提交 212dcedc 编写于 作者: C chenguoyan01

rewrite distributed_training_on_k8s.md

上级 23b6dfd0
# Paddle on Kubernetes:分布式训练
前一篇文章介绍了如何在Kubernetes集群上启动一个单机Paddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上启动分布式Paddle训练作业。关于Paddle的分布式集群训练,可以参考 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md), 本文在此基础上,利用Kubernetes快速构建Paddle集群,进行分布式训练任务。
## 制作镜像
Paddle的集群训练需要有一个Paddle集群来实现,在本文中,我们使用Kubernetes来快速创建一个Paddle集群。我们使用 `paddledev/paddle:cpu-demo-latest` 镜像作为Paddle集群节点的运行环境,里面包含了 Paddle 运行所需要的相关依赖,同时,为了能将训练任务及配置统一分发到各个节点,需要使用到`sshd`以便使用`fabric`来操作。镜像的 Dockerfile 如下:
```
FROM paddledev/paddle:cpu-demo-latest
RUN apt-get update
RUN apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' | chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
```
使用 `docker build` 构建镜像:
```
docker build -t mypaddle:paddle_demo_ssh .
```
## 准备工作空间
工作空间 [Job Workspace](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md#prepare-job-workspace) , 即一个包含了依赖库,训练,测试数据,模型配置文件的目录。参考 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)中的例子,我们也是用`demo/recommendation`作为本文的训练任务。此demo可直接从[Github Paddle源码](https://github.com/baidu/Paddle/tree/develop/demo/recommendation)中获取。
### 准备训练数据
在Paddle源码中,找到`demo/recommendation`文件夹,即为我们的Workspace, 在本文的环境中,路径为`/home/work/paddle-demo/Paddle/demo/recommendation`
```
[root@paddle-k8s-node0 recommendation]# tree
.
├── common_utils.py
├── data
│   ├── config_generator.py
│   ├── config.json
│   ├── meta_config.json
│   ├── meta_generator.py
│   ├── ml_data.sh
│   └── split.py
├── dataprovider.py
├── evaluate.sh
├── prediction.py
├── preprocess.sh
├── requirements.txt
├── run.sh
└── trainer_config.py
1 directory, 14 files
```
运行`data/ml_data.sh`脚本,下载数据,然后运行`preprocess.sh`脚本进行预处理。
```
[root@paddle-k8s-node0 recommendation]# data/ml_data.sh
++ dirname data/ml_data.sh
+ cd data
+ wget http://files.grouplens.org/datasets/movielens/ml-1m.zip
--2016-11-04 10:14:49-- http://files.grouplens.org/datasets/movielens/ml-1m.zip
Resolving files.grouplens.org (files.grouplens.org)... 128.101.34.146
Connecting to files.grouplens.org (files.grouplens.org)|128.101.34.146|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5917549 (5.6M) [application/zip]
Saving to: ‘ml-1m.zip’
100%[==========================>] 5,917,549 50.6KB/s in 2m 29s
2016-11-04 10:17:20 (38.8 KB/s) - ‘ml-1m.zip’ saved [5917549/5917549]
+ unzip ml-1m.zip
Archive: ml-1m.zip
creating: ml-1m/
inflating: ml-1m/movies.dat
inflating: ml-1m/ratings.dat
inflating: ml-1m/README
inflating: ml-1m/users.dat
+ rm ml-1m.zip
[root@paddle-k8s-node0 recommendation]# ./preprocess.sh
generate meta config file
generate meta file
split train/test file
shuffle train file
```
### 修改集群训练配置
参考[Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)中的介绍,我们使用`paddle/scripts/cluster_train/`中的文件来作为分布式训练任务的配置和启动脚本。在`run.sh`文件中,填入我们的workspace和训练配置文件路径。
```
#!/bin/sh
python paddle.py \
--job_dispatch_package="/home/work/paddle-demo/Paddle/demo/recommendation" \
--dot_period=10 \
--ports_num_for_sparse=2 \
