Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
20e23e1b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
20e23e1b
编写于
1月 25, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fleet_executor] Dist model run method Implementation (#39194)
上级
8bb509d5
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
391 addition
and
17 deletion
+391
-17
paddle/fluid/distributed/fleet_executor/dist_model.cc
paddle/fluid/distributed/fleet_executor/dist_model.cc
+282
-11
paddle/fluid/distributed/fleet_executor/dist_model.h
paddle/fluid/distributed/fleet_executor/dist_model.h
+13
-2
paddle/fluid/distributed/fleet_executor/dist_model_tensor_wrapper.h
...id/distributed/fleet_executor/dist_model_tensor_wrapper.h
+1
-1
paddle/fluid/pybind/bind_fleet_executor.cc
paddle/fluid/pybind/bind_fleet_executor.cc
+6
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-1
python/paddle/fluid/tests/unittests/test_fleet_exe_dist_model_run.py
...le/fluid/tests/unittests/test_fleet_exe_dist_model_run.py
+86
-0
python/paddle/fluid/tests/unittests/test_fleet_exe_dist_model_tensor.py
...fluid/tests/unittests/test_fleet_exe_dist_model_tensor.py
+1
-1
未找到文件。
paddle/fluid/distributed/fleet_executor/dist_model.cc
浏览文件 @
20e23e1b
...
...
@@ -13,11 +13,13 @@
// limitations under the License.
#include <glog/logging.h>
#include <chrono> // NOLINT
#include "paddle/fluid/distributed/fleet_executor/dist_model.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/program_desc.h"
...
...
@@ -37,10 +39,110 @@ bool IsPersistable(const framework::VarDesc *var) {
}
return
false
;
}
bool
LoadDataFromDistModelTensor
(
const
DistModelTensor
&
input_data
,
framework
::
LoDTensor
*
input_tensor
,
const
platform
::
Place
&
place
)
{
VLOG
(
3
)
<<
"Loading data from DistModelTensor for "
<<
input_data
.
name
;
framework
::
DDim
dims
=
framework
::
make_ddim
(
input_data
.
shape
);
void
*
input_tensor_ptr
;
if
(
input_data
.
dtype
==
DistModelDataType
::
INT64
)
{
input_tensor_ptr
=
input_tensor
->
mutable_data
<
int64_t
>
(
dims
,
place
);
}
else
if
(
input_data
.
dtype
==
DistModelDataType
::
FLOAT32
)
{
input_tensor_ptr
=
input_tensor
->
mutable_data
<
float
>
(
dims
,
place
);
}
else
if
(
input_data
.
dtype
==
DistModelDataType
::
INT32
)
{
input_tensor_ptr
=
input_tensor
->
mutable_data
<
int32_t
>
(
dims
,
place
);
}
else
{
// Q(fleet exe dev): for input/output, should we support fp16
LOG
(
ERROR
)
<<
"unsupported feed type "
<<
input_data
.
dtype
;
return
false
;
}
PADDLE_ENFORCE_NOT_NULL
(
input_tensor_ptr
,
paddle
::
platform
::
errors
::
Fatal
(
"LoDTensor creation failed. DistModel loaded data failed."
));
PADDLE_ENFORCE_NOT_NULL
(
input_data
.
data
.
data
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"DistModelTensor contains no data."
));
if
(
platform
::
is_cpu_place
(
place
))
{
VLOG
(
3
)
<<
"Loading data for CPU."
;
std
::
memcpy
(
static_cast
<
void
*>
(
input_tensor_ptr
),
input_data
.
data
.
data
(),
input_data
.
data
.
length
());
}
else
if
(
platform
::
is_gpu_place
(
place
))
{
VLOG
(
3
)
<<
"Loading data for GPU."
;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
const
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
place
));
auto
gpu_place
=
place
;
memory
::
Copy
(
gpu_place
,
static_cast
<
void
*>
(
input_tensor_ptr
),
platform
::
CPUPlace
(),
input_data
.
data
.
data
(),
input_data
.
data
.
length
(),
dev_ctx
->
stream
());
#else
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Paddle wasn't compiled with CUDA, but place is GPU."
));
#endif
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
"DistModel only supports CPU and GPU."
