diff --git a/.clang_format.hook b/.clang_format.hook new file mode 100755 index 0000000000000000000000000000000000000000..1d928216867c0ba3897d71542fea44debf8d72a0 --- /dev/null +++ b/.clang_format.hook @@ -0,0 +1,15 @@ +#!/bin/bash +set -e + +readonly VERSION="3.8" + +version=$(clang-format -version) + +if ! [[ $version == *"$VERSION"* ]]; then + echo "clang-format version check failed." + echo "a version contains '$VERSION' is needed, but get '$version'" + echo "you can install the right version, and make an soft-link to '\$PATH' env" + exit -1 +fi + +clang-format $@ diff --git a/.gitignore b/.gitignore index 9622ab78e0e0556ec2b4cc974fee93ff680d54d2..1512c1438e9e0b0b7b6e0c273a24b273cb652b04 100644 --- a/.gitignore +++ b/.gitignore @@ -22,7 +22,10 @@ cmake-build-* # generated while compiling python/paddle/v2/framework/core.so +paddle/pybind/pybind.h CMakeFiles cmake_install.cmake paddle/.timestamp python/paddlepaddle.egg-info/ +paddle/pybind/pybind.h +python/paddle/v2/framework/tests/tmp/* diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index bb8c88787d37faf9ce4d7d856a307c11f1085d98..59661c9c1da53a2ddac0127ed1827fedde811a1d 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -19,10 +19,10 @@ - id: end-of-file-fixer - repo: local hooks: - - id: clang-format + - id: clang-format-with-version-check name: clang-format description: Format files with ClangFormat. - entry: clang-format -i + entry: bash ./.clang_format.hook -i language: system files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$ - repo: https://github.com/PaddlePaddle/pre-commit-golang @@ -31,6 +31,3 @@ - id: go-fmt types: - go - - id: gometalinter - types: - - go diff --git a/.travis.yml b/.travis.yml index b4b83fcdbc84ce0fb0c91c816ebc3c964acfa590..c51e02eb79a9e53a2b8d1d663e8f0c3e0d8c3a61 100644 --- a/.travis.yml +++ b/.travis.yml @@ -4,7 +4,6 @@ cache: - $HOME/.ccache - $HOME/.cache/pip - $TRAVIS_BUILD_DIR/build/third_party - - $TRAVIS_BUILD_DIR/build_android/third_party sudo: required dist: trusty os: @@ -12,7 +11,6 @@ os: env: - JOB=build_doc - JOB=check_style - - JOB=build_android addons: apt: packages: @@ -23,7 +21,6 @@ addons: - python - python-pip - python2.7-dev - - python-numpy - python-wheel - libboost-dev - curl @@ -33,22 +30,27 @@ addons: - automake - libtool - ccache + ssh_known_hosts: 52.76.173.135 before_install: - if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # protobuf version. - - pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt - - pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker - - curl https://glide.sh/get | bash - - eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - - go get -u github.com/alecthomas/gometalinter - - gometalinter --install + - sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt + - sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker - | function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; } script: - | timeout 2580 paddle/scripts/travis/${JOB}.sh # 43min timeout RESULT=$?; if [ $RESULT -eq 0 ] || [ $RESULT -eq 142 ]; then true; else false; fi; + - | + if [[ "$JOB" != "build_doc" ]]; then exit 0; fi; + if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi; + if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi; + export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh + export DOCS_DIR=`pwd` + cd .. + curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc notifications: email: on_success: change diff --git a/CMakeLists.txt b/CMakeLists.txt index dcd1218a5b0b62f2739b727391aca31b48ed9ccb..fd3582a1bca199d62d19550ffdd1efe9db520fa7 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING) endif(NOT CMAKE_CROSSCOMPILING) find_package(Git REQUIRED) find_package(Threads REQUIRED) -if(NOT ANDROID) +if(NOT ANDROID AND NOT IOS) find_package(Boost QUIET) endif() @@ -55,6 +55,7 @@ option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF) option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF) option(GLIDE_INSTALL "Download and install go dependencies " ON) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) +option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) # CMAKE_BUILD_TYPE if(NOT CMAKE_BUILD_TYPE) @@ -63,24 +64,37 @@ if(NOT CMAKE_BUILD_TYPE) FORCE) endif() -if(ANDROID) - if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") - message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 21") +if(ANDROID OR IOS) + if(ANDROID) + if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") + message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") + elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") + # TODO: support glog for Android api 16 ~ 19 in the future + message(WARNING "Using the unofficial git repository instead") + endif() endif() set(WITH_GPU OFF CACHE STRING - "Disable GPU when cross-compiling for Android" FORCE) + "Disable GPU when cross-compiling for Android and iOS" FORCE) set(WITH_AVX OFF CACHE STRING - "Disable AVX when cross-compiling for Android" FORCE) + "Disable AVX when cross-compiling for Android and iOS" FORCE) set(WITH_PYTHON OFF CACHE STRING - "Disable PYTHON when cross-compiling for Android" FORCE) + "Disable PYTHON when cross-compiling for Android and iOS" FORCE) set(WITH_RDMA OFF CACHE STRING - "Disable RDMA when cross-compiling for Android" FORCE) + "Disable RDMA when cross-compiling for Android and iOS" FORCE) set(WITH_MKLDNN OFF CACHE STRING - "Disable MKLDNN when cross-compiling for Android" FORCE) + "Disable MKLDNN when cross-compiling for Android and iOS" FORCE) set(WITH_MKLML OFF CACHE STRING - "Disable MKLML package when cross-compiling for Android" FORCE) -endif(ANDROID) + "Disable MKLML package when cross-compiling for Android and iOS" FORCE) + + # Compile PaddlePaddle mobile inference library + if (NOT WITH_C_API) + set(WITH_C_API ON CACHE STRING + "Always compile the C_API when cross-compiling for Android and iOS" FORCE) + endif() + set(MOBILE_INFERENCE