--log_period=50 \
--num_passes=10 \
--trainer_count=4 \
--saving_period=1 \
--local=0 \
--config=/home/work/paddle-demo/Paddle/demo/recommendation/trainer_config.py \
--save_dir=./output \
--use_gpu=0
```
## 创建Paddle集群
创建Paddle集训需要编写创建Kubernetes资源的yaml文件,首先,创建一个Service,便于我们通过此Service来查找其对应的Paddle节点。
```
apiVersion: v1
kind: Service
metadata:
name: cluster-demo
spec:
selector:
app: cluster-demo
ports:
- name: default
protocol: TCP
port: 7164
targetPort: 7164
```
为了创建多个Paddle节点,我们使用Kubernetes ReplicationController资源来控制Paddle集群中的节点数量,Paddle节点之间需要开放相关的端口来互相通信。下面的例子中,我们开放了每个Paddle节点的7164-7167端口,例如,一个包含4个节点的Paddle集群的yaml文件如下:
```
apiVersion: v1
kind: ReplicationController
metadata:
name: cluster-demo
spec:
replicas: 4
selector:
app: cluster-demo
template:
metadata:
name: cluster-demo
labels:
app: cluster-demo
spec:
containers:
- name: cluster-demo
image: mypaddle:paddle_demo_ssh
ports:
- containerPort: 7164
- containerPort: 7165
- containerPort: 7166
- containerPort: 7167
```
然后我们可以通过`kubectl`工具来查看所创建的资源信息。
首先查看我们创建的Paddle Service,然后根据Service,查看所创建的Paddle节点的IP地址。
```
[root@paddle-k8s-node0 cluster_train]# kubectl get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cluster-demo 11.1.1.77 <none> 7164/TCP 6h
[root@paddle-k8s-node0 cluster_train]# kubectl get -o json endpoints cluster-demo | grep ip
"ip": "192.168.129.79",
"ip": "192.168.129.80",
"ip": "192.168.223.157",
"ip": "192.168.223.158",
```
## 开始集群训练
我们需要在`paddle/scripts/cluster_train/conf.py`文件中指定各个节点的IP地址以及开放的端口。根据上文创建的信息,`conf.py`文件修改如下:
```
HOSTS = [
"root@192.168.129.79",
"root@192.168.129.80",
"root@192.168.223.157",
"root@192.168.223.158"
]
'''
workspace configuration
'''
#root dir for workspace, can be set as any director with real user account
ROOT_DIR = "/home/paddle"
'''
network configuration
'''
#pserver nics
PADDLE_NIC = "eth0"
#pserver port
PADDLE_PORT = 7164
#pserver ports num
PADDLE_PORTS_NUM = 2
#pserver sparse ports num
PADDLE_PORTS_NUM_FOR_SPARSE = 2
#environments setting for all processes in cluster job
LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/lib64"
```
然后使用`run.sh`脚本开始训练,启动的打印如下:
```
[root@paddle-k8s-node0 cluster_train]# ./run.sh
[root@192.168.129.79] Executing task 'job_create_workspace'
......
[root@192.168.129.80] Executing task 'job_create_workspace'
......
[root@192.168.223.157] Executing task 'job_create_workspace'
......
[root@192.168.223.158] Executing task 'job_create_workspace'
......
[root@192.168.129.79] run: echo 0 > /home/paddle/JOB20161104171630/nodefile
[root@192.168.129.80] Executing task 'set_nodefile'
[root@192.168.129.80] run: echo 1 > /home/paddle/JOB20161104171630/nodefile
[root@192.168.223.157] Executing task 'set_nodefile'
[root@192.168.223.157] run: echo 2 > /home/paddle/JOB20161104171630/nodefile
[root@192.168.223.158] Executing task 'set_nodefile'
[root@192.168.223.158] run: echo 3 > /home/paddle/JOB20161104171630/nodefile
```
可以看到192.168.129.79,192.168.129.80,192.168.223.157,192.168.223.158分别为Paddle集群的Node 0-3.
