提交 20aef7fe 编写于 作者: L luotao02

faq

上级 32ecc191
#################### ####################
FAQ FAQ
#################### ####################
.. contents:: .. contents::
1. 如何减少内存占用 1. 如何减少内存占用
--------------------------------- ---------------------------------
神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。 神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。
PaddlePaddle的内存占用主要分为如下几个方面\: PaddlePaddle的内存占用主要分为如下几个方面\:
* DataProvider缓冲池内存(只针对内存) * DataProvider缓冲池内存(只针对内存)
* 神经元激活内存(针对内存和显存) * 神经元激活内存(针对内存和显存)
* 参数内存 (针对内存和显存) * 参数内存 (针对内存和显存)
* 其他内存杂项 * 其他内存杂项
其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。 其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。
减少DataProvider缓冲池内存 减少DataProvider缓冲池内存
++++++++++++++++++++++++++ ++++++++++++++++++++++++++
PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即 PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即
.. graphviz:: .. graphviz::
digraph { digraph {
rankdir=LR; rankdir=LR;
数据文件 -> 内存池 -> PaddlePaddle训练 数据文件 -> 内存池 -> PaddlePaddle训练
} }
所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这 所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这
个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的, 个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的,
那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为 那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
.. literalinclude:: src/reduce_min_pool_size.py .. literalinclude:: src/reduce_min_pool_size.py
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。 这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。
神经元激活内存 神经元激活内存
++++++++++++++ ++++++++++++++
神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。 神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。
在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系, 在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系,
一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含 一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含
的时间步信息成正比。 的时间步信息成正比。
所以做法可以有两种: 所以做法可以有两种:
* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。 * 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。
* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200, * 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200,
但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。 但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。
参数内存 参数内存
++++++++ ++++++++
PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。 PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。
例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录 例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录
文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。 文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。
可以考虑使用一些优化算法,例如 :code:`momentum`。 可以考虑使用一些优化算法,例如 :code:`momentum`。
2. 如何加速PaddlePaddle的训练速度 2. 如何加速PaddlePaddle的训练速度
--------------------------------- ---------------------------------
加速PaddlePaddle训练可以考虑从以下几个方面\: 加速PaddlePaddle训练可以考虑从以下几个方面\:
* 减少数据载入的耗时 * 减少数据载入的耗时
* 加速训练速度 * 加速训练速度
* 利用分布式训练驾驭更多的计算资源 * 利用分布式训练驾驭更多的计算资源
减少数据载入的耗时 减少数据载入的耗时
++++++++++++++++++ ++++++++++++++++++
使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 :code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
.. literalinclude:: src/reduce_min_pool_size.py .. literalinclude:: src/reduce_min_pool_size.py
同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。 同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
加速训练速度 加速训练速度
++++++++++++ ++++++++++++
PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True` PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True`
这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\: 这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\:
使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\: 使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\:
.. literalinclude:: src/word2vec_dataprovider.py .. literalinclude:: src/word2vec_dataprovider.py
这个任务的配置为\: 这个任务的配置为\:
.. literalinclude:: src/word2vec_config.py .. literalinclude:: src/word2vec_config.py
利用更多的计算资源 利用更多的计算资源
++++++++++++++++++ ++++++++++++++++++
利用更多的计算资源可以分为一下几个方式来进行\: 利用更多的计算资源可以分为一下几个方式来进行\:
* 单机CPU训练 * 单机CPU训练
* 使用多线程训练。设置命令行参数 :code:`trainer_count`。 * 使用多线程训练。设置命令行参数 :code:`trainer_count`。
* 单机GPU训练 * 单机GPU训练
* 使用显卡训练。设置命令行参数 :code:`use_gpu`。 * 使用显卡训练。设置命令行参数 :code:`use_gpu`。
* 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。 * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。
* 多机训练 * 多机训练
* 请参考 :ref:`cluster_train` 。 * 请参考 :ref:`cluster_train` 。
3. 遇到“非法指令”或者是“illegal instruction” 3. 遇到“非法指令”或者是“illegal instruction”
-------------------------------------------- --------------------------------------------
PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。 PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。
4. 如何选择SGD算法的学习率 4. 如何选择SGD算法的学习率
-------------------------- --------------------------
在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。 在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。
通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。 通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。
如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。 如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。
5. 如何初始化参数 5. 如何初始化参数
----------------- -----------------
默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\: 默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\:
* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)` * 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)`
* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)` * 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)`
比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。 比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。
.. code-block:: python .. code-block:: python
hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0), hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0),
bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0)) bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0))
上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。 上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。
6. 如何共享参数 6. 如何共享参数
--------------- ---------------
PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。 PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。
简单的全连接网络,参数共享的配置示例为\: 简单的全连接网络,参数共享的配置示例为\:
.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py .. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py
这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform. 7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.
