Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
211a703f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
211a703f
编写于
1月 24, 2022
作者:
J
jim19930609
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added automatic code generation for final state Eager Dygraph
上级
04b9bfbd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
768 addition
and
0 deletion
+768
-0
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
+2
-0
paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py
...er/auto_code_generator/final_state_generator/eager_gen.py
+719
-0
paddle/fluid/eager/auto_code_generator/final_state_generator/test.py
...d/eager/auto_code_generator/final_state_generator/test.py
+46
-0
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+1
-0
未找到文件。
paddle/fluid/eager/auto_code_generator/CMakeLists.txt
浏览文件 @
211a703f
add_subdirectory
(
final_state_generator
)
set
(
EAGER_GENERETOR_DEPS
${
GLOB_OP_LIB
}
${
GLOB_OPERATOR_DEPS
}
pybind proto_desc executor layer tracer engine imperative_profiler imperative_flag
)
add_executable
(
eager_generator eager_generator.cc
)
...
...
paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py
0 → 100644
浏览文件 @
211a703f
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
yaml
import
re
#################
### Helpers ###
#################
def
FindGradName
(
string
):
return
string
+
"_grad"
def
FindForwardName
(
string
):
if
not
string
.
endswith
(
"_grad"
):
return
None
return
string
[:
-
5
]
def
IsPlainTensorType
(
string
):
plain_tensor_types
=
[
'Tensor&'
,
'Tensor'
,
'const Tensor&'
,
'const Tensor'
]
if
string
in
plain_tensor_types
:
return
True
return
False
def
IsVectorTensorType
(
string
):
vector_tensor_types
=
[
'list(Tensor)'
]
if
string
in
vector_tensor_types
:
return
True
return
False
def
GetSavedName
(
string
):
return
string
+
"_"
def
GetConstReference
(
string
):
ret
=
string
if
not
string
.
startswith
(
"const "
):
ret
=
"const "
+
string
if
not
string
.
endswith
(
"&"
):
ret
+=
"&"
return
ret
######################
### File Readers ###
######################
def
ReadFwdFile
(
filepath
):
f
=
open
(
filepath
,
'r'
)
contents
=
yaml
.
load
(
f
)
return
contents
def
ReadBwdFile
(
filepath
):
f
=
open
(
filepath
,
'r'
)
contents
=
yaml
.
load
(
f
)
ret
=
{}
for
content
in
contents
:
assert
'grad_api'
in
content
.
keys
()
api_name
=
content
[
'grad_api'
]
ret
[
api_name
]
=
content
return
ret
######################
### Yaml Parsers ###
######################
def
ParseYamlArgs
(
string
):
# Example: const Tensor& x, const Tensor& y, bool transpose_x, bool transpose_y
# inputs_list = [ [arg_name, arg_type, orig_position], ...]
inputs_list
=
[]
# attrs_list = [ [arg_name, arg_type, default_value, orig_position], ...]
attrs_list
=
[]
args
=
[
x
.
strip
()
for
x
in
string
.
strip
().
split
(
","
)]
atype
=
r
'((const )?\S+) '
aname
=
r
'(\S+)'
pattern
=
f
'
{
atype
}{
aname
}
'
for
i
in
range
(
len
(
args
)):
arg
=
args
[
i
]
m
=
re
.
search
(
pattern
,
arg
)
arg_type
=
m
.
group
(
1
)
arg_name
=
m
.
group
(
3
).
split
(
"="
)[
0
]
default_value
=
m
.
group
(
3
).
split
(
"="
)[
1
]
if
len
(
m
.
group
(
3
).
split
(
"="
))
>
1
else
None
if
"Tensor"
in
arg_type
:
assert
default_value
is
None
inputs_list
.
append
([
arg_name
,
arg_type
,
i
])
else
:
attrs_list
.
append
([
arg_name
,
arg_type
,
default_value
,
i
])
return
inputs_list
,
attrs_list
def
ParseYamlReturns
(
string
):
# Example: Tensor, Tensor
# list = [ [ret_type, orig_position], ...]
returns_list
=
[]
returns
=
[
x
.
strip
()
for
x
in
string
.
strip
().