我们可以进入其中一个Paddle节点查看训练的日志。
```
root@cluster-demo-fwwi5:/home/paddle/JOB20161104171700/log# less paddle_trainer.INFO
Log file created at: 2016/11/04 09:17:20
Running on machine: cluster-demo-fwwi5
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
I1104 09:17:20.346797 108 Util.cpp:155] commandline: /usr/local/bin/../opt/paddle/bin/paddle
_trainer --num_gradient_servers=4 --nics=eth0 --port=7164 --ports_num=2 --comment=paddle_proce
ss_by_paddle --pservers=192.168.129.79,192.168.129.80,192.168.223.157,192.168.223.158 --ports_
num_for_sparse=2 --config=./trainer_config.py --trainer_count=4 --use_gpu=0 --num_passes=10 --
save_dir=./output --log_period=50 --dot_period=10 --saving_period=1 --local=0 --trainer_id=1
root@cluster-demo-fwwi5:/home/paddle/JOB20161104171700/log# tailf paddle_trainer.INFO
......
I1104 09:17:37.376471 150 ThreadLocal.cpp:37] thread use undeterministic rand seed:151
I1104 09:18:54.159624 108 TrainerInternal.cpp:163] Batch=50 samples=80000 AvgCost=4.03478 CurrentCost=4.03478 Eval: CurrentEval:
I1104 09:20:10.207902 108 TrainerInternal.cpp:163] Batch=100 samples=160000 AvgCost=3.75806 CurrentCost=3.48134 Eval: CurrentEval:
I1104 09:21:26.493571 108 TrainerInternal.cpp:163] Batch=150 samples=240000 AvgCost=3.64512 CurrentCost=3.41923 Eval: CurrentEval:
```
最后,我们可以在Paddle集群的node0(192.168.129.79)上查看训练的输出结果。
```
[root@paddle-k8s-node0 ~]# ssh root@192.168.129.79
......
root@cluster-demo-r65g0:/home/paddle/JOB20161104171700/output/pass-00000# ll
total 14876
drwxr-xr-x. 2 root root 4096 Nov 4 09:40 ./
drwxr-xr-x. 3 root root 23 Nov 4 09:40 ../
-rw-r--r--. 1 root root 4046864 Nov 4 09:40 ___embedding_0__.w0
-rw-r--r--. 1 root root 100368 Nov 4 09:40 ___embedding_1__.w0
-rw-r--r--. 1 root root 6184976 Nov 4 09:40 ___embedding_2__.w0
-rw-r--r--. 1 root root 2064 Nov 4 09:40 ___embedding_3__.w0
-rw-r--r--. 1 root root 7184 Nov 4 09:40 ___embedding_4__.w0
-rw-r--r--. 1 root root 21520 Nov 4 09:40 ___embedding_5__.w0
-rw-r--r--. 1 root root 262160 Nov 4 09:40 ___fc_layer_0__.w0
-rw-r--r--. 1 root root 1040 Nov 4 09:40 ___fc_layer_0__.wbias
......
......
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _movie_fusion.w0
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _movie_fusion.w1
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _movie_fusion.w2
-rw-r--r--. 1 root root 1040 Nov 4 09:40 _movie_fusion.wbias
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _user_fusion.w0
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _user_fusion.w1
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _user_fusion.w2
-rw-r--r--. 1 root root 262160 Nov 4 09:40 _user_fusion.w3
-rw-r--r--. 1 root root 1040 Nov 4 09:40 _user_fusion.wbias
-rw-r--r--. 1 root root 169 Nov 4 09:40 done