------------------------------------------------------------------------ ------------------------------------------------------------------------
出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的, 出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的,
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。 而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
更新 :code:`pip` 包的方法是\: 更新 :code:`pip` 包的方法是\:
.. code-block:: bash .. code-block:: bash
pip install --upgrade pip pip install --upgrade pip
8. python相关的单元测试都过不了 8. python相关的单元测试都过不了
-------------------------------- --------------------------------
如果出现以下python相关的单元测试都过不了的情况: 如果出现以下python相关的单元测试都过不了的情况:
.. code-block:: bash .. code-block:: bash
24 - test_PyDataProvider (Failed) 24 - test_PyDataProvider (Failed)
26 - test_RecurrentGradientMachine (Failed) 26 - test_RecurrentGradientMachine (Failed)
27 - test_NetworkCompare (Failed) 27 - test_NetworkCompare (Failed)
28 - test_PyDataProvider2 (Failed) 28 - test_PyDataProvider2 (Failed)
32 - test_Prediction (Failed) 32 - test_Prediction (Failed)
33 - test_Compare (Failed) 33 - test_Compare (Failed)
34 - test_Trainer (Failed) 34 - test_Trainer (Failed)
35 - test_TrainerOnePass (Failed) 35 - test_TrainerOnePass (Failed)
36 - test_CompareTwoNets (Failed) 36 - test_CompareTwoNets (Failed)
37 - test_CompareTwoOpts (Failed) 37 - test_CompareTwoOpts (Failed)
38 - test_CompareSparse (Failed) 38 - test_CompareSparse (Failed)
39 - test_recurrent_machine_generation (Failed) 39 - test_recurrent_machine_generation (Failed)
40 - test_PyDataProviderWrapper (Failed) 40 - test_PyDataProviderWrapper (Failed)
41 - test_config_parser (Failed) 41 - test_config_parser (Failed)
42 - test_swig_api (Failed) 42 - test_swig_api (Failed)
43 - layers_test (Failed) 43 - layers_test (Failed)
并且查询PaddlePaddle单元测试的日志,提示: 并且查询PaddlePaddle单元测试的日志,提示:
.. code-block:: bash .. code-block:: bash
paddle package is already in your PYTHONPATH. But unittest need a clean environment. paddle package is already in your PYTHONPATH. But unittest need a clean environment.
Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'. Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'.
解决办法是: 解决办法是:
* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 * 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。
9. 运行Docker GPU镜像出现 "CUDA driver version is insufficient" 9. 运行Docker GPU镜像出现 "CUDA driver version is insufficient"
---------------------------------------------------------------- ----------------------------------------------------------------
用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。 用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。
具体的解决方法是: 具体的解决方法是:
.. code-block:: bash .. code-block:: bash
$ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu
更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 <http://www.paddlepaddle.org/doc_cn/build_and_install/install/docker_install.html>`_ 。 更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 <http://www.paddlepaddle.org/doc_cn/build_and_install/install/docker_install.html>`_ 。
10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致 10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致
---------------------------------------------------------------- ----------------------------------------------------------------
这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是, 这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是,
用户强制指定特定的Python版本,具体操作如下: 用户强制指定特定的Python版本,具体操作如下:
.. code-block:: bash .. code-block:: bash
cmake .. -DPYTHON_EXECUTABLE=<exc_path> -DPYTHON_LIBRARY=<lib_path> -DPYTHON_INCLUDE_DIR=<inc_path> cmake .. -DPYTHON_EXECUTABLE=<exc_path> -DPYTHON_LIBRARY=<lib_path> -DPYTHON_INCLUDE_DIR=<inc_path>
用户需要指定本机上Python的路径:``<exc_path>``, ``<lib_path>``, ``<inc_path>`` 用户需要指定本机上Python的路径:``<exc_path>``, ``<lib_path>``, ``<inc_path>``
10. A protocol message was rejected because it was too big 11. CMake源码编译,Paddle版本号为0.0.0
---------------------------------------------------------- --------------------------------------
如果在训练NLP相关模型时,出现以下错误: 如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现
.. code-block:: bash .. code-block:: bash
[libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h. CMake Warning at cmake/version.cmake:20 (message):
F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) Cannot add paddle version from git tag
可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似: 那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。
.. code-block:: python 12. A protocol message was rejected because it was too big
----------------------------------------------------------
src_dict = dict()
for line_count, line in enumerate(open(src_dict_path, "r")): 如果在训练NLP相关模型时,出现以下错误:
src_dict[line.strip()] = line_count
.. code-block:: bash
define_py_data_sources2(
train_list, [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
test_list, F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr)
module="dataprovider",
obj="process", 可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似:
args={"src_dict": src_dict})
.. code-block:: python
解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为:
src_dict = dict()
.. code-block:: python for line_count, line in enumerate(open(src_dict_path, "r")):
src_dict[line.strip()] = line_count
define_py_data_sources2(
train_list, define_py_data_sources2(
test_list, train_list,
module="dataprovider", test_list,
obj="process", module="dataprovider",
args={"src_dict_path": src_dict_path}) obj="process",
args={"src_dict": src_dict})
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为:
11. 如何指定GPU设备
------------------- .. code-block:: python
例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU: define_py_data_sources2(
train_list,
* 方式1:通过 `CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_ 环境变量来指定特定的GPU。 test_list,
module="dataprovider",
.. code-block:: bash obj="process",
args={"src_dict_path": src_dict_path})
env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
* 方式2:通过命令行参数 ``--gpu_id`` 指定。
13. 如何指定GPU设备
.. code-block:: bash -------------------
paddle train --use_gpu=true --trainer_count=2 --gpu_id=2 例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU:
* 方式1:通过 `CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_ 环境变量来指定特定的GPU。
12. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办?
------------------------------------------------------------------------ .. code-block:: bash
Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。 env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2
主要原因包括两个方面:
* 方式2:通过命令行参数 ``--gpu_id`` 指定。
* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。
* 模型一直不收敛,发散到了一个数值特别大的地方。 .. code-block:: bash
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
paddle train --use_gpu=true --trainer_count=2 --gpu_id=2
主要的解决办法是减小学习律或者对数据进行归一化处理。
14. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办?
------------------------------------------------------------------------
Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。
主要原因包括两个方面:
* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。
* 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
主要的解决办法是减小学习律或者对数据进行归一化处理。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册