));
}
framework
::
LoD
dst_lod
;
for
(
auto
&
src_lod
:
input_data
.
lod
)
{
dst_lod
.
emplace_back
(
src_lod
);
}
input_tensor
->
set_lod
(
dst_lod
);
return
true
;
}
std
::
string
DistModelDTypeToString
(
DistModelDataType
dtype
)
{
switch
(
dtype
)
{
case
DistModelDataType
::
FLOAT32
:
return
"float32"
;
case
DistModelDataType
::
FLOAT16
:
return
"float16"
;
case
DistModelDataType
::
INT64
:
return
"int64"
;
case
DistModelDataType
::
INT32
:
return
"int32"
;
case
DistModelDataType
::
INT8
:
return
"int8"
;
}
return
"NOT SUPPORT DTYPE"
;
}
bool
IsPPFirstStage
(
const
DistModelConfig
&
config
)
{
return
config
.
local_rank
-
config
.
mp_degree
<
0
;
}
bool
IsPPLastStage
(
const
DistModelConfig
&
config
)
{
return
config
.
local_rank
+
config
.
mp_degree
>=
config
.
nranks
;
}
class
DistModelTimer
{
public:
void
tic
()
{
tic_time
=
std
::
chrono
::
high_resolution_clock
::
now
();
}
double
toc
()
{
std
::
chrono
::
high_resolution_clock
::
time_point
toc_time
=
std
::
chrono
::
high_resolution_clock
::
now
();
std
::
chrono
::
duration
<
double
>
time_elapse
=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
duration
<
double
>>
(
toc_time
-
tic_time
);
double
time_elapse_in_ms
=
static_cast
<
double
>
(
time_elapse
.
count
())
*
1000.0
;
return
time_elapse_in_ms
;
}
private:
std
::
chrono
::
high_resolution_clock
::
time_point
tic_time
;
};
}
// namespace
bool
DistModel
::
Init
()
{
/* TODO(fleet exe dev): implement this funct */
carrier_id_
=
"inference"
;
bool
init_method
=
(
!
config_
.
model_dir
.
empty
()
||
config_
.
program_desc
);
PADDLE_ENFORCE_EQ
(
init_method
,
true
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -127,10 +229,9 @@ bool DistModel::CommInit() {
InsertCommOp
(
"mp_comm_id"
,
mp_group_nranks
,
mp_group_rank
,
peer_endpoints
,
comm_init_block
,
config_
.
mp_ring_id
);
}
if
(
config_
.
pp_degree
)
{
// NOTE: the last pp stage doesn't need init pp comm
if
(
config_
.
pp_degree
>
1
)
{
VLOG
(
3
)
<<
"Init comm group for pp."
;
if
(
config_
.
local_rank
-
config_
.
mp_degree
>=
0
)
{
if
(
!
IsPPFirstStage
(
config_
)
)
{
PADDLE_ENFORCE_EQ
(
config_
.
pp_upstream_ring_id
>=
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"pp upstream ring id must be provided for "
...
...
@@ -143,7 +244,7 @@ bool DistModel::CommInit() {
comm_init_block
,
config_
.
pp_upstream_ring_id
);
}
if
(
config_
.
local_rank
+
config_
.
mp_degree
<
config_
.
nranks
)
{
if
(
!
IsPPLastStage
(
config_
)
)
{
PADDLE_ENFORCE_EQ
(
config_
.
pp_downstream_ring_id
>=
0
,
true
,
platform
::
errors
::
InvalidArgument
(
"pp downstream ring id must be provided for "
...
...
@@ -326,7 +427,7 @@ bool DistModel::PrepareFleetExe() {
id_to_rank
.
insert
({
i
,
i
});
}
fleet_exe
.
reset
(
new
FleetExecutor
(
executor_desc_
));
fleet_exe
->
Init
(
"inference"
,
*
(
program_
.
get
()),
scope_
.
get
(),
place_
,
1
,
fleet_exe
->
Init
(
carrier_id_
,
*
(
program_
.
get
()),
scope_
.
get
(),
place_
,
1
,
{
task_node_
.
get
()},
id_to_rank
);
return
true
;
}
...
...
@@ -340,8 +441,27 @@ bool DistModel::PrepareFeedAndFetch() {
feeds_
.
resize
(
idx
+
1
);
}
feeds_
[
idx
]
=
op
;
feed_names_
[
op
->
Output
(
"Out"
)[
0
]]
=
idx
;
idx_to_feeds_
[
idx
]
=
op
->
Output
(
"Out"
)[
0
];
std
::
string
var_name
=
op
->
Output
(
"Out"
)[
0
];
feed_names_
[
var_name
]
=
idx
;
idx_to_feeds_
[
idx
]
=
var_name
;
framework
::
VarDesc
*
real_var
=
program_
->
Block
(
0
).