split
(
","
)]
for
i
in
range
(
len
(
returns
)):
ret
=
returns
[
i
]
returns_list
.
append
([
ret
,
i
])
return
returns_list
def
ParseYamlReturnsWithName
(
string
):
# Example: Tensor(out), Tensor(out1)
# list = [ [ret_name, ret_type, orig_position], ...]
returns_list
=
[]
returns
=
[
x
.
strip
()
for
x
in
string
.
strip
().
split
(
","
)]
atype
=
r
'(.*?)'
aname
=
r
'(.*?)'
pattern
=
f
'
{
atype
}
\(
{
aname
}
\)'
for
i
in
range
(
len
(
returns
)):
ret
=
returns
[
i
]
m
=
re
.
search
(
pattern
,
ret
)
ret_type
=
m
.
group
(
1
)
ret_name
=
m
.
group
(
2
)
assert
"Tensor"
in
ret_type
returns_list
.
append
([
ret_name
,
ret_type
,
i
])
return
returns_list
def
ParseYamlForwardFromBackward
(
string
):
# Example: matmul (const Tensor& x, const Tensor& y, bool transpose_x, bool transpose_y) -> Tensor(out)
fname
=
r
'(.*?)'
wspace
=
r
'\s*'
fargs
=
r
'(.*?)'
frets
=
r
'(.*)'
pattern
=
f
'
{
fname
}{
wspace
}
\(
{
wspace
}{
fargs
}{
wspace
}
\)
{
wspace
}
->
{
wspace
}{
frets
}
'
m
=
re
.
search
(
pattern
,
string
)
function_name
=
m
.
group
(
1
)
function_args
=
m
.
group
(
2
)
function_returns
=
m
.
group
(
3
)
forward_inputs_list
,
forward_attrs_list
=
ParseYamlArgs
(
function_args
)
forward_returns_list
=
ParseYamlReturnsWithName
(
function_returns
)
return
forward_inputs_list
,
forward_attrs_list
,
forward_returns_list
def
ParseYamlForward
(
args_str
,
returns_str
):
# args Example: (const Tensor& x, const Tensor& y, bool transpose_x = false, bool transpose_y = false)
# returns Example: Tensor, Tensor
fargs
=
r
'(.*?)'
wspace
=
r
'\s*'
args_pattern
=
f
'\(
{
fargs
}
\)'
args_str
=
re
.
search
(
args_pattern
,
args_str
).
group
(
1
)
inputs_list
,
attrs_list
=
ParseYamlArgs
(
args_str
)
returns_list
=
ParseYamlReturns
(
returns_str
)
return
inputs_list
,
attrs_list
,
returns_list
def
ParseYamlBackward
(
args_str
,
returns_str
):
# args Example: (const Tensor& x, const Tensor& y, const Tensor& out_grad, bool transpose_x=false, bool transpose_y=false)
# returns Example: Tensor(x_grad), Tensor(y_grad)
fargs
=
r
'(.*?)'
wspace
=
r
'\s*'
args_pattern
=
f
'\(
{
fargs
}
\)'
args_str
=
re
.
search
(
args_pattern
,
args_str
).
group
(
1
)
inputs_list
,
attrs_list
=
ParseYamlArgs
(
args_str
)
returns_list
=
ParseYamlReturnsWithName
(
returns_str
)
return
inputs_list
,
attrs_list
,
returns_list
#######################
### Preprocessing ###
#######################
def
ForwardsValidationCheck
(
forward_inputs_list
,
forward_attrs_list
,
forward_returns_list
,
orig_forward_inputs_list
,
orig_forward_attrs_list
,
orig_forward_returns_list
):
# inputs_list = [ [input_name, input_type, orig_position], ...]
# attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# forward_returns_list = [ [ret_name, ret_type, orig_position] ...]