-rw-r--r--. 1 root root 17 Nov 4 09:40 path.txt
-rw-r--r--. 1 root root 3495 Nov 4 09:40 trainer_config.py
```
\ No newline at end of file
FROM paddledev/paddle:cpu-latest
MAINTAINER zjsxzong89@gmail.com
COPY start.sh /root/
COPY start_paddle.py /root/
CMD ["bash"," -c","/root/start.sh"]
\ No newline at end of file
# Paddle on Kubernetes:分布式训练
前一篇文章介绍了如何在Kubernetes集群上启动一个单机Paddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式Paddle训练作业。关于Paddle的分布式训练,可以参考 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md), 本文利用Kubernetes的调度功能与容器编排能力,快速构建Paddle容器集群,进行分布式训练任务。
## Kubernetes 基本概念
在介绍分布式训练之前,需要对Kubernetes(k8s)有一个基本的认识,下面先简要介绍一下本文用到的几个k8s概念。
### Node
[`Node`](http://kubernetes.io/docs/admin/node/) 表示一个k8s集群中的一个工作节点,这个节点可以是物理机或者虚拟机,k8s集群就是由`node`节点与`master`节点组成的。每个node都安装有Docker,在本文的例子中,`Paadle`容器就在node上运行。
### Pod
一个[`Pod`](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是k8s的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace,它们使用同一个IP地址,可以通过`localhost`互相通信。不同pod之间可以通过IP地址访问。
### Job
[`Job`](http://kubernetes.io/docs/user-guide/jobs/) 可以翻译为作业,每个job可以设定pod成功完成的次数,一次作业会创建多个pod,当成功完成的pod个数达到预设值时,就表示job成功结束了。
### Volume
[`Volume`](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。k8s支持多种volume,例如`hostPath(宿主机目录)``gcePersistentDisk``awsElasticBlockStore`等。
### Namespace
[`Namespaces`](http://kubernetes.io/docs/user-guide/volumes/) 命名空间,在k8s中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要用来为不同的用户提供相对隔离的环境。本文只使用了`default`默认命名空间,读者可以不关心此概念。
## 整体方案
### 前提条件
首先,我们需要拥有一个k8s集群,在这个集群中所有node与pod都可以互相通信。关于k8s集群搭建,可以参考[官方文档](http://kubernetes.io/docs/getting-started-guides/kubeadm/),在以后的文章中我们也会介绍AWS上搭建的方案。在本文的环境中,k8s集群中所有node都挂载了一个`mfs`(分布式文件系统)共享目录,我们通过这个目录来存放训练文件与最终输出的模型。在训练之前,用户将配置与训练数据切分好放在mfs目录中,训练时,程序从此目录拷贝文件到容器内进行训练,将结果保存到此目录里。
### 使用 `Job`
我们使用k8s中的job这个概念来代表一次分布式训练。`Job`表示一次性作业,在作业完成后,k8s会销毁job产生的容器并且释放相关资源。
在k8s中,可以通过编写一个 `yaml` 文件,来描述这个job,在这个文件中,主要包含了一些配置信息,例如Paddle节点的个数,`paddle pserver`开放的端口个数与端口号,`paddle`使用的网卡设备等,这些信息通过环境变量的形式传递给容器内的程序使用。
在一次分布式训练中,用户确定好本次训练需要的Paddle节点个数,将切分好的训练数据与配置文件上传到`mfs`共享目录中。然后编写这次训练的`job yaml`文件,提交给k8s集群创建并开始作业。
### 创建`Paddle`节点
当k8s master收到`job yaml`文件后,会解析相关字段,创建出多个pod(个数为Paddle节点数),k8s会把这些pod调度到集群的node上运行。一个`pod`就代表一个`Paddle`节点,当pod被成功分配到一台物理/虚拟机上后,k8s会启动pod内的容器,这个容器会根据`job yaml`文件中的环境变量,启动`paddle pserver``paddle train`进程。
### 启动训练
在容器启动后,会通过脚本来启动这次分布式训练,我们知道`paddle train`进程启动时需要知道其他节点的IP地址以及本节点的`trainer_id`,由于`Paddle`本身不提供类似服务发现的功能,所以在本文的启动脚本中,每个节点会根据`job name``k8s apiserver`查询这个`job`对应的所有`pod`信息(k8s默认会在每个容器的环境变量中写入`apiserver`的地址)。
根据这些pod信息,就可以通过某种方式,为每个pod分配一个唯一的`trainer_id`。本文把所有pod的IP地址进行排序,将顺序作为每个`Paddle`节点的`trainer_id`。启动脚本的工作流程大致如下:
1. 查询`k8s apiserver`获取pod信息,根据IP分配`trainer_id`
1.`mfs`共享目录中拷贝训练文件到容器内
1. 根据环境变量,解析出`paddle pserver``paddle train`的启动参数,启动进程