FindVar
(
var_name
);
if
(
!
real_var
)
{
LOG
(
ERROR
)
<<
"The output of feed ops ["
<<
var_name
<<
"] cannot be found in the program. Check the inference program."
;
return
false
;
}
if
(
real_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
feeds_to_dtype_
.
insert
({
var_name
,
DistModelDataType
::
FLOAT32
});
}
else
if
(
real_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
INT32
)
{
feeds_to_dtype_
.
insert
({
var_name
,
DistModelDataType
::
INT32
});
}
else
if
(
real_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
INT64
)
{
feeds_to_dtype_
.
insert
({
var_name
,
DistModelDataType
::
INT64
});
}
else
{
LOG
(
ERROR
)
<<
"Don't support feed var dtype for: "
<<
real_var
->
GetDataType
();
return
false
;
}
}
else
if
(
op
->
Type
()
==
"fetch"
)
{
VLOG
(
3
)
<<
"fetch op with fetch var: "
<<
op
->
Input
(
"X"
)[
0
];
int
idx
=
BOOST_GET_CONST
(
int
,
op
->
GetAttr
(
"col"
));
...
...
@@ -349,15 +469,166 @@ bool DistModel::PrepareFeedAndFetch() {
fetches_
.
resize
(
idx
+
1
);
}
fetches_
[
idx
]
=
op
;
id_to_fetches_
[
idx
]
=
op
->
Input
(
"X"
)[
0
];
idx_to_fetches_
[
idx
]
=
op
->
Input
(
"X"
)[
0
];
}
}
if
(
config_
.
pp_degree
==
1
)
{
if
(
feeds_
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"No feed ops in the inf program, please check the program."
;
return
false
;
}
if
(
fetches_
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"No fetch op in the inf program, please check the program."
;
return
false
;
}
}
else
{
if
(
IsPPFirstStage
(
config_
))
{
if
(
feeds_
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"Feed ops are needed for the first pp stage."
;
return
false
;
}
else
{
LOG
(
WARNING
)
<<
"No feed ops in non-first pp stage."
;
}
}
else
if
(
feeds_
.
size
()
>
0
)
{
LOG
(
WARNING
)
<<
"Feed op is found in the non-first stage of pp."
;
}
if
(
IsPPLastStage
(
config_
))
{
if
(
fetches_
.
size
()
==
0
)
{
LOG
(
ERROR
)
<<
"Fetch op is needed for the last pp stage."
;
return
false
;
}
else
{
LOG
(
WARNING
)
<<
"No fetch op in non-last pp stage."
;
}
}
else
if
(
fetches_
.
size
()
>
0
)
{
LOG
(
WARNING
)
<<
"Fetch op is found in the non-last stage of pp."
;
}
}
return
true
;
}
bool
DistModel
::
FeedData
(
const
std
::
vector
<
DistModelTensor
>
&
input_data
,
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"DistModel is feeding data."
;
if
(
input_data
.
size
()
!=
feeds_
.
size
())
{
LOG
(
ERROR
)
<<
"Should provide "
<<
feeds_
.
size
()
<<
" feeds, but got "
<<
input_data
.
size
()
<<
" data."
;
return
false
;
}
feed_tensors_
.
resize
(
feeds_
.
size
());
for
(
size_t
i
=
0
;
i
<
input_data
.
size
();
++
i
)
{
// feed each data separately
framework
::
LoDTensor
*
input_tensor
=
&
(
feed_tensors_
[
i
]);
if
(
!
LoadDataFromDistModelTensor
(
input_data
[
i
],
input_tensor
,
place_
))
{
LOG
(
ERROR
)
<<
"Fail to load data from tensor "
<<
input_data
[
i
].
name
;
return
false
;
}
std
::
string
target_name
=
input_data
[
i
].
name
;
if
(
feed_names_
.
find
(
target_name
)
==
feed_names_
.
end
())
{
LOG
(
ERROR
)
<<
"The input name ["
<<
target_name
<<
"] cannot be found in the program."
<<
" DistModel loads data failed."