ON) + add_definitions(-DPADDLE_MOBILE_INFERENCE) +endif() set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING "A path setting third party libraries download & build directories.") @@ -91,6 +105,12 @@ if (WITH_C_API AND WITH_PYTHON) "different Python interpreter from compiling.") endif() +if(MOBILE_INFERENCE) + set(THIRD_PARTY_BUILD_TYPE MinSizeRel) +else() + set(THIRD_PARTY_BUILD_TYPE Release) +endif() + ######################################################################################## include(external/mklml) # download mklml package @@ -106,7 +126,8 @@ include(external/swig) # download, build, install swig include(external/warpctc) # download, build, install warpctc include(external/any) # download libn::any include(external/eigen) # download eigen3 -include(external/pybind11) # download pybind11 +include(external/pybind11) # download pybind11 +include(external/nccl) include(cudnn) # set cudnn libraries, must before configure include(configure) # add paddle env configuration @@ -137,9 +158,9 @@ set(EXTERNAL_LIBS ) if(WITH_GPU) - list(APPEND EXTERNAL_LIB ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY}) + list(APPEND EXTERNAL_LIBS ${CUDA_LIBRARIES} ${CUDA_rt_LIBRARY}) if(NOT WITH_DSO) - list(APPEND EXTERNAL_LIB ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY}) + list(APPEND EXTERNAL_LIBS ${CUDNN_LIBRARY} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_curand_LIBRARY} ${NCCL_LIBRARY}) endif(NOT WITH_DSO) endif(WITH_GPU) @@ -154,9 +175,11 @@ endif(USE_NNPACK) add_subdirectory(proto) -# "add_subdirectory(go)" should be placed after the following loine, -# because it depends on paddle/optimizer. -add_subdirectory(paddle/optimizer) +if(NOT MOBILE_INFERENCE) + # "add_subdirectory(go)" should be placed after the following loine, + # because it depends on paddle/optimizer. + add_subdirectory(paddle/optimizer) +endif() # "add_subdirectory(paddle)" and "add_subdirectory(python)" should be # placed after this block, because they depends on it. diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 0d4bb973ae87bb45ef4386a63c26ed62602f2cee..a60453ff4e3bba6e6cb3b3de915dd69afd3a1ec3 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -1 +1,157 @@ -./doc/howto/dev/contribute_to_paddle_en.md +# Contribute Code + +We sincerely appreciate your contribution. This document explains our workflow and work style. + +## Workflow + +PaddlePaddle uses this [Git branching model](http://nvie.com/posts/a-successful-git-branching-model/). The following steps guide usual contributions. + +1. Fork + + Our development community has been growing fastly; it doesn't make sense for everyone to write into the official repo. So, please file Pull Requests from your fork. To make a fork, just head over to the GitHub page and click the ["Fork" button](https://help.github.com/articles/fork-a-repo/). + +1. Clone + + To make a copy of your fork to your local computers, please run + + ```bash + git clone https://github.com/your-github-account/paddle + cd paddle + ``` + +1. Create the local feature branch + + For daily works like adding a new feature or fixing a bug, please open your feature branch before coding: + + ```bash + git checkout -b my-cool-stuff + ``` + +1. Commit + + Before issuing your first `git commit` command, please install [`pre-commit`](http://pre-commit.com/) by running the following commands: + + ```bash + pip install pre-commit + pre-commit install + ``` + + Our pre-commit configuration requires clang-format 3.8 for auto-formating C/C++ code and yapf for Python. + + Once installed, `pre-commit` checks the style of code and documentation in every commit. We will see something like the following when you run `git commit`: + + ``` + ➜ git commit + CRLF end-lines remover...............................(no files to check)Skipped + yapf.................................................(no files to check)Skipped + Check for added large files..............................................Passed + Check for merge conflicts................................................Passed + Check for broken symlinks................................................Passed + Detect Private Key...................................(no files to check)Skipped + Fix End of Files.....................................(no files to check)Skipped + clang-formater.......................................(no files to check)Skipped + [my-cool-stuff c703c041] add test file + 1 file changed, 0 insertions(+), 0 deletions(-) + create mode 100644 233 + ``` + +1. Build and test + + Users can build PaddlePaddle natively on Linux and Mac OS X. But to unify the building environment and to make it easy for debugging, the recommended way is [using Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/build_en.md). + +1. Keep pulling + + An experienced Git user pulls from the official repo often -- daily or even hourly, so they notice conflicts with others work early, and it's easier to resolve smaller conflicts. + + ```bash + git remote add upstream https://github.com/PaddlePaddle/Paddle + git pull upstream develop + ``` + +1. Push and file a pull request + + You can "push" your local work into your forked repo: + + ```bash + git push origin my-cool-stuff + ``` + + The push allows you to create a pull request, requesting owners of this [official repo](https://github.com/PaddlePaddle/Paddle) to pull your change into the official one. + + To create a pull request, please follow [these steps](https://help.github.com/articles/creating-a-pull-request/). + + If your change is for fixing an issue, please write ["Fixes "](https://help.github.com/articles/closing-issues-using-keywords/) in the description section of your pull request. Github would close the issue when the owners merge your pull request. + + Please remember to specify some reviewers for your pull request. If you don't know who are the right ones, please follow Github's recommendation. + + +1. Delete local and remote branches + + To keep your local workspace