# orig_returns_list = [ [ret_type, orig_position], ...]
for
i
in
range
(
len
(
forward_inputs_list
)):
forward_input_name
=
forward_inputs_list
[
i
][
0
]
forward_input_type
=
forward_inputs_list
[
i
][
1
]
forward_input_pos
=
forward_inputs_list
[
i
][
2
]
orig_input_name
=
orig_forward_inputs_list
[
i
][
0
]
orig_input_type
=
orig_forward_inputs_list
[
i
][
1
]
orig_input_pos
=
orig_forward_inputs_list
[
i
][
2
]
assert
forward_input_type
==
orig_input_type
assert
forward_input_pos
==
orig_input_pos
for
i
in
range
(
len
(
forward_attrs_list
)):
orig_attr_name
=
orig_forward_attrs_list
[
i
][
0
]
orig_attr_type
=
orig_forward_attrs_list
[
i
][
1
]
orig_attr_default
=
orig_forward_attrs_list
[
i
][
2
]
orig_attr_pos
=
orig_forward_attrs_list
[
i
][
3
]
forward_attr_name
=
forward_attrs_list
[
i
][
0
]
forward_attr_type
=
forward_attrs_list
[
i
][
1
]
forward_attr_default
=
forward_attrs_list
[
i
][
2
]
forward_attr_pos
=
forward_attrs_list
[
i
][
3
]
assert
orig_attr_type
==
forward_attr_type
assert
orig_attr_default
==
forward_attr_default
assert
orig_attr_pos
==
forward_attr_pos
for
i
in
range
(
len
(
forward_returns_list
)):
orig_return_type
=
orig_forward_returns_list
[
i
][
0
]
orig_return_pos
=
orig_forward_returns_list
[
i
][
1
]
forward_return_type
=
forward_returns_list
[
i
][
1
]
forward_return_pos
=
forward_returns_list
[
i
][
2
]
assert
orig_return_type
==
forward_return_type
assert
orig_return_pos
==
forward_return_pos
# Check Order: Inputs, Attributes
max_input_position
=
-
1
for
_
,
_
,
pos
in
forward_inputs_list
:
max_input_position
=
max
(
max_input_position
,
pos
)
max_attr_position
=
-
1
for
_
,
_
,
_
,
pos
in
forward_attrs_list
:
assert
pos
>
max_input_position
max_attr_position
=
max
(
max_attr_position
,
pos
)
def
BackwardValidationCheck
(
backward_fwd_input_map
,
backward_grad_input_map
,
backward_attrs_list
):
# backward_fwd_input_map = { "name" : [type, is_fwd_input, orig_position] ...}
# backward_grad_input_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# Check Order: TensorWrappers, GradTensors, Attributes
max_fwd_input_position
=
-
1
for
_
,
(
_
,
_
,
pos
)
in
backward_fwd_input_map
.
items
():
max_fwd_input_position
=
max
(
max_fwd_input_position
,
pos
)
max_grad_tensor_position
=
-
1
for
_
,
(
_
,
_
,
pos
)
in
backward_grad_input_map
.
items
():
assert
pos
>
max_fwd_input_position
max_grad_tensor_position
=
max
(
max_grad_tensor_position
,
pos
)
max_attr_position
=
-
1
for
_
,
_
,
_
,
pos
in
backward_attrs_list
:
assert
pos
>
max_grad_tensor_position
max_attr_position
=
max
(
max_attr_position
,
pos
)
def
DetermineForwardPositionMap
(
forward_inputs_list
,
forward_returns_list
):
# inputs_list = [ [input_name, input_type, orig_position], ...]
# forward_returns_list = [ [ret_name, ret_type, orig_position] ...]
# forward_position_map = { "name" : [type, fwd_position] ...}
forward_inputs_position_map
=
{}
forward_outputs_position_map
=
{}
for
i
in
range
(
len
(
forward_inputs_list
)):
forward_input
=
forward_inputs_list
[
i
]
input_name
=
forward_input
[
0
]
input_type
=
forward_input
[
1
]
input_pos
=
forward_input
[
2
]
forward_inputs_position_map
[
input_name
]
=
[
input_type
,
input_pos
]
for
i
in
range
(
len
(
forward_returns_list
)):
forward_return
=
forward_returns_list
[
i
]
return_name
=
forward_return
[
0
]
return_type
=
forward_return
[
1
]
return_pos
=
forward_return
[
2
]
forward_outputs_position_map
[
return_name
]
=
[
return_type
,
return_pos
]
return
forward_inputs_position_map
,
forward_outputs_position_map
def
SlotNameMatching
(
backward_inputs_list
,
backward_returns_list
,
forward_inputs_position_map
,
forward_outputs_position_map
):