1. 训练时,`Paddle`会自动将结果保存在`trainer_id`为0的节点上,将输出路径设置为`mfs`目录,保存输出的文件
## 搭建过程
根据前文的描述,要在已有的k8s集群上进行`Paddle`的分布式训练,主要分为以下几个步骤:
1. 制作`Paddle`镜像
1. 将训练文件与切分好的数据上传到共享存储
1. 编写本次训练的`job yaml`文件,创建`k8s job`
1. 训练结束后查看输出结果
下面就根据这几个步骤分别介绍。
### 制作镜像
`Paddle`镜像需要提供`paddle pserver``paddle train`进程的运行环境,用这个镜像创建的容器需要有以下两个功能:
- 拷贝训练文件到容器内
- 生成`paddle pserver``paddle train`进程的启动参数,并且启动训练
因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含`Paddle`的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。镜像的`Dockerfile`如下:
```Dockerfile
FROM paddledev/paddle:cpu-latest
MAINTAINER zjsxzong89@gmail.com
COPY start.sh /root/
COPY start_paddle.py /root/
CMD ["bash"," -c","/root/start.sh"]
```
[`start.sh`](start.sh)文件拷贝训练文件到容器内,然后执行[`start_paddle.py`](start_paddle.py)脚本启动训练,前文提到的获取其他节点IP地址,分配`trainer_id`等都在`start_paddle.py`脚本中完成。
使用 `docker build` 构建镜像:
```bash
docker build -t registry.baidu.com/public/paddle:mypaddle .
```
然后将构建成功的镜像上传到镜像仓库,注意本文中使用的`registry.baidu.com`是一个私有仓库,读者可以根据自己的情况部署私有仓库或者使用`Docker hub`
```bash
docker push registry.baidu.com/public/paddle:mypaddle
```
### 上传训练文件
本文使用`Paddle`官方的`recommendation demo`作为这次训练的内容,我们将训练文件与数据放在一个`job name`命名的目录中,上传到`mfs`共享存储。完成后`mfs`上的文件内容大致如下:
```bash
[root@paddle-k8s-node0 mfs]# tree -d
.
└── paddle-cluster-job
├── data
│   ├── 0
│   │
│   ├── 1
│   │
│   └── 2
├── output
└── recommendation
```
目录中`paddle-cluster-job`是本次训练对应的`job name`,本次训练要求有3个`Paddle`节点,在`paddle-cluster-job/data`目录中存放切分好的数据,文件夹`0,1,2`分别代表3个节点的`trainer_id``recommendation`文件夹内存放训练文件,`output`文件夹存放训练结果与日志。
### 创建`job`
`k8s`可以通过`yaml`文件来创建相关对象,然后可以使用命令行工具创建`job`
`job yaml`文件描述了这次训练使用的Docker镜像,需要启动的节点个数以及 `paddle pserver``paddle train`进程启动的必要参数,也描述了容器需要使用的存储卷挂载的情况。`yaml`文件中各个字段的具体含义,可以查看[`k8s官方文档`](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job)。例如,本次训练的`yaml`文件可以写成:
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-cluster-job
spec:
parallelism: 3
completions: 3
template:
metadata:
name: paddle-cluster-job
spec:
volumes:
- name: jobpath
hostPath:
path: /home/work/mfs
containers:
- name: trainer
image: registry.baidu.com/public/paddle:mypaddle
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
value: paddle-cluster-job
- name: JOB_PATH
value: /home/jobpath
- name: JOB_NAMESPACE
value: default
- name: TRAIN_CONFIG_DIR
value: recommendation
- name: CONF_PADDLE_NIC
value: eth0
- name: CONF_PADDLE_PORT
value: "7164"
- name: CONF_PADDLE_PORTS_NUM
value: "2"
- name: CONF_PADDLE_PORTS_NUM_SPARSE
value: "2"
- name: CONF_PADDLE_GRADIENT_NUM
value: "3"
volumeMounts:
- name: jobpath
mountPath: /home/jobpath
restartPolicy: Never
```
文件中,`metadata`下的`name`表示这个`job`的名字。`parallelism,completions`字段表示这个`job`会同时开启3个`Paddle`节点,成功训练且退出的`pod`数目为3时,这个`job`才算成功结束。然后申明一个存储卷`jobpath`,代表宿主机目录`/home/work/mfs`,在对容器的描述`containers`字段中,将此目录挂载为容器的`/home/jobpath`目录,这样容器的`/home/jobpath`目录就成为了共享存储,放在这个目录里的文件其实是保存到了`mfs`上。
