Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
21604977
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21604977
编写于
11月 13, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix pooling functor parameter order
上级
39715861
变更
5
展开全部
显示空白变更内容
内联
并排
Showing
5 changed file
with
278 addition
and
272 deletion
+278
-272
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+61
-57
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+167
-167
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+26
-24
paddle/operators/pool_op.h
paddle/operators/pool_op.h
+16
-16
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+8
-8
未找到文件。
paddle/operators/math/pooling.cc
浏览文件 @
21604977
...
...
@@ -27,15 +27,15 @@ template <typename PoolProcess, typename T>
class
Pool2dFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
stride
s
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
padding
s
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
...
...
@@ -47,7 +47,7 @@ class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> {
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -87,11 +87,12 @@ template <typename PoolProcess, class T>
class
Pool2dGradFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
)
{
PoolProcess
pool_grad_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -110,7 +111,7 @@ class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -154,10 +155,11 @@ template <class T>
class
MaxPool2dGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
...
...
@@ -176,7 +178,7 @@ class MaxPool2dGradFunctor<platform::CPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -240,17 +242,17 @@ template <typename PoolProcess, class T>
class
Pool3dFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
stride
s
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
)
{
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
padding
s
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
4
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_depth
=
output
.
dims
()[
2
];
const
int
output_height
=
output
.
dims
()[
3
];
const
int
output_width
=
output
.
dims
()[
4
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_depth
=
output
->
dims
()[
2
];
const
int
output_height
=
output
->
dims
()[
3
];
const
int
output_width
=
output
->
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
...
...
@@ -265,7 +267,7 @@ class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> {
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -315,11 +317,12 @@ template <typename PoolProcess, class T>
class
Pool3dGradFunctor
<
platform
::
CPUPlace
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
)
{
PoolProcess
pool_grad_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
@@ -343,7 +346,7 @@ class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -398,10 +401,11 @@ template <class T>
class
MaxPool3dGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
...
...
@@ -425,7 +429,7 @@ class MaxPool3dGradFunctor<platform::CPUPlace, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -498,15 +502,15 @@ template <typename T>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_height
=
output
->
dims
()[
2
];
const
int
output_width
=
output
->
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
...
...
@@ -517,8 +521,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -563,13 +567,13 @@ template <typename T>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input_grad
.
dims
()[
0
];
const
int
input_height
=
input_grad
.
dims
()[
2
];
const
int
input_width
=
input_grad
.
dims
()[
3
];
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_height
=
input_grad
->
dims
()[
2
];
const
int
input_width
=
input_grad
->
dims
()[
3
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_height
=
output_grad
.
dims
()[
2
];
const
int
output_width
=
output_grad
.
dims
()[
3
];
...
...
@@ -578,7 +582,7 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -612,17 +616,17 @@ template <typename T>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
4
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_depth
=
output
.
dims
()[
2
];
const
int
output_height
=
output
.
dims
()[
3
];
const
int
output_width
=
output
.
dims
()[
4
];
const
int
output_channels
=
output
->
dims
()[
1
];
const
int
output_depth
=
output
->
dims
()[
2
];
const
int
output_height
=
output
->
dims
()[
3
];
const
int
output_width
=
output
->
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
...
...
@@ -636,8 +640,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -691,14 +695,14 @@ template <typename T>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input_grad
.
dims
()[
0
];
const
int
input_depth
=
input_grad
.
dims
()[
2
];
const
int
input_height
=
input_grad
.
dims
()[
3
];
const
int
input_width
=
input_grad
.
dims
()[
4
];
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_depth
=
input_grad
->
dims
()[
2
];
const
int
input_height
=
input_grad
->
dims
()[
3
];
const
int
input_width
=
input_grad
->
dims
()[
4
];
const
int
output_channels
=
output_grad
.
dims
()[
1
];
const
int
output_depth
=
output_grad
.
dims
()[
2
];
const
int
output_height
=
output_grad
.
dims
()[
3
];
...
...
@@ -708,7 +712,7 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
paddle/operators/math/pooling.cu
浏览文件 @
21604977
此差异已折叠。
点击以展开。
paddle/operators/math/pooling.h
浏览文件 @
21604977
...
...
@@ -88,60 +88,62 @@ template <typename Place, typename PoolProcess, typename T>
class
Pool2dFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
stride
s
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
);
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
padding
s
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
output
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool2dGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
);
PoolProcess
pool_compute
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
class
T
>
class
MaxPool2dGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool3dFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
stride
s
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
);
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
padding
s
,
PoolProcess
pool_compute
,
framework
::
Tensor
*
output
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool3dGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
);
PoolProcess
pool_compute
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
class
T
>
class
MaxPool3dGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
);
};
/*
...
...
@@ -155,38 +157,38 @@ template <typename Place, typename T>
class
MaxPool2dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool2dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool3dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
output
,
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
class
MaxPool3dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
);
};
}
// namespace math
...
...
paddle/operators/pool_op.h
浏览文件 @
21604977
...
...
@@ -75,16 +75,16 @@ class PoolKernel : public framework::OpKernel<T> {
Place
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
ksize
,
strides
,
paddings
,
pool_process
);
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
Place
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
ksize
,
strides
,
paddings
,
pool_process
);
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
}
}
break
;
case
3
:
{
...
...
@@ -93,15 +93,15 @@ class PoolKernel : public framework::OpKernel<T> {
Place
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
ksize
,
strides
,
paddings
,
pool_process
);
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool3dFunctor
<
Place
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool3d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
ksize
,
strides
,
paddings
,
pool_process
);
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
out
);
}
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
...
@@ -142,30 +142,30 @@ class PoolGradKernel : public framework::OpKernel<T> {
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*
in_x_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
);
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dGradFunctor
<
Place
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
,
T
>
pool2d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*
in_x_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
in_x_grad
);
}
}
break
;
case
3
:
{
if
(
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
MaxPool3dGradFunctor
<
Place
,
T
>
pool3d_backward
;
pool3d_backward
(
context
.
device_context
(),
*
in_x
,
*
in_x_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
);
pool3d_backward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool3dGradFunctor
<
Place
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
,
T
>
pool3d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool3d_backward
(
context
.
device_context
(),
*
in_x
,
*
in_x_grad
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
pool3d_backward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
in_x_grad
);
}
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
...
paddle/operators/pool_with_index_op.h
浏览文件 @
21604977
...
...
@@ -46,14 +46,14 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
Place
,
T
>
pool2d_forward
;
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
mask
,
ksize
,
strides
,
paddings
);
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
Place
,
T
>
pool3d_forward
;
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
*
out
,
*
mask
,
ksize
,
strides
,
paddings
);
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
}
...
...
@@ -89,14 +89,14 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexGradFunctor
<
Place
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
device_context
(),
*
in_x_grad
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
);
pool2d_backward
(
context
.
device_context
(),
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
Place
,
T
>
pool3d_backward
;
pool3d_backward
(
context
.
device_context
(),
*
in_x_grad
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
);
pool3d_backward
(
context
.
device_context
(),
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录