# backward_inputs_list = [ [input_name, input_type, orig_position], ...]
# backward_returns_list = [ [ret_name, ret_type, orig_position], ...]
# forward_inputs_position_map = { "name" : [type, fwd_position] }
# forward_outputs_position_map = { "name" : [type, fwd_position] }
# backward_fwd_input_map = { "name" : [type, is_fwd_input, orig_position] ...}
# backward_grad_input_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_grad_output_map = { "name" : [type, fwd_position, orig_position] ...}
backward_fwd_input_map
=
{}
backward_grad_input_map
=
{}
backward_grad_output_map
=
{}
for
backward_input
in
backward_inputs_list
:
backward_input_name
=
backward_input
[
0
]
backward_input_type
=
backward_input
[
1
]
backward_input_pos
=
backward_input
[
2
]
backward_fwd_name
=
FindForwardName
(
backward_input_name
)
if
backward_fwd_name
:
# Grad Input
assert
backward_fwd_name
in
forward_outputs_position_map
.
keys
()
matched_forward_output_type
=
forward_outputs_position_map
[
backward_fwd_name
][
0
]
matched_forward_output_pos
=
forward_outputs_position_map
[
backward_fwd_name
][
1
]
backward_grad_input_map
[
backward_input_name
]
=
[
backward_input_type
,
matched_forward_output_pos
,
backward_input_pos
]
else
:
# TensorWrapper Input
if
backward_input_name
in
forward_inputs_position_map
.
keys
():
tensor_wrapper_type
=
forward_inputs_position_map
[
backward_input_name
][
0
]
backward_fwd_input_map
[
backward_input_name
]
=
[
backward_input_type
,
True
,
backward_input_pos
]
elif
backward_input_name
in
forward_outputs_position_map
.
keys
():
tensor_wrapper_type
=
forward_outputs_position_map
[
backward_input_name
][
0
]
backward_fwd_input_map
[
backward_input_name
]
=
[
backward_input_type
,
False
,
backward_input_pos
]
else
:
assert
False
for
backward_output
in
backward_returns_list
:
backward_output_name
=
backward_output
[
0
]
backward_output_type
=
backward_output
[
1
]
backward_output_pos
=
backward_output
[
2
]
backward_fwd_name
=
FindForwardName
(
backward_output_name
)
assert
backward_fwd_name
is
not
None
assert
backward_fwd_name
in
forward_inputs_position_map
.
keys
()
matched_forward_input_type
=
forward_inputs_position_map
[
backward_fwd_name
][
0
]
matched_forward_input_pos
=
forward_inputs_position_map
[
backward_fwd_name
][
1
]
backward_grad_output_map
[
backward_output_name
]
=
[
backward_output_type
,
matched_forward_input_pos
,
backward_output_pos
]
return
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
def
GenerateNodeDeclaration
(
fwd_api_name
,
backward_fwd_input_map
,
backward_attrs_list
):
# Inputs:
# fwd_api_name = ""
# backward_fwd_input_map = { "name" : [type, is_fwd_input, orig_position] ...}
# backward_attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# Determine Node Name
forward_op_name
=
fwd_api_name
# SetTensorWrapper Methods & TensorWrapper Members
set_tensor_wrapper_methods_str
=
""
tensor_wrapper_members_str
=
""
for
tname
,
(
ttype
,
is_fwd_input
,
_
)
in
backward_fwd_input_map
.
items
():
tensor_wrapper_name
=
GetSavedName
(
tname
)
if
IsPlainTensorType
(
ttype
):
SET_PLAIN_TENSOR_WRAPPER_TEMPLATE
=
"""
void SetTensorWrapper{}(const egr::EagerTensor& {}, bool full_reserved) {{
{} = egr::TensorWrapper({}, full_reserved);
}}
"""
set_tensor_wrapper_methods_str
+=
SET_PLAIN_TENSOR_WRAPPER_TEMPLATE
.