and your fork clean, you might want to remove merged branches: + + ```bash + git push origin :my-cool-stuff + git checkout develop + git pull upstream develop + git branch -d my-cool-stuff + ``` + +### Code Review + +- Please feel free to ping your reviewers by sending them the URL of your pull request via IM or email. Please do this after your pull request passes the CI. + +- Please answer reviewers' every comment. If you are to follow the comment, please write "Done"; please give a reason otherwise. + +- If you don't want your reviewers to get overwhelmed by email notifications, you might reply their comments by [in a batch](https://help.github.com/articles/reviewing-proposed-changes-in-a-pull-request/). + +- Reduce the unnecessary commits. Some developers commit often. It is recommended to append a sequence of small changes into one commit by running `git commit --amend` instead of `git commit`. + + +## Coding Standard + +### Code Style + +Our C/C++ code follows the [Google style guide](http://google.github.io/styleguide/cppguide.html). + +Our Python code follows the [PEP8 style guide](https://www.python.org/dev/peps/pep-0008/). + +Our build process helps to check the code style. In [`build.sh`](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/paddle/scripts/docker/build.sh#L42), the entry point of our [builder Docker image](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/Dockerfile#L88), the CMake argument `WITH_STYLE_CHECK` is set to `ON` by default. This flag is on + +Please install pre-commit, which automatically reformat the changes to C/C++ and Python code whenever we run `git commit`. To check the whole codebase, we can run the command `pre-commit run -a`, as in the [`check_style.sh` file](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/paddle/scripts/travis/check_style.sh#L30), which is invoked by [our Travis CI configuration](https://github.com/PaddlePaddle/Paddle/blob/b84e8226514b8bb4405c3c28e54aa5077193d179/.travis.yml#L43). + +### Unit Tests + +Please remember to add related unit tests. + +- For C/C++ code, please follow [`google-test` Primer](https://github.com/google/googletest/blob/master/googletest/docs/Primer.md). + +- For Python code, please use [Python's standard `unittest` package](http://pythontesting.net/framework/unittest/unittest-introduction/). + + +### Writing Logs + +We use [glog](https://github.com/google/glog) for logging in our C/C++ code. + +For general information, please use `LOG`. For debug information, please use [`VLOG`](http://htmlpreview.github.io/?https://github.com/google/glog/blob/master/doc/glog.html#verbose). The reason is at [here](https://groups.google.com/a/chromium.org/d/msg/chromium-dev/3NDNd1KzXeY/AZKMMx37fdQJ). + +`VLOG` requires a *verbose level* parameter. For example: + +```c++ +VLOG(3) << "Operator FC is taking " << num_inputs << "inputs." +``` + +When we run a PaddlePaddle application or test, we can specify a verbose threshold. For example: + +```bash +GLOG_vmodule=buddy_allocator=2 \ +GLOG_v=10 \ +python \ +../python/paddle/v2/framework/tests/test_recurrent_op.py +``` + +This will enable VLOG messages generated by `buddy_allocator.{h,cc}` and in the verbose range of 0 to 3, so you will see above example VLOG message, which is in level 3. This suggests that we output overall messages in lower verbose levels, so they display with higher probability. When coding C++, please follow the verbose level convention as follows: + +- verbose level 1: [framework](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework) +- verbose level 3: [operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) +- verbose level 5: [memory](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory), [platform](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform) +- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/math) diff --git a/Dockerfile b/Dockerfile index da0047102572d203810d2f9e5ce8ec76063d0cba..150344a8116e2be9b5bab8e5fdcc9c37f4025020 100644 --- a/Dockerfile +++ b/Dockerfile @@ -10,13 +10,11 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub ARG WITH_GPU ARG WITH_AVX ARG WITH_DOC -ARG WITH_STYLE_CHECK ENV WOBOQ OFF -ENV WITH_GPU=${WITH_GPU:-OFF} +ENV WITH_GPU=${WITH_GPU:-ON} ENV WITH_AVX=${WITH_AVX:-ON} ENV WITH_DOC=${WITH_DOC:-OFF} -ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} ENV HOME /root # Add bash enhancements @@ -24,7 +22,7 @@ COPY ./paddle/scripts/docker/root/ /root/ RUN apt-get update && \ apt-get install -y \ - git python-pip python-dev openssh-server bison \ + git python-pip python-dev openssh-server bison libnccl-dev \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ curl sed grep graphviz libjpeg-dev zlib1g-dev \ python-matplotlib gcc-4.8 g++-4.8 \ @@ -71,20 +69,6 @@ RUN pip install -r /root/requirements.txt RUN apt-get install -y libssl-dev libffi-dev RUN pip install certifi urllib3[secure] -# TODO(qijun) The template library Eigen doesn't work well with GCC 5 -# coming with the default Docker image, so we switch to use GCC 4.8 -# by default. And I will check Eigen library later. - -RUN ln -sf gcc-4.8 /usr/bin/gcc && \ - ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \ - ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \ - ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \ - ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \ - ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \ - ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \ - ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \ - ln -sf g++-4.8 /usr/bin/g++ && \ - ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++ # Install woboq_codebrowser to /woboq RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \ diff --git a/Dockerfile.android b/Dockerfile.android index c0fa58c384f9ebcae60477ffce49ea4ffa929db9..9d13a414f67be04e17b7d83403228d92bce0eda9 100644 --- a/Dockerfile.android +++ b/Dockerfile.android @@ -4,9 +4,16 @@ MAINTAINER