;
return
false
;
}
if
(
input_data
[
i
].
dtype
!=
feeds_to_dtype_
[
target_name
])
{
LOG
(
ERROR
)
<<
"Feed var ["
<<
target_name
<<
"] expected dtype is: "
<<
DistModelDTypeToString
(
feeds_to_dtype_
[
target_name
])
<<
". But received dtype is: "
<<
DistModelDTypeToString
(
input_data
[
i
].
dtype
)
<<
"."
;
return
false
;
}
int
feed_idx
=
feed_names_
[
target_name
];
framework
::
SetFeedVariable
(
scope
,
*
input_tensor
,
"feed"
,
feed_idx
);
}
return
true
;
}
bool
DistModel
::
FetchResults
(
std
::
vector
<
DistModelTensor
>
*
output_data
,
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"DistModel is fetch results."
;
output_data
->
resize
(
fetches_
.
size
());
for
(
size_t
i
=
0
;
i
<
fetches_
.
size
();
++
i
)
{
int
idx
=
BOOST_GET_CONST
(
int
,
fetches_
[
i
]
->
GetAttr
(
"col"
));
VLOG
(
3
)
<<
"Fetching data for ["
<<
idx_to_fetches_
[
idx
]
<<
"]"
;
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
idx
),
i
,
platform
::
errors
::
InvalidArgument
(
"Fetch op's col attr(%d) should be equal to the index(%d)"
,
idx
,
i
));
framework
::
FetchType
&
fetch_var
=
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
auto
&
fetch
=
BOOST_GET
(
framework
::
LoDTensor
,
fetch_var
);
auto
type
=
fetch
.
type
();
auto
output
=
&
(
output_data
->
at
(
i
));
output
->
name
=
idx_to_fetches_
[
idx
];
bool
rst
=
false
;
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
rst
=
FetchResult
<
float
>
(
fetch
,
output
);
output
->
dtype
=
DistModelDataType
::
FLOAT32
;
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
rst
=
FetchResult
<
int64_t
>
(
fetch
,
output
);
output
->
dtype
=
DistModelDataType
::
INT64
;
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
rst
=
FetchResult
<
int32_t
>
(
fetch
,
output
);
output
->
dtype
=
DistModelDataType
::
INT32
;
}
else
{
LOG
(
ERROR
)
<<
"DistModel meets unknown fetch data type. DistModel only "
"supports float32, int64 and int32 fetch type for now."
;
}
if
(
!
rst
)
{
LOG
(
ERROR
)
<<
"DistModel fails to fetch result "
<<
idx_to_fetches_
[
idx
];
return
false
;
}
}
return
true
;
}
template
<
typename
T
>
bool
DistModel
::
FetchResult
(
const
framework
::
LoDTensor
&
fetch
,
DistModelTensor
*
output_data
)
{
auto
shape
=
framework
::
vectorize
(
fetch
.
dims
());
output_data
->
shape
.
assign
(
shape
.
begin
(),
shape
.
end
());
const
T
*
data
=
fetch
.
data
<
T
>
();
int64_t
num_elems
=
fetch
.
numel
();
output_data
->
data
.
Resize
(
num_elems
*
sizeof
(
T
));
// The output of fetch op is always on the cpu, no need switch on place
memcpy
(
output_data
->
data
.
data
(),
data
,
num_elems
*
sizeof
(
T
));
output_data
->
lod
.
clear
();
for
(
auto
&
level
:
fetch
.
lod
())
{
output_data
->
lod
.
emplace_back
(
level
.
begin
(),
level
.
end
());
}
return
true
;
}
void
DistModel
::
Run
(
const
std
::
vector
<
DistModelTensor
>
&
input_data
,
bool
DistModel
::
Run
(
const
std
::
vector
<
DistModelTensor
>
&
input_data
,
std
::
vector
<
DistModelTensor
>
*
output_data
)
{
/* TODO(fleet exe dev): implement this funct */
// TODO(fleet exe dev): support pipeline inf mode
VLOG
(
3
)
<<
"DistModel run for once."
;
DistModelTimer
timer
;
timer
.
tic
();
if
(
!
FeedData
(
input_data
,
scope_
.
get
()))
{
LOG
(
ERROR
)
<<
"DistModel failed at feeding data."
;
return
false
;
}
double
feed_elapse
=
timer
.
toc
();
VLOG
(
3
)
<<
"Finish loading data, cost "
<<
feed_elapse
<<
"ms."