format
(
tname
,
tname
,
tensor_wrapper_name
,
tname
)
PLAIN_TENSOR_MEMBER_TEMPLATE
=
"""
egr::TensorWrapper {};
"""
tensor_wrapper_members_str
+=
PLAIN_TENSOR_MEMBER_TEMPLATE
.
format
(
tensor_wrapper_name
)
else
:
assert
IsVectorTensorType
(
ttype
)
SET_VECTOR_TENSOR_WRAPPER_TEMPLATE
=
"""
void SetTensorWrapper{}(const std::vector<egr::EagerTensor>& {}, bool full_reserved) {{
for(const auto& eager_tensor : {}) {{
{}.emplace_back( egr::TensorWrapper(eager_tensor, full_reserved) );
}};
}}
"""
set_tensor_wrapper_methods_str
+=
SET_VECTOR_TENSOR_WRAPPER_TEMPLATE
.
format
(
tname
,
tname
,
tname
,
tensor_wrapper_name
)
VECTOR_TENSOR_MEMBER_TEMPLATE
=
"""
std::vector<egr::TensorWrapper> {};
"""
tensor_wrapper_members_str
+=
VECTOR_TENSOR_MEMBER_TEMPLATE
.
format
(
tensor_wrapper_name
)
# End: SetTensorWrapper Methods & TensorWrapper Members
# SetAttributes & Attribute Members
set_attribute_methods_str
=
""
attribute_members_str
=
""
for
aname
,
atype
,
default_val
,
_
in
backward_attrs_list
:
saved_attr_name
=
GetSavedName
(
aname
)
SET_ATTR_METHOD_TEMPLATE
=
"""
void SetAttribute{}({} {}) {{
{} = {};
}}
"""
set_attribute_methods_str
+=
SET_ATTR_METHOD_TEMPLATE
.
format
(
aname
,
GetConstReference
(
atype
),
aname
,
saved_attr_name
,
aname
)
ATTRIBUTE_MEMBER_TEMPLATE
=
"""
{} {};
"""
attribute_members_str
+=
ATTRIBUTE_MEMBER_TEMPLATE
.
format
(
GetConstReference
(
atype
),
saved_attr_name
)
# End: SetAttributes & Attribute Members
NODE_DECLARATION_TEMPLATE
=
"""
class GradNode{} : public egr::GradNodeBase {{
public:
GradNode{}() : egr::GradNodeBase() {{}}
GradNode{}(size_t bwd_in_slot_num, size_t bwd_out_slot_num) :
egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {{}}
~GradNode{}() override = default;
virtual std::vector<std::vector<egr::EagerTensor>> operator()(
const std::vector<std::vector<egr::EagerTensor>>& grads) override;
// SetTensorWrapperX, SetTensorWrapperY, ...
{}
// SetAttributes
{}
private:
// TensorWrappers
{}
// Attributes
{}
}};
"""
node_declaration_str
=
NODE_DECLARATION_TEMPLATE
.
format
(
forward_op_name
,
forward_op_name
,
forward_op_name
,
forward_op_name
,
set_tensor_wrapper_methods_str
,
set_attribute_methods_str
,
tensor_wrapper_members_str
,
attribute_members_str
)
return
node_declaration_str
def
GenerateNodeDefinition
(
fwd_api_name
,
bwd_api_name
,
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
,
backward_attrs_list
):
# fwd_api_name = ""
# backward_fwd_input_map = { "name" : [type, is_fwd_input, orig_position] ...}
# backward_grad_input_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_grad_output_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# Construct grad_api function args
# Order: TensorWrappers, GradTensors, Attributes
grad_api_args_len
=
len
(
backward_fwd_input_map
.
keys
())
+
len
(
backward_grad_input_map
.
keys
())
+
len
(
backward_attrs_list
)
grad_api_args
=
[
""
for
i
in
range
(
grad_api_args_len
)]
for
name
,
(
_
,
is_fwd_input
,
grad_api_position
),
in
backward_fwd_input_map
.