PaddlePaddle Authors ARG UBUNTU_MIRROR RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi' +# ENV variables +ARG ANDROID_ABI +ARG ANDROID_API + +ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"} +ENV ANDROID_API=${ANDROID_API:-21} + ENV HOME=/root \ ANDROID_NDK_HOME=/opt/android-ndk-linux \ - ANDROID_STANDALONE_TOOLCHAIN=/opt/android-toolchain-gcc + ANDROID_TOOLCHAINS_DIR=/opt/toolchains RUN apt-get update && \ apt-get install -y \ @@ -15,12 +22,11 @@ RUN apt-get update && \ apt-get clean -y # Install Go and glide -RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \ - tar -C /usr/local -xzf go.tgz && \ +RUN wget -qO- go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ + tar -xz -C /usr/local && \ mkdir /root/gopath && \ mkdir /root/gopath/bin && \ - mkdir /root/gopath/src && \ - rm go.tgz + mkdir /root/gopath/src ENV GOROOT=/usr/local/go GOPATH=/root/gopath # should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin @@ -37,13 +43,12 @@ RUN pip install --upgrade pip && \ pip install pre-commit # Android NDK -RUN mkdir /opt/android-ndk-tmp && \ +RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \ + mkdir -p /opt/android-ndk-tmp && \ cd /opt/android-ndk-tmp && \ wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \ unzip -q android-ndk-r14b-linux-x86_64.zip && \ mv android-ndk-r14b ${ANDROID_NDK_HOME} && \ - ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-21 --install-dir=${ANDROID_STANDALONE_TOOLCHAIN} && \ - rm -rf /opt/android-ndk-tmp && \ - rm -rf ${ANDROID_NDK_HOME} + rm -rf /opt/android-ndk-tmp CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"] diff --git a/README.md b/README.md index b9793c3eab5d40c28f01cc67ad607b97261b3235..db0fbd88b250cdc2a3cc77521cc1c2cea77c6e87 100644 --- a/README.md +++ b/README.md @@ -51,19 +51,19 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl - **Connected to Products** In addition, PaddlePaddle is also designed to be easily deployable. At Baidu, - PaddlePaddle has been deployed into products or service with a vast number + PaddlePaddle has been deployed into products and services with a vast number of users, including ad click-through rate (CTR) prediction, large-scale image classification, optical character recognition(OCR), search ranking, computer virus detection, recommendation, etc. It is widely utilized in products at - Baidu and it has achieved a significant impact. We hope you can also exploit - the capability of PaddlePaddle to make a huge impact for your product. + Baidu and it has achieved a significant impact. We hope you can also explore + the capability of PaddlePaddle to make an impact on your product. ## Installation It is recommended to check out the [Docker installation guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html) before looking into the -[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html) +[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html). ## Documentation @@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and - [Deep Learning 101](http://book.paddlepaddle.org/index.html) - You might want to start from this online interactive book that can run in Jupyter Notebook. + You might want to start from this online interactive book that can run in a Jupyter Notebook. - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md new file mode 100644 index 0000000000000000000000000000000000000000..040f5ffa41968cbf93a817faa1db86c18956341e --- /dev/null +++ b/benchmark/IntelOptimizedPaddle.md @@ -0,0 +1,48 @@ +# Benchmark + +Machine: + +- Server + - Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket +- Laptop + - DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD + - i5 MacBook Pro (Retina, 13-inch, Early 2015) +- Desktop + - i7-6700k + +System: CentOS release 6.3 (Final), Docker 1.12.1. + +PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0) + +- MKL-DNN tag v0.10 +- MKLML 2018.0.20170720 +- OpenBLAS v0.2.20 + +On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. + +## Benchmark Model + +### Server +Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz + +Input image size - 3 * 224 * 224, Time: images/second + +- VGG-19 + +| BatchSize | 64 | 128 | 256 | +|--------------|-------| -----| --------| +| OpenBLAS | 7.82 | 8.62 | 10.34 | +| MKLML | 11.02 | 12.86 | 15.33 | +| MKL-DNN | 27.69 | 28.8 | 29.27 | + + +chart on batch size 128 +TBD + + - ResNet + - GoogLeNet + +### Laptop +TBD +### Desktop +TBD diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py index 1ac47212b5a75667e8e9d4465b33f575516e2836..4703944c8722552d56ba80a8e0663de5fb4df53d 100644 --- a/benchmark/paddle/image/provider.py +++ b/benchmark/paddle/image/provider.py @@ -22,5 +22,5 @@ def initHook(settings, height, width, color, num_class, **kwargs): def process(settings, file_list): for i in xrange(1024): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() - lab = random.randint(0, settings.num_class) + lab = random.randint(0, settings.num_class - 1) yield img.astype('float32'), int(lab) diff --git a/benchmark/paddle/image/resnet.py b/benchmark/paddle/image/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..6ae1857642e8df4b3859eec68a3a5227d1c4fcb3 --- /dev/null +++ b/benchmark/paddle/image/resnet.py @@ -0,0 +1,213 @@ +#!