;
fleet_exe
->
Run
(
carrier_id_
);
double
fleet_exe_elapse
=
timer
.
toc
();
VLOG
(
3
)
<<
"Finish FleetExe running, cost "
<<
fleet_exe_elapse
-
feed_elapse
<<
"ms."
;
if
(
!
FetchResults
(
output_data
,
scope_
.
get
()))
{
LOG
(
ERROR
)
<<
"DistModel failed at fetching result."
;
return
false
;
}
double
fetch_elapse
=
timer
.
toc
();
VLOG
(
3
)
<<
"Finish fetching data, cost "
<<
fetch_elapse
-
fleet_exe_elapse
<<
"ms."
;
VLOG
(
3
)
<<
"DistModel finish inf, cost "
<<
fetch_elapse
<<
"ms"
;
return
true
;
}
}
// namespace distributed
...
...
paddle/fluid/distributed/fleet_executor/dist_model.h
浏览文件 @
20e23e1b
...
...
@@ -19,6 +19,7 @@
#include "paddle/fluid/distributed/fleet_executor/dist_model_tensor_wrapper.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/place.h"
...
...
@@ -57,7 +58,7 @@ class DistModel {
public:
explicit
DistModel
(
const
DistModelConfig
&
config
)
:
config_
(
config
)
{}
bool
Init
();
void
Run
(
const
std
::
vector
<
DistModelTensor
>&
input_data
,
bool
Run
(
const
std
::
vector
<
DistModelTensor
>&
input_data
,
std
::
vector
<
DistModelTensor
>*
output_data
);
~
DistModel
()
=
default
;
...
...
@@ -75,12 +76,22 @@ class DistModel {
void
InsertCommOp
(
std
::
string
tmp_var_name
,
int
nranks
,
int
rank
,
const
std
::
vector
<
std
::
string
>&
peer_endpoints
,
framework
::
BlockDesc
*
block
,
int
ring_id
);
bool
FeedData
(
const
std
::
vector
<
DistModelTensor
>&
input_data
,
framework
::
Scope
*
scope
);
bool
FetchResults
(
std
::
vector
<
DistModelTensor
>*
output_data
,
framework
::
Scope
*
scope
);
template
<
typename
T
>
bool
FetchResult
(
const
framework
::
LoDTensor
&
fetch
,
DistModelTensor
*
output_data
);
std
::
string
carrier_id_
;
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
std
::
vector
<
framework
::
OpDesc
*>
feeds_
;
std
::
map
<
std
::
string
,
int64_t
>
feed_names_
;
std
::
map
<
int64_t
,
std
::
string
>
idx_to_feeds_
;
std
::
map
<
std
::
string
,
DistModelDataType
>
feeds_to_dtype_
;
std
::
vector
<
framework
::
OpDesc
*>
fetches_
;
std
::
map
<
int64_t
,
std
::
string
>
id_to_fetches_
;
std
::
map
<
int64_t
,
std
::
string
>
id
x
_to_fetches_
;
DistModelConfig
config_
;
FleetExecutorDesc
executor_desc_
;
std
::
shared_ptr
<
FleetExecutor
>
fleet_exe
;
...
...
paddle/fluid/distributed/fleet_executor/dist_model_tensor_wrapper.h
浏览文件 @
20e23e1b
...
...
@@ -62,7 +62,7 @@ class DistModelDataBuf {
void
Free
();
void
*
data_
{
nullptr
};
size_t
length_
{
0
};
bool
memory_owned_
{
fals
e
};
bool
memory_owned_
{
tru
e
};
};
struct
DistModelTensor
{
...
...
paddle/fluid/pybind/bind_fleet_executor.cc
浏览文件 @
20e23e1b
...
...
@@ -162,7 +162,12 @@ void BindFleetExecutor(py::module* m) {
py
::
class_
<
DistModel
>
(
*
m
,
"DistModel"
)
.
def
(
py
::
init
<
const
DistModelConfig
&>
())
.
def
(
"init"
,
&
DistModel
::
Init
)
.
def
(
"run"
,
&
DistModel
::
Run
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
.
def
(
"run"
,
[](
DistModel
&
self
,
const
std
::
vector
<
DistModelTensor
>&
inputs
)
{
std
::
vector
<
DistModelTensor
>
outputs
;
self
.