items
():
tensor_wrapper_name
=
GetSavedName
(
name
)
if
is_fwd_input
:
grad_api_args
[
grad_api_position
]
=
f
"egr::EagerUtils::RecoverTensorWrapper(&this->
{
tensor_wrapper_name
}
, true)"
else
:
grad_api_args
[
grad_api_position
]
=
f
"egr::EagerUtils::RecoverTensorWrapper(&this->
{
tensor_wrapper_name
}
, false)"
for
_
,
(
_
,
fwd_position
,
grad_api_position
)
in
backward_grad_input_map
.
items
():
grad_api_args
[
grad_api_position
]
=
f
"*grads[
{
fwd_position
}
].Tensor().get()"
for
name
,
_
,
_
,
grad_api_position
in
backward_attrs_list
:
saved_attribute_name
=
GetSavedName
(
name
)
grad_api_args
[
grad_api_position
]
=
f
"this->
{
saved_attribute_name
}
"
grad_api_args_str
=
", "
.
join
(
grad_api_args
)
# Construct grad_api returns
num_outputs
=
len
(
backward_grad_output_map
.
keys
())
returns_list
=
[
""
for
i
in
range
(
num_outputs
)]
for
_
,
(
ttype
,
fwd_position
,
grad_api_position
)
in
backward_grad_output_map
.
items
():
# Infer Grad API Return Type
if
num_outputs
==
1
:
# Single tensor output, return as is
if
IsPlainTensorType
(
ttype
):
returns_list
[
0
]
=
"{grad_api_returns}"
else
:
assert
IsVectorTensorType
(
ttype
)
returns_list
[
0
]
=
"grad_api_returns"
else
:
# Rearrange output order accordingly
if
IsPlainTensorType
(
ttype
):
returns_list
[
fwd_position
]
=
f
"{{ grad_api_returns[
{
grad_api_position
}
] }}"
else
:
assert
IsVectorTensorType
(
ttype
)
returns_list
[
fwd_position
]
=
f
"grad_api_returns[
{
grad_api_position
}
]"
returns_str
=
", "
.
join
(
returns_list
)
returns_str
=
f
"{{
{
returns_str
}
}}"
FUNCTION_TEMPLATE
=
"""
std::vector<std::vector<egr::EagerTensor>> GradNode{}::operator()(const std::vector<std::vector<egr::EagerTensor>>& grads) {{
// Call grad_api function
auto grad_api_returns = {}({});
return {};
}}
"""
node_definition_str
=
FUNCTION_TEMPLATE
.
format
(
fwd_api_name
,
bwd_api_name
,
grad_api_args_str
,
returns_str
)
return
node_definition_str
def
GenerateForwardDefinition
(
fwd_api_name
,
bwd_api_name
,
forward_inputs_position_map
,
forward_outputs_position_map
,
forward_attrs_list
,
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
,
backward_attrs_list
):
# fwd_api_name = ""
# forward_inputs_position_map = { "name" : [type, fwd_position] }
# forward_outputs_position_map = { "name" : [type, fwd_position] }
# forward_attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# backward_fwd_input_map = { "name" : [type, is_fwd_input, orig_position] ...}
# backward_grad_input_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_grad_output_map = { "name" : [type, fwd_position, orig_position] ...}
# backward_attrs_list = [ [attr_name, attr_type, default_value, orig_position], ...]
# Get Function Args
num_inputs
=
len
(
forward_attrs_list
)
+
len
(
forward_inputs_position_map
.
keys
(
))
inputs_args_list
=
[
""
for
i
in
range
(
num_inputs
)]
inputs_call_list
=
[
""
for
i
in
range
(
num_inputs
)]
for
name
,
(
ttype
,
pos
)
in
forward_inputs_position_map
.
items
():
inputs_call_list
[
pos
]
=
name
if
IsPlainTensorType
(
ttype
):
inputs_args_list
[
pos
]
=
f
"const egr::EagerTensor&
{
name
}
"
else
:
assert
IsVectorTensorType
(
ttype
)
inputs_args_list
[
pos
]
=
f
"const std::vector<egr::EagerTensor>&
{
name
}
"
for
name
,
atype
,
default_val
,
pos
in
forward_attrs_list
:
inputs_call_list
[
pos
]
=
name
if
default_val
is
not
None
:
inputs_args_list
[
pos
]
=
f
"
{
atype
}
{
name
}
=
{
default_val
}
"
else
:
inputs_args_list
[
pos
]
=
f
"
{
atype
}
{
name
}
"
inputs_args_str
=
", "
.
