
nn
.
Pad3D
(
padding
=
pad
,
mode
=
"replicate"
)
pad_constant
=
nn
.
Pad3D
(
padding
=
pad
,
mode
=
"constant"
,
value
=
value
)
pad_constant_int
=
nn
.
Pad3D
(
padding
=
pad_int
,
mode
=
"constant"
,
value
=
value
)
pad_circular
=
nn
.
Pad3D
(
padding
=
pad
,
mode
=
"circular"
)
data
=
paddle
.
to_tensor
(
input_data
)
output
=
pad_reflection
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"reflect"
,
data_format
=
"NCDHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_replication
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"replicate"
,
data_format
=
"NCDHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"constant"
,
value
=
value
,
data_format
=
"NCDHW"
,
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_constant_int
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
[
pad_int
]
*
6
,
"constant"
,
value
=
value
,
data_format
=
"NCDHW"
,
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
def
test_pad_tensor
(
self
):
paddle
.
disable_static
()
for
place
in
self
.
places
:
input_shape
=
(
3
,
4
,
5
,
6
,
7
)
pad
=
[
1
,
2
,
2
,
1
,
1
,
0
]
pad_tensor
=
paddle
.
to_tensor
(
pad
)
input_data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
np
.
float32
)
pad_reflection_ncdhw
=
nn
.
Pad3D
(
padding
=
pad_tensor
,
mode
=
"reflect"
,
data_format
=
"NCDHW"
)
pad_reflection_ndhwc
=
nn
.
Pad3D
(
padding
=
pad_tensor
,
mode
=
"reflect"
,
data_format
=
"NDHWC"
)
data
=
paddle
.
to_tensor
(
input_data
)
output
=
pad_reflection_ncdhw
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"reflect"
,
data_format
=
"NCDHW"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
output
=
pad_reflection_ndhwc
(
data
)
np_out
=
self
.
_get_numpy_out
(
input_data
,
pad
,
"reflect"
,
data_format
=
"NDHWC"
)
np
.
testing
.
assert_allclose
(
output
.
numpy
(),
np_out
,
rtol
=
1e-05
)
class
TestPad3dOpError
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
dtype
=
self
.
in_type
def
test_errors
(
self
):
def
test_variable
():
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
y
=
F
.
pad
(
x
=
data
,
pad
=
[
1
,
1
,
1
,
1
,
1
,
1
],
data_format
=
"NCDHW"
)
def
test_reflect_1
():
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
to_tensor
(
data
)
y
=
F
.
pad
(
x
,
pad
=
[
5
,
6
,
1
,
1
,
1
,
1
],
value
=
1
,
mode
=
'reflect'
,
data_format
=
"NCDHW"
,
)
def
test_reflect_2
():
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
to_tensor
(
data
)
y
=
F
.
pad
(
x
,
pad
=
[
1
,
1
,
4
,
3
,
1
,
1
],
value
=
1
,
mode
=
'reflect'
,
data_format
=
"NCDHW"
,
)
def
test_reflect_3
():
input_shape
=
(
1
,
2
,
3
,
4
,
5
)
data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
to_tensor
(
data
)
y
=
F
.
pad
(
x
,
pad
=
[
1
,
1
,
1
,
1
,
2
,
3
],
value
=
1
,
mode
=
'reflect'
,
data_format
=
"NCDHW"
,
)
def
test_replicate_1
():
input_shape
=
(
1
,
2
,
0
,
4
,
5
)
data
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
self
.
dtype
)
x
=
paddle
.
to_tensor
(
data
)
y
=
F
.
pad
(
x
,
pad
=
[
1
,
1
,
1
,
1
,
2
,
3
],
mode
=
'replicate'
,
data_format
=
"NCDHW"
,
)
paddle
.
disable_static
()
for
place
in
self
.
places
:
self
.
assertRaises
(
ValueError
,
test_variable
)
self
.
assertRaises
(
Exception
,
test_reflect_1
)
self
.
assertRaises
(
Exception
,
test_reflect_2
)
self
.
assertRaises
(
Exception
,
test_reflect_3
)
self
.
assertRaises
(
Exception
,
test_replicate_1
)
paddle
.
enable_static
()
class
TestPadDataformatError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_ncl
():
input_shape
=
(
1
,
2
,
3
,
4
)
pad
=
paddle
.
to_tensor
(
np
.
array
([
2
,
1
,
2
,
1
]).
astype
(
'int32'
))
data
=
(
np
.
arange
(
np
.
prod
(
input_shape
),
dtype
=
np
.
float64
).
reshape
(
input_shape
)
+
1
)
my_pad
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"replicate"
,
data_format
=
"NCL"
)
data
=
paddle
.
to_tensor
(
data
)
result
=
my_pad
(
data
)
def
test_nchw
():
input_shape
=
(
1
,
2
,
4
)
pad
=
paddle
.
to_tensor
(
np
.
array
([
2
,
1
,
2
,
1
]).
astype
(
'int32'
))
data
=
(
np
.
arange
(
np
.
prod
(
input_shape
),
dtype
=
np
.
float64
).
reshape
(
input_shape
)
+
1
)
my_pad
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"replicate"
,
data_format
=
"NCHW"
)
data
=
paddle
.
to_tensor
(
data
)
result
=
my_pad
(
data
)
def
test_ncdhw
():
input_shape
=
(
1
,
2
,
3
,
4
)
pad
=
paddle
.
to_tensor
(
np
.
array
([
2
,
1
,
2
,
1
]).
astype
(
'int32'
))
data
=
(
np
.
arange
(
np
.
prod
(
input_shape
),
dtype
=
np
.
float64
).
reshape
(
input_shape
)
+
1
)
my_pad
=
nn
.
Pad1D
(
padding
=
pad
,
mode
=
"replicate"
,
data_format
=
"NCDHW"
)
data
=
paddle
.
to_tensor
(
data
)
result
=
my_pad
(
data
)
self
.
assertRaises
(
AssertionError
,
test_ncl
)
self
.
assertRaises
(
AssertionError
,
test_nchw
)
self
.
assertRaises
(
AssertionError
,
test_ncdhw
)
support_types
=
get_xpu_op_support_types
(
'pad3d'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestPad3dOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录