`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内。
`JOB_PATH`表示共享存储挂载的路径,`JOB_NAME`表示job名字,`TRAIN_CONFIG_DIR`表示本次训练文件所在目录,这三个变量组合就可以找到本次训练需要的文件路径。
`CONF_PADDLE_NIC`表示`paddle pserver`进程需要的`--nics`参数,即网卡名
`CONF_PADDLE_PORT`表示`paddle pserver``--port`参数,`CONF_PADDLE_PORTS_NUM`则表示稠密更新的端口数量,也就是`--ports_num`参数。
`CONF_PADDLE_PORTS_NUM_SPARSE`表示稀疏更新的端口数量,也就是`--ports_num_for_sparse`参数。
`CONF_PADDLE_GRADIENT_NUM`表示训练节点数量,即`--num_gradient_servers`参数
编写完`yaml`文件后,可以使用k8s的命令行工具创建`job`.
```bash
kubectl create -f job.yaml
```
创建成功后,k8s就会创建3个`pod`作为`Paddle`节点然后拉取镜像,启动容器开始训练。
### 查看输出
在训练过程中,可以在共享存储上查看输出的日志和模型,例如`output`目录下就存放了输出结果。注意`node_0``node_1``node_2`这几个目录表示`Paddle`节点与`trainer_id`,并不是k8s中的`node`概念。
```bash
[root@paddle-k8s-node0 output]# tree -d
.
├── node_0
│   ├── server.log
│   └── train.log
├── node_1
│   ├── server.log
│   └── train.log
├── node_2
......
├── pass-00002
│   ├── done
│   ├── ___embedding_0__.w0
│   ├── ___embedding_1__.w0
......
```
我们可以通过日志查看容器训练的情况,例如:
```bash
[root@paddle-k8s-node0 node_0]# cat train.log
I1116 09:10:17.123121 50 Util.cpp:155] commandline:
/usr/local/bin/../opt/paddle/bin/paddle_trainer
--nics=eth0 --port=7164
--ports_num=2 --comment=paddle_process_by_paddle
--pservers=192.168.129.66,192.168.223.143,192.168.129.71
--ports_num_for_sparse=2 --config=./trainer_config.py
--trainer_count=4 --num_passes=10 --use_gpu=0
--log_period=50 --dot_period=10 --saving_period=1
--local=0 --trainer_id=0
--save_dir=/home/jobpath/paddle-cluster-job/output
I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters..
I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done.
I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```
\ No newline at end of file
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-cluster-job
spec:
parallelism: 3
completions: 3
template:
metadata:
name: paddle-cluster-job
spec:
volumes:
- name: jobpath
hostPath:
path: /home/work/paddle_output
containers:
- name: trainer
image: registry.baidu.com/public/paddle:mypaddle
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
value: paddle-cluster-job
- name: JOB_PATH
value: /home/jobpath
- name: JOB_NAMESPACE
value: default
- name: TRAIN_CONFIG_DIR
value: recommendation
- name: CONF_PADDLE_NIC
value: eth0
- name: CONF_PADDLE_PORT
value: "7164"
- name: CONF_PADDLE_PORTS_NUM
value: "2"
- name: CONF_PADDLE_PORTS_NUM_SPARSE
value: "2"
- name: CONF_PADDLE_GRADIENT_NUM
value: "3"
volumeMounts:
- name: jobpath
mountPath: /home/jobpath
restartPolicy: Never
\ No newline at end of file
#!/bin/sh
set -eu
jobconfig=${JOB_PATH}"/"${JOB_NAME}"/"${TRAIN_CONFIG_DIR}
cd /root
cp -rf $jobconfig .