Run
(
inputs
,
&
outputs
);
return
outputs
;
});
py
::
class_
<
DistModelDataBuf
>
(
*
m
,
"DistModelDataBuf"
)
.
def
(
py
::
init
<
size_t
>
())
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
20e23e1b
...
...
@@ -156,7 +156,8 @@ if(((NOT WITH_ROCM) AND (NOT WITH_GPU)) OR WIN32)
LIST
(
REMOVE_ITEM TEST_OPS test_fleet_executor_origin_scheduler
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_mapper
)
LIST
(
REMOVE_ITEM TEST_OPS test_fleet_executor_task_node
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_model_tensor
)
LIST
(
REMOVE_ITEM TEST_OPS test_fleet_exe_dist_model_run
)
LIST
(
REMOVE_ITEM TEST_OPS test_fleet_exe_dist_model_tensor
)
endif
()
# Temporally disable test_deprecated_decorator
...
...
python/paddle/fluid/tests/unittests/test_fleet_exe_dist_model_run.py
0 → 100644
浏览文件 @
20e23e1b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
numpy
as
np
import
os
from
paddle.fluid
import
core
paddle
.
enable_static
()
class
TestDistModelRun
(
unittest
.
TestCase
):
def
test_dist_model_run
(
self
):
# step 0: declare folder to save the model and params
folder
=
'./dist_model_run_test/'
file
=
'inf'
path_prefix
=
folder
+
file
# step 1: saving the inference model and params
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
28
,
28
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
28
,
1
],
dtype
=
'int64'
)
predict
=
paddle
.
static
.
nn
.
fc
(
x
,
10
,
activation
=
'softmax'
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
predict
,
y
)
avg_loss
=
paddle
.
tensor
.
stat
.
mean
(
loss
)
exe
=
paddle
.
static
.
Executor
(
paddle
.
CUDAPlace
(
0
))
exe
.
run
(
paddle
.
static
.
default_startup_program
())
x_data
=
np
.
random
.
randn
(
28
,
28
).
astype
(
'float32'
)
y_data
=
np
.
random
.
randint
(
0
,
9
,
size
=
[
28
,
1
]).
astype
(
'int64'
)
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
avg_loss
])
paddle
.
static
.
save_inference_model
(
path_prefix
,
[
x
,
y
],
[
avg_loss
],
exe
)
print
(
'save model to'
,
path_prefix
)
# step 2: prepare fake data for the inference
x_tensor
=
np
.
random
.
randn
(
28
,
28
).
astype
(
'float32'
)
y_tensor
=
np
.
random
.
randint
(
0
,
9
,
size
=
[
28
,
1
]).
astype
(
'int64'
)
# step 3: init the dist model to inference with fake data
config
=
core
.
DistModelConfig
()
config
.
model_dir
=
path_prefix
config
.
place
=
'GPU'
dist
=
core
.
DistModel
(
config
)
dist
.
init
()
dist_x
=
core
.
DistModelTensor
(
x_tensor
,
'x'
)
dist_y
=
core
.
DistModelTensor
(
y_tensor
,
'y'
)
input_data
=
[
dist_x
,
dist_y
]
output_rst
=
dist
.
run
(
input_data
)
dist_model_rst
=
output_rst
[
0
].
as_ndarray
().
ravel
().
tolist
()
print
(
"dist model rst:"
,
dist_model_rst
)
# step 4: use framework's api to inference with fake data
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
paddle
.
static
.
load_inference_model
(
path_prefix
,
exe
))
results
=
exe
.
run
(
inference_program
,
feed
=
{
'x'
:
x_tensor
,
'y'
:
y_tensor
},
fetch_list
=
fetch_targets
)
load_inference_model_rst
=
results
[
0
]
print
(
"load inference model api rst:"
,
load_inference_model_rst
)
# step 5: compare two results
self
.
assertTrue
(
np
.
allclose
(
dist_model_rst
,
load_inference_model_rst
))
# step 6: clean up the env, delete the saved model and params
os
.
remove
(
path_prefix
+
'.pdiparams'
)
os
.
remove
(
path_prefix
+
'.pdmodel'
)
os
.
rmdir
(
folder
)
print
(
'cleaned up the env'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_model_tensor.py
→
python/paddle/fluid/tests/unittests/test_
fleet_exe_
dist_model_tensor.py
浏览文件 @
20e23e1b
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
21
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录