join
(
inputs_args_list
)
inputs_call_str
=
", "
.
join
(
inputs_call_list
)
# Forward Full Logic
forward_call_str
=
f
"auto api_result =
{
fwd_api_name
}
(
{
inputs_call_str
}
);"
# Get return type list & outputs
num_outputs
=
len
(
forward_outputs_position_map
.
keys
())
returns_type_list
=
[
""
for
i
in
range
(
num_outputs
)]
returns_list
=
[
""
for
i
in
range
(
num_outputs
)]
for
name
,
(
rtype
,
pos
)
in
forward_outputs_position_map
.
items
():
if
num_outputs
==
1
:
returns_list
[
0
]
=
f
"egr::EagerUtils::CreateEagerTensorFromTensor(api_result)"
else
:
# Tuple api_result
returns_list
[
pos
]
=
f
"egr::EagerUtils::CreateEagerTensorFromTensor(api_result[
{
pos
}
])"
if
IsPlainTensorType
(
rtype
):
returns_type_list
[
pos
]
=
"egr::EagerTensor"
else
:
assert
IsVectorTensorType
(
rtype
)
returns_type_list
[
pos
]
=
"std::vector<egr::EagerTensor>"
if
num_outputs
==
1
:
returns_str
=
returns_list
[
0
]
returns_type_str
=
returns_type_list
[
0
]
else
:
returns_type_str
=
", "
.
join
(
returns_type_list
)
returns_type_str
=
f
"std::tuple<
{
returns_type_str
}
>"
returns_str
=
", "
.
join
(
returns_list
)
returns_str
=
f
"std::make_tuple(
{
returns_str
}
)"
FORWARD_FUNCTION_TEMPLATE
=
"""
{} {} ({}) {{
}}
"""
if
__name__
==
"__main__"
:
filepath
=
"/workspace/PaddleRepos/Paddle4/python/paddle/utils/code_gen/api.yaml"
fwd_api_list
=
ReadFwdFile
(
filepath
)
filepath
=
"/workspace/PaddleRepos/Paddle4/python/paddle/utils/code_gen/grad.yaml"
grad_api_dict
=
ReadBwdFile
(
filepath
)
# Generate per Dygraph API
for
fwd_api
in
fwd_api_list
:
# We only generate Ops with grad
if
'backward'
not
in
fwd_api
.
keys
():
continue
assert
'api'
in
fwd_api
.
keys
()
assert
'args'
in
fwd_api
.
keys
()
assert
'output'
in
fwd_api
.
keys
()
assert
'backward'
in
fwd_api
.
keys
()
fwd_api_name
=
fwd_api
[
'api'
]
fwd_args_str
=
fwd_api
[
'args'
]
fwd_returns_str
=
fwd_api
[
'output'
]
bwd_api_name
=
fwd_api
[
'backward'
]
assert
bwd_api_name
in
grad_api_dict
.
keys
()
bwd_api
=
grad_api_dict
[
bwd_api_name
]
assert
'args'
in
bwd_api
.
keys
()
assert
'output'
in
bwd_api
.
keys
()
assert
'forward'
in
bwd_api
.
keys
()
bwd_forward_str
=
bwd_api
[
'forward'
]
bwd_args_str
=
bwd_api
[
'args'
]
bwd_returns_str
=
bwd_api
[
'output'
]
# Collect Forward Inputs/Outputs
forward_inputs_list
,
forward_attrs_list
,
forward_returns_list
=
ParseYamlForwardFromBackward
(
bwd_forward_str
)
print
(
"Parsed Forward Inputs List: "
,
forward_inputs_list
)
print
(
"Prased Forward Attrs List: "
,
forward_attrs_list
)
print
(
"Parsed Forward Returns List: "
,
forward_returns_list
)
# Collect Original Forward Inputs/Outputs and then perform validation checks
orig_forward_inputs_list
,
orig_forward_attrs_list
,
orig_forward_returns_list
=
ParseYamlForward
(
fwd_args_str
,
fwd_returns_str
)
print
(
"Parsed Original Forward Inputs List: "
,
orig_forward_inputs_list
)
print
(
"Prased Original Forward Attrs List: "
,
orig_forward_attrs_list
)
print
(
"Parsed Original Forward Returns List: "
,
orig_forward_returns_list
)
# Forward Validation Checks
ForwardsValidationCheck
(
forward_inputs_list
,
forward_attrs_list
,
forward_returns_list
,
orig_forward_inputs_list
,
orig_forward_attrs_list
,
orig_forward_returns_list
)
# Parse Backward Inputs/Outputs
backward_inputs_list
,
backward_attrs_list
,
backward_returns_list
=
ParseYamlBackward
(
bwd_args_str
,
bwd_returns_str
)
print
(
"Parsed Backward Inputs List: "
,
backward_inputs_list
)
print
(
"Prased Backward Attrs List: "
,
backward_attrs_list
)
print
(
"Parsed Backward Returns List: "
,
backward_returns_list
)
# Determine Forward Inputs/Outputs Position
forward_inputs_position_map
,
forward_outputs_position_map
=
DetermineForwardPositionMap
(
forward_inputs_list
,
forward_returns_list
)
print
(
"Generated Forward Input Position Map: "
,
forward_inputs_position_map
)
print
(
"Generated Forward Output Position Map: "
,
forward_outputs_position_map
)
# SlotName Matching
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
=
SlotNameMatching
(
backward_inputs_list
,
backward_returns_list
,
forward_inputs_position_map
,
forward_outputs_position_map
)
print
(
"Generated Backward Fwd Input Map: "
,
backward_fwd_input_map
)
print
(
"Generated Backward Grad Input Map: "
,
backward_grad_input_map
)
print
(
"Generated Backward Grad Output Map: "
,
backward_grad_output_map
)
# Backward Validation Check
BackwardValidationCheck
(
backward_fwd_input_map
,
backward_grad_input_map
,
backward_attrs_list
)
# Node Declaration Generation
node_declaration_str
=
GenerateNodeDeclaration
(
fwd_api_name
,
backward_fwd_input_map
,
backward_attrs_list
)
print
(
"Generated Node Declaration: "
,
node_declaration_str
)
node_definition_str
=
GenerateNodeDefinition
(
fwd_api_name
,
bwd_api_name
,
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
,
backward_attrs_list
)
print
(
"Generated Node Definition: "
,
node_definition_str
)
# Node Definition Generation
forward_definition_str
=
GenerateForwardDefinition
(
fwd_api_name
,
bwd_api_name
,
forward_inputs_position_map
,
forward_outputs_position_map
,
forward_attrs_list
,
backward_fwd_input_map
,
backward_grad_input_map
,
backward_grad_output_map
,
backward_attrs_list
)
print
(
"Generated Forward Definition: "
,
forward_definition_str
)
paddle/fluid/eager/auto_code_generator/final_state_generator/test.py
0 → 100644
浏览文件 @
211a703f
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name
=
"A"
B
=
"B"
C
=
"C"
D
=
"D"
E
=
"E"
x
=
"""
class GradNode%s : public egr::GradNodeBase {{
public:
GradNode%s() : egr::GradNodeBase() {{}}
GradNode%s(size_t bwd_in_slot_num, size_t bwd_out_slot_num) :
egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {{}}
~GradNode%s() override = default;
virtual std::vector<std::vector<egr::EagerTensor>>
operator()(const
std::vector<std::vector<egr::EagerTensor>>& grads)
override;
// SetX, SetY, ...
{}
// SetAttrMap
{}
private:
// TensorWrappers
{}
// Attribute Map
{}
}};
"""
print
(
x
.
format
(
"A"
,
"B"
,
"C"
,
"D"
))
python/paddle/utils/code_gen/api.yaml
浏览文件 @
211a703f
...
...
@@ -111,6 +111,7 @@
func
:
MatmulInferMeta
kernel
:
func
:
matmul
backward
:
matmul_grad
-
api
:
mean
args
:
(const Tensor& x, const std::vector<int64_t>& axis={}, bool keep_dim=false)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录