cd $TRAIN_CONFIG_DIR
python /root/start_paddle.py \
--dot_period=10 \
--ports_num_for_sparse=$CONF_PADDLE_PORTS_NUM \
--log_period=50 \
--num_passes=10 \
--trainer_count=4 \
--saving_period=1 \
--local=0 \
--config=./trainer_config.py \
--use_gpu=0
#!/usr/bin/python
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import time
import socket
import os
import argparse
# configuration for cluster
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME")
JOB_PATH_DATA = JOB_PATH + "/data"
JOB_PATH_OUTPUT = JOB_PATH + "/output"
JOBNAME = os.getenv("JOB_NAME")
NAMESPACE = os.getenv("JOB_NAMESPACE")
PADDLE_NIC = os.getenv("CONF_PADDLE_NIC")
PADDLE_PORT = os.getenv("CONF_PADDLE_PORT")
PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM")
PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE")
PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM")
def refine_unknown_args(cmd_args):
'''
refine unknown parameters to handle some special parameters
'''
new_args = []
for arg in cmd_args:
if arg.startswith("--") and arg.find("=") != -1:
equal_pos = arg.find("=") # find first = pos
arglist = list(arg)
arglist[equal_pos] = " "
arg = "".join(arglist)
arg = arg.lstrip("-")
new_args += arg.split(" ")
elif arg.startswith("--") and arg.find("=") == -1:
arg = arg.lstrip("-")
new_args.append(arg)
else:
new_args.append(arg)
return new_args
def isPodAllRunning(podlist):
'''
check all pod is running
'''
require = len(podlist["items"])
running = 0
for pod in podlist["items"]:
if pod["status"]["phase"] == "Running":
running += 1
if require == running:
return True
return False
def getPodList():
'''
get all container status of the job
'''
apiserver = "https://" + \
os.getenv("KUBERNETES_SERVICE_HOST") + ":" + \
os.getenv("KUBERNETES_SERVICE_PORT_HTTPS")
pod = API + NAMESPACE + "/pods?"
job = JOBNAME
return requests.get(apiserver + pod + JOBSELECTOR + job,
verify=False).json()
def getIdMap(podlist):
'''
generate tainer_id by ip
'''
ips = []
for pod in podlist["items"]:
ips.append(pod["status"]["podIP"])
ips.sort()
idMap = {}
for i in range(len(ips)):
idMap[ips[i]] = i
return idMap
def startPaddle(idMap={}, train_args_dict=None):
'''
start paddle pserver and trainer
'''
program = 'paddle train'
args = " --nics=" + PADDLE_NIC
args += " --port=" + str(PADDLE_PORT)
args += " --ports_num=" + str(PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for ip in idMap.keys():
ip_string += (ip + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
localIP = socket.gethostbyname(socket.gethostname())
trainerId = idMap[localIP]
args += " " + args_ext + " --trainer_id=" + \
str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
logDir = JOB_PATH_OUTPUT + "/node_" + str(trainerId)
if not os.path.exists(JOB_PATH_OUTPUT):
os.makedirs(JOB_PATH_OUTPUT)
os.mkdir(logDir)
copyCommand = 'cp -rf ' + JOB_PATH_DATA + \
"/" + str(trainerId) + " ./data"
os.system(copyCommand)
startPserver = 'nohup paddle pserver' + \
" --port=" + str(PADDLE_PORT) + \
" --ports_num=" + str(PADDLE_PORTS_NUM) + \
" --ports_num_for_sparse=" + str(PADDLE_PORTS_NUM_SPARSE) + \
" --nics=" + PADDLE_NIC + \
" --comment=" + "paddle_process_by_paddle" + \
" --num_gradient_servers=" + str(PADDLE_SERVER_NUM) +\
" > " + logDir + "/server.log 2>&1 &"
print startPserver
os.system(startPserver)
# wait until pservers completely start
time.sleep(10)
startTrainer = program + args + " > " + \
logDir + "/train.log 2>&1 < /dev/null"
print startTrainer
os.system(startTrainer)
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
podlist = getPodList()
# need to wait until all pods are running
while not isPodAllRunning(podlist):
time.sleep(10)
podlist = getPodList()
idMap = getIdMap(podlist)
startPaddle(idMap, train_args_dict)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册