/usr/bin/env python +from paddle.trainer_config_helpers import * + +height = 224 +width = 224 +num_class = 1000 +batch_size = get_config_arg('batch_size', int, 64) +layer_num = get_config_arg("layer_num", int, 50) +is_test = get_config_arg("is_test", bool, False) + +args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +define_py_data_sources2( + "train.list", None, module="provider", obj="process", args=args) + +settings( + batch_size=batch_size, + learning_rate=0.01 / batch_size, + learning_method=MomentumOptimizer(0.9), + regularization=L2Regularization(0.0005 * batch_size)) + + +#######################Network Configuration ############# +def conv_bn_layer(name, + input, + filter_size, + num_filters, + stride, + padding, + channels=None, + active_type=ReluActivation()): + """ + A wrapper for conv layer with batch normalization layers. + Note: + conv layer has no activation. + """ + + tmp = img_conv_layer( + name=name + "_conv", + input=input, + filter_size=filter_size, + num_channels=channels, + num_filters=num_filters, + stride=stride, + padding=padding, + act=LinearActivation(), + bias_attr=False) + return batch_norm_layer( + name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test) + + +def bottleneck_block(name, input, num_filters1, num_filters2): + """ + A wrapper for bottlenect building block in ResNet. + Last conv_bn_layer has no activation. + Addto layer has activation of relu. + """ + last_name = conv_bn_layer( + name=name + '_branch2a', + input=input, + filter_size=1, + num_filters=num_filters1, + stride=1, + padding=0) + last_name = conv_bn_layer( + name=name + '_branch2b', + input=last_name, + filter_size=3, + num_filters=num_filters1, + stride=1, + padding=1) + last_name = conv_bn_layer( + name=name + '_branch2c', + input=last_name, + filter_size=1, + num_filters=num_filters2, + stride=1, + padding=0, + active_type=LinearActivation()) + + return addto_layer( + name=name + "_addto", input=[input, last_name], act=ReluActivation()) + + +def mid_projection(name, input, num_filters1, num_filters2, stride=2): + """ + A wrapper for middile projection in ResNet. + projection shortcuts are used for increasing dimensions, + and other shortcuts are identity + branch1: projection shortcuts are used for increasing + dimensions, has no activation. + branch2x: bottleneck building block, shortcuts are identity. + """ + # stride = 2 + branch1 = conv_bn_layer( + name=name + '_branch1', + input=input, + filter_size=1, + num_filters=num_filters2, + stride=stride, + padding=0, + active_type=LinearActivation()) + + last_name = conv_bn_layer( + name=name + '_branch2a', + input=input, + filter_size=1, + num_filters=num_filters1, + stride=stride, + padding=0) + last_name = conv_bn_layer( + name=name + '_branch2b', + input=last_name, + filter_size=3, + num_filters=num_filters1, + stride=1, + padding=1) + + last_name = conv_bn_layer( + name=name + '_branch2c', + input=last_name, + filter_size=1, + num_filters=num_filters2, + stride=1, + padding=0, + active_type=LinearActivation()) + + return addto_layer( + name=name + "_addto", input=[branch1, last_name], act=ReluActivation()) + + +img = data_layer(name='image', size=height * width * 3) + + +def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3): + """ + A wrapper for 50,101,152 layers of ResNet. + res2_num: number of blocks stacked in conv2_x + res3_num: number of blocks stacked in conv3_x + res4_num: number of blocks stacked in conv4_x + res5_num: number of blocks stacked in conv5_x + """ + # For ImageNet + # conv1: 112x112 + tmp = conv_bn_layer( + "conv1", + input=img, + filter_size=7, + channels=3, + num_filters=64, + stride=2, + padding=3) + tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2) + + # conv2_x: 56x56 + tmp = mid_projection( + name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1) + for i in xrange(2, res2_num + 1, 1): + tmp = bottleneck_block( + name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256) + + # conv3_x: 28x28 + tmp = mid_projection( + name="res3_1", input=tmp, num_filters1=128, num_filters2=512) + for i in xrange(2, res3_num + 1, 1): + tmp = bottleneck_block( + name="res3_" + str(i), + input=tmp, + num_filters1=128, + num_filters2=512) + + # conv4_x: 14x14 + tmp = mid_projection( + name="res4_1", input=tmp, num_filters1=256, num_filters2=1024) + for i in xrange(2, res4_num + 1, 1): + tmp = bottleneck_block( + name="res4_" + str(i), + input=tmp, + num_filters1=256, + num_filters2=1024) + + # conv5_x: 7x7 + tmp = mid_projection( + name="res5_1", input=tmp, num_filters1=512, num_filters2=2048) + for i in xrange(2, res5_num + 1, 1): + tmp = bottleneck_block( + name="res5_" + str(i), + input=tmp, + num_filters1=512, + num_filters2=2048) + + tmp = img_pool_layer( + name='avgpool', + input=tmp, + pool_size=7, + stride=1, + pool_type=AvgPooling()) + + return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) + + +if layer_num == 50: + resnet = deep_res_net(3, 4, 6, 3) +elif layer_num == 101: + resnet = deep_res_net(3, 4, 23, 3) +elif layer_num == 152: + resnet = deep_res_net(3, 8, 36, 3) +else: + print("Wrong layer number.") + +lbl = data_layer(name="label", size=num_class) +loss = cross_entropy(name='loss', input=resnet, label=lbl) +inputs(img, lbl) +outputs(loss) diff --git a/benchmark/paddle/image/run_mkldnn.sh b/benchmark/paddle/image/run_mkldnn.sh new file mode 100755 index 0000000000000000000000000000000000000000..a4527e04968cf8c8c3c31d16f50bc3e28381f6d8 --- /dev/null +++ b/benchmark/paddle/image/run_mkldnn.sh @@ -0,0 +1,49 @@ +set -e + +function train() { + unset OMP_NUM_THREADS MKL_NUM_THREADS + export OMP_DYNAMIC="FALSE" + export KMP_AFFINITY="granularity=fine,compact,0,0" + topology=$1 + layer_num=$2 + bs=$3 + use_mkldnn=$4 + if [ $4 == "True" ]; then + thread=1 + log="logs/${topology}-${layer_num}-mkldnn-${bs}.log" + elif [ $4 == "False" ]; then + thread=`nproc` + # each trainer_count use only 1 core to avoid conflict + export OMP_NUM_THREADS=1 + export MKL_NUM_THREADS=1 + log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log" + else + echo "Wrong input $3, use True or False." + exit 0 + fi + args="batch_size=${bs},layer_num=${layer_num}" + config="${topology}.py" + paddle train --job=time \ + --config=$config \ + --use_mkldnn=$use_mkldnn \ + --use_gpu=False \ + --trainer_count=$thread \ + --log_period=10 \ + --test_period=100 \ + --config_args=$args \ + 2>&1 | tee ${log} +} + +if [ ! -d "train.list" ]; then + echo " " > train.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +for use_mkldnn in True False; do + for batchsize in 64 128 256; do + train vgg 19 $batchsize $use_mkldnn + train resnet 50 $batchsize $use_mkldnn + done +done diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..420884ed8e1ae36a3f1772bfbe8323f3d0ea71e6 --- /dev/null +++ b/benchmark/paddle/image/vgg.py @@ -0,0 +1,103 @@ +#!/usr/bin/env python +from paddle.trainer_config_helpers import * + +height = 224 +width = 224 +num_class = 1000 +batch_size = get_config_arg('batch_size', int, 64) +layer_num = get_config_arg('layer_num', int, 19) + +args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +define_py_data_sources2( + "train.list", None, module="provider", obj="process", args=args) + +settings( + batch_size=batch_size, + learning_rate=0.001 / batch_size, + learning_method=MomentumOptimizer(0.9), + regularization=L2Regularization(0.0005 * batch_size)) + +img = data_layer(name='image', size=height * width * 3) + + +def vgg_network(vgg_num=3): + tmp = img_conv_group( + input=img, + num_channels=3, + conv_padding=1, + conv_num_filter=[64, 64], + conv_filter_size=3, + conv_act=ReluActivation(), + pool_size=2, + pool_stride=2, + pool_type=MaxPooling()) + + tmp = img_conv_group( + input=tmp, + conv_num_filter=[128, 128], + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + + channels = [] + for i in range(vgg_num): + channels.append(256) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + channels = [] + for i in range(vgg_num): + channels.append(512) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + + tmp = fc_layer( + input=tmp, + size=4096, + act=ReluActivation(), + layer_attr=ExtraAttr(drop_rate=0.5)) + + tmp = fc_layer( + input=tmp, + size=4096, + act=ReluActivation(), + layer_attr=ExtraAttr(drop_rate=0.5)) + + return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) + + +if layer_num == 16: + vgg = vgg_network(3) +elif layer_num == 19: + vgg = vgg_network(4) +else: + print("Wrong layer number.") + +lab = data_layer('label', num_class) +loss = cross_entropy(input=vgg, label=lab) +outputs(loss) diff --git a/cmake/cblas.cmake b/cmake/cblas.cmake index 854066fd1d205c337fbdbe08997d88251095c799..b21fc43904d9aafe9f7d019dfbe5b1c0d3f9e2d6 100644 --- a/cmake/cblas.cmake +++ b/cmake/cblas.cmake @@ -1,17 +1,12 @@ # Find the CBlas and lapack libraries # -# It will search MKL, atlas, OpenBlas, reference-cblas in order. +# It will search MKLML, atlas, OpenBlas, reference-cblas in order. # # If any cblas implementation found, the following variable will be set. -# CBLAS_PROVIDER # one of MKL, ATLAS, OPENBLAS, REFERENCE +# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE # CBLAS_INC_DIR # the include directory for cblas. # CBLAS_LIBS # a list of libraries should be linked by paddle. # # Each library should be full path to object file. -# -# User should set one of MKL_ROOT, ATLAS_ROOT, OPENBLAS_ROOT, REFERENCE_CBLAS_ROOT -# during cmake. If none of them set, it will try to find cblas implementation in -# system paths. -# set(CBLAS_FOUND OFF) @@ -30,44 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB) return() endif() -## Then find MKL. -set(INTEL_MKL_ROOT "/opt/intel/mkl" CACHE PATH "Folder contains intel mkl libs") -set(MKL_ROOT $ENV{MKL_ROOT} CACHE PATH "Folder contains env MKL") - -set(MKL_INCLUDE_SEARCH_PATHS - ${MKL_ROOT}/include - ${INTEL_MKL_ROOT}/include) -set(MKL_LIB_SEARCH_PATHS - ${MKL_ROOT}/lib - ${MKL_ROOT}/lib/intel64 - ${INTEL_MKL_ROOT}/lib - ${INTEL_MKL_ROOT}/lib/intel64) - -find_path(MKL_INC_DIR mkl.h PATHS - ${MKL_INCLUDE_SEARCH_PATHS}) -find_path(MKL_LAPACK_INC_DIR mkl_lapacke.h PATHS - ${MKL_INCLUDE_SEARCH_PATHS}) -find_library(MKL_CORE_LIB NAMES mkl_core PATHS - ${MKL_LIB_SEARCH_PATHS}) -find_library(MKL_SEQUENTIAL_LIB NAMES mkl_sequential PATHS - ${MKL_LIB_SEARCH_PATHS}) -find_library(MKL_INTEL_LP64 NAMES mkl_intel_lp64 PATHS - ${MKL_LIB_SEARCH_PATHS}) - -if(MKL_LAPACK_INC_DIR AND MKL_INC_DIR AND MKL_CORE_LIB AND MKL_SEQUENTIAL_LIB AND MKL_INTEL_LP64) - set(CBLAS_FOUND ON) - set(CBLAS_PROVIDER MKL) - set(CBLAS_INC_DIR ${MKL_INC_DIR} ${MKL_LAPACK_INC_DIR}) - set(CBLAS_LIBRARIES ${MKL_INTEL_LP64} ${MKL_SEQUENTIAL_LIB} ${MKL_CORE_LIB}) - - add_definitions(-DPADDLE_USE_MKL) - add_definitions(-DLAPACK_FOUND) - - message(STATUS "Found MKL (include: ${MKL_INC_DIR}, library: ${CBLAS_LIBRARIES})") - message(STATUS "Found lapack in MKL (include: ${MKL_LAPACK_INC_DIR})") - return() -endif() - ## Then find atlas. set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas") set(ATLAS_INCLUDE_SEARCH_PATHS @@ -171,3 +128,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY) add_definitions(-DPADDLE_USE_REFERENCE_CBLAS) message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})") endif() + +if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND) + set(CBLAS_FOUND ON) + set(CBLAS_PROVIDER vecLib) + set(CBLAS_INC_DIR ${VECLIB_INC_DIR}) + add_definitions(-DPADDLE_USE_VECLIB) +endif() diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 209f9078a637ac581d90212a48216eb388c477ed..24ddb24399dabeec9b8e5faf36be3eb21f420111 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -24,10 +24,18 @@ if(WITH_DOUBLE) add_definitions(-DPADDLE_TYPE_DOUBLE) endif(WITH_DOUBLE) +if(WITH_TESTING) + add_definitions(-DPADDLE_WITH_TESTING) +endif(WITH_TESTING) + if(NOT WITH_TIMER) add_definitions(-DPADDLE_DISABLE_TIMER) endif(NOT WITH_TIMER) +if(USE_EIGEN_FOR_BLAS) + add_definitions(-DPADDLE_USE_EIGEN_FOR_BLAS) +endif(USE_EIGEN_FOR_BLAS) + if(NOT WITH_PROFILER) add_definitions(-DPADDLE_DISABLE_PROFILER) endif(NOT WITH_PROFILER) @@ -45,19 +53,20 @@ if(NOT WITH_GOLANG) endif(NOT WITH_GOLANG) if(NOT WITH_GPU) - add_definitions(-DPADDLE_ONLY_CPU) add_definitions(-DHPPL_STUB_FUNC) list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu) else() + add_definitions(-DPADDLE_WITH_CUDA) + FIND_PACKAGE(CUDA REQUIRED) if(${CUDA_VERSION_MAJOR} VERSION_LESS 7) - message(FATAL_ERROR "Paddle need CUDA >= 7.0 to compile") + message(FATAL_ERROR "Paddle needs CUDA >= 7.0 to compile") endif() if(NOT CUDNN_FOUND) - message(FATAL_ERROR "Paddle need cudnn to compile") + message(FATAL_ERROR "Paddle needs cudnn to compile") endif() set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} "-Xcompiler ${SIMD_FLAG}") diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake index 8d5d533126c9b7fa84c725d614cf3486126d0284..4823dc3e91390002aefac70f7931b4197db05789 100644 --- a/cmake/cpplint.cmake +++ b/cmake/cpplint.cmake @@ -26,9 +26,9 @@ set(IGNORE_PATTERN .*ImportanceSampler.* .*cblas\\.h.* .*\\.pb\\.txt - .*LtrDataProvider.* .*MultiDataProvider.* - .*pb.*) + .*pb.* + .*pybind.h) # add_style_check_target # diff --git a/cmake/cross_compiling/android.cmake b/cmake/cross_compiling/android.cmake index 5e3e437a8da9624df35a5c754fe77be73f20361d..84219cfa5587f5b765b2e8f35180797d7053169f 100644 --- a/cmake/cross_compiling/android.cmake +++ b/cmake/cross_compiling/android.cmake @@ -20,6 +20,7 @@ # The supported variables are listed belows: # # ANDROID_STANDALONE_TOOLCHAIN +# ANDROID_TOOLCHAIN # ANDROID_ABI # ANDROID_NATIVE_API_LEVEL # ANDROID_ARM_MODE @@ -57,6 +58,10 @@ IF(NOT DEFINED CMAKE_SYSTEM_VERSION AND ANDROID_NATIVE_API_LEVEL) ENDIF() ENDIF() +IF(NOT DEFINED ANDROID_TOOLCHAIN) + SET(ANDROID_TOOLCHAIN clang) +ENDIF() + IF(NOT DEFINED ANDROID_ABI) SET(ANDROID_ABI "armeabi-v7a") ENDIF() @@ -82,6 +87,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") "${CMAKE_VERSION}), when cross-compiling for Android.") IF(ANDROID_STANDALONE_TOOLCHAIN) + # Use standalone toolchain SET(CMAKE_SYSROOT "${ANDROID_STANDALONE_TOOLCHAIN}/sysroot") IF(NOT CMAKE_SYSTEM_VERSION) @@ -96,26 +102,44 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ENDIF() # Toolchain - SET(ANDROID_TOOLCHAIN "gcc") SET(ANDROID_TOOLCHAIN_ROOT ${ANDROID_STANDALONE_TOOLCHAIN}) - IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") - SET(ANDROID_TOOLCHAIN_NAME arm-linux-androideabi) - IF(ANDROID_ABI STREQUAL "armeabi") - SET(CMAKE_SYSTEM_PROCESSOR armv5te) - ELSEIF(ANDROID_ABI STREQUAL "armeabi-v7a") - SET(CMAKE_SYSTEM_PROCESSOR armv7-a) - ENDIF() - ENDIF() - IF(ANDROID_ABI STREQUAL "arm64-v8a") - SET(ANDROID_TOOLCHAIN_NAME aarch64-linux-android) - SET(CMAKE_SYSTEM_PROCESSOR aarch64) + ELSE(ANDROID_NDK) + # TODO: use android ndk + ENDIF() + + IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") + SET(ANDROID_TOOLCHAIN_NAME arm-linux-androideabi) + IF(ANDROID_ABI STREQUAL "armeabi") + SET(CMAKE_SYSTEM_PROCESSOR armv5te) + SET(ANDROID_CLANG_TRIPLE armv5te-none-linux-androideabi) + ELSEIF(ANDROID_ABI STREQUAL "armeabi-v7a") + SET(CMAKE_SYSTEM_PROCESSOR armv7-a) + SET(ANDROID_CLANG_TRIPLE armv7-none-linux-androideabi) ENDIF() - SET(ANDROID_TOOLCHAIN_PREFIX "${ANDROID_TOOLCHAIN_ROOT}/bin/${ANDROID_TOOLCHAIN_NAME}-") + ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") + SET(ANDROID_TOOLCHAIN_NAME aarch64-linux-android) + SET(CMAKE_SYSTEM_PROCESSOR aarch64) + SET(ANDROID_CLANG_TRIPLE aarch64-none-linux-android) + ELSE() + MESSAGE(FATAL_ERROR "Invalid Android ABI: ${ANDROID_ABI}.") + ENDIF() + SET(ANDROID_TOOLCHAIN_PREFIX "${ANDROID_TOOLCHAIN_ROOT}/bin/${ANDROID_TOOLCHAIN_NAME}-") + + IF(ANDROID_TOOLCHAIN STREQUAL clang) + SET(ANDROID_C_COMPILER_NAME clang) + SET(ANDROID_CXX_COMPILER_NAME clang++) + SET(CMAKE_C_COMPILER_TARGET ${ANDROID_CLANG_TRIPLE}) + SET(CMAKE_CXX_COMPILER_TARGET ${ANDROID_CLANG_TRIPLE}) + ELSEIF(ANDROID_TOOLCHAIN STREQUAL gcc) + SET(ANDROID_C_COMPILER_NAME gcc) + SET(ANDROID_CXX_COMPILER_NAME g++) + ELSE() + MESSAGE(FATAL_ERROR "Invalid Android toolchain: ${ANDROID_TOOLCHAIN}") ENDIF() # C compiler IF(NOT CMAKE_C_COMPILER) - SET(ANDROID_C_COMPILER "${ANDROID_TOOLCHAIN_PREFIX}gcc") + SET(ANDROID_C_COMPILER "${ANDROID_TOOLCHAIN_PREFIX}${ANDROID_C_COMPILER_NAME}") ELSE() GET_FILENAME_COMPONENT(ANDROID_C_COMPILER ${CMAKE_C_COMPILER} PROGRAM) ENDIF() @@ -125,7 +149,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") # CXX compiler IF(NOT CMAKE_CXX_COMPILER) - SET(ANDROID_CXX_COMPILER "${ANDROID_TOOLCHAIN_PREFIX}g++") + SET(ANDROID_CXX_COMPILER "${ANDROID_TOOLCHAIN_PREFIX}${ANDROID_CXX_COMPILER_NAME}") ELSE() GET_FILENAME_COMPONENT(ANDROID_CXX_COMPILER ${CMAKE_CXX_COMPILER} PROGRAM) ENDIF() @@ -137,7 +161,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") SET(CMAKE_CXX_COMPILER ${ANDROID_CXX_COMPILER} CACHE PATH "CXX compiler" FORCE) # Toolchain and ABI specific flags. - SET(ANDROID_COMPILER_FLAGS "-ffunction-sections -fdata-sections -finline-limit=64") + SET(ANDROID_COMPILER_FLAGS "-ffunction-sections -fdata-sections") SET(ANDROID_LINKER_FLAGS "-Wl,--gc-sections") IF(ANDROID_ABI STREQUAL "armeabi") @@ -145,8 +169,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") -march=armv5te -mtune=xscale -msoft-float) - ENDIF() - IF(ANDROID_ABI STREQUAL "armeabi-v7a") + ELSEIF(ANDROID_ABI STREQUAL "armeabi-v7a") LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv7-a -mfloat-abi=softfp) @@ -156,6 +179,8 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") LIST(APPEND ANDROID_COMPILER_FLAGS -mfpu=vfpv3-d16) ENDIF() LIST(APPEND ANDROID_LINKER_FLAGS -Wl,--fix-cortex-a8) + ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") + LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a) ENDIF() IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") @@ -164,10 +189,18 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ELSE() LIST(APPEND ANDROID_COMPILER_FLAGS -mthumb) ENDIF() + IF(ANDROID_TOOLCHAIN STREQUAL clang) + # Disable integrated-as for better compatibility. + LIST(APPEND ANDROID_COMPILER_FLAGS -fno-integrated-as) + ENDIF() ENDIF() - IF(ANDROID_ABI STREQUAL "arm64-v8a") - LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a) + IF(ANDROID_TOOLCHAIN STREQUAL clang) + # CMake automatically forwards all compiler flags to the linker, + # and clang doesn't like having -Wa flags being used for linking. + # To prevent CMake from doing this would require meddling with + # the CMAKE__COMPILE_OBJECT rules, which would get quite messy. + LIST(APPEND ANDROID_LINKER_FLAGS -Qunused-arguments) ENDIF() STRING(REPLACE ";" " " ANDROID_COMPILER_FLAGS "${ANDROID_COMPILER_FLAGS}") diff --git a/cmake/cross_compiling/ios.cmake b/cmake/cross_compiling/ios.cmake new file mode 100644 index 0000000000000000000000000000000000000000..310450f7d009dc0cdae9c0079a96445af8ec8f95 --- /dev/null +++ b/cmake/cross_compiling/ios.cmake @@ -0,0 +1,349 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This is a toolchain file for cross-compiling for iOS, and the +# configuration largely refers to public toolchain file: +# https://raw.githubusercontent.com/leetal/ios-cmake/master/ios.toolchain.cmake +# and +# https://github.com/cristeab/ios-cmake +# +# Supports options: +# IOS_PLATFORM = OS (default) or SIMULATOR +# This decides if SDKS will be selected from the iPhoneOS.platform or iPhoneSimulator.platform folders +# OS - the default, used to build for iPhone and iPad physical devices, which have an arm arch. +# SIMULATOR - used to build for the Simulator platforms, which have an x86 arch. +# IOS_ARCH +# The archectures wanted to support, such "arm64", "armv7;arm64" +# IOS_DEPLOYMENT_TARGET +# The minimum iOS deployment version, such as "7.0" +# IOS_ENABLE_BITCODE = ON (default) or OFF +# IOS_USE_VECLIB_FOR_BLAS = OFF (default) or ON +# IOS_DEVELOPER_ROOT = automatic(default) or /path/to/platform/Developer folder +# By default this location is automatcially chosen based on the IOS_PLATFORM value above. +# If set manually, it will override the default location and force the user of a particular Developer Platform +# IOS_SDK_ROOT = automatic(default) or /path/to/platform/Developer/SDKs/SDK folder +# By default this location is automatcially chosen based on the IOS_DEVELOPER_ROOT value. +# In this case it will always be the most up-to-date SDK found in the IOS_DEVELOPER_ROOT path. +# If set manually, this will force the use of a specific SDK version + +# Macros: +# set_xcode_property (TARGET XCODE_PROPERTY XCODE_VALUE) +# A convenience macro for setting xcode specific properties on targets +# example: set_xcode_property (myioslib IPHONEOS_DEPLOYMENT_TARGET "3.1") +# find_host_package (PROGRAM ARGS) +# A macro used to find executable programs on the host system, not within the iOS environment. +# Thanks to the android-cmake project for providing the command + +if(NOT IOS) + return() +endif() + +set(CMAKE_SYSTEM_NAME Darwin) + +# Get the Xcode version being used. +execute_process(COMMAND xcodebuild -version + OUTPUT_VARIABLE XCODE_VERSION + RESULT_VARIABLE XCODE_VERSION_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) +if(NOT ${XCODE_VERSION_RESULT}) + string(REGEX MATCH "Xcode [0-9\\.]+" XCODE_VERSION "${XCODE_VERSION}") + string(REGEX REPLACE "Xcode ([0-9\\.]+)" "\\1" XCODE_VERSION "${XCODE_VERSION}") + message(STATUS "Building with Xcode version: ${XCODE_VERSION}") +else() + message(FATAL_ERROR "Cannot execute xcodebuild, please check whether xcode is installed.") +endif() + +# Required as of cmake 2.8.10 +set(CMAKE_OSX_DEPLOYMENT_TARGET "" CACHE STRING "Force unset of the deployment target for iOS" FORCE) + +# Setup iOS platform unless specified manually with IOS_PLATFORM +if(NOT DEFINED IOS_PLATFORM) + set(IOS_PLATFORM "OS") +endif() +set(IOS_PLATFORM ${IOS_PLATFORM} CACHE STRING "Type of iOS Platform") + +# Set the architecture for iOS +if(NOT DEFINED IOS_ARCH) + if(IOS_PLATFORM STREQUAL "OS") + # FIXME(liuyiqun): support "armv7;armv7s;arm64" future + set(IOS_ARCH "arm64") + elseif(IOS_PLATFORM STREQUAL "SIMULATOR") + # FIXME(liuyiqun): support "i386;x86_64" future + set(IOS_ARCH "x86_64") + endif() +endif() +set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS") + +# Specify minimum iOS deployment version +if(NOT DEFINED IOS_DEPLOYMENT_TARGET) + set(IOS_DEPLOYMENT_TARGET "7.0") +endif() +set(IOS_DEPLOYMENT_TARGET ${IOS_DEPLOYMENT_TARGET} CACHE STRING "Minimum iOS version") + +# Whether to enable bitcode +if(NOT DEFINED IOS_ENABLE_BITCODE) + set(IOS_ENABLE_BITCODE ON) +endif() +set(IOS_ENABLE_BITCODE ${IOS_ENABLE_BITCODE} CACHE BOOL "Whether to enable bitcode") + +if(NOT DEFINED IOS_USE_VECLIB_FOR_BLAS) + set(IOS_USE_VECLIB_FOR_BLAS OFF) +endif() +set(IOS_USE_VECLIB_FOR_BLAS ${IOS_UES_VECLIB_FOR_BLAS} CACHE BOOL "Whether to use veclib") + +# Check the platform selection and setup for developer root +if(${IOS_PLATFORM} STREQUAL "OS") + set(IOS_PLATFORM_LOCATION "iPhoneOS.platform") + set(XCODE_IOS_PLATFORM iphoneos) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphoneos") +elseif(${IOS_PLATFORM} STREQUAL "SIMULATOR") + set(IOS_PLATFORM_LOCATION "iPhoneSimulator.platform") + set(XCODE_IOS_PLATFORM iphonesimulator) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphonesimulator") +elseif(${IOS_PLATFORM} STREQUAL "WATCHOS") + set(IOS_PLATFORM_LOCATION "WatchOS.platform") + set(XCODE_IOS_PLATFORM watchos) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-watchos") +else(${IOS_PLATFORM} STREQUAL "OS") + message(FATAL_ERROR "Unsupported IOS_PLATFORM value selected. Please set to\n" + "\t OS, SIMULATOR, or WATCHOS.") +endif() + +# Check iOS developer toolchain +if(NOT DEFINED IOS_DEVELOPER_ROOT) + # Setup iOS developer location + execute_process(COMMAND xcode-select -print-path + OUTPUT_VARIABLE XCODE_DEVELOPER_DIR + RESULT_VARIABLE XCODE_DEVELOPER_DIR_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + # Xcode 4.3 changed the installation location, choose the most recent one available + if(${XCODE_VERSION} VERSION_LESS "4.3.0") + set(IOS_DEVELOPER_ROOT "/Developer/Platforms/${IOS_PLATFORM_LOCATION}/Developer") + else() + set(IOS_DEVELOPER_ROOT "${XCODE_DEVELOPER_DIR}/Platforms/${IOS_PLATFORM_LOCATION}/Developer") + endif() +endif() +if(EXISTS ${IOS_DEVELOPER_ROOT}) + set(IOS_DEVELOPER_ROOT ${IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform") +else() + message(FATAL_ERROR "Invalid IOS_DEVELOPER_ROOT: ${IOS_DEVELOPER_ROOT} does not exist.") +endif() + +# Check iOS SDK +if(NOT DEFINED IOS_SDK_ROOT) + # Find and use the most recent iOS sdk + file(GLOB IOS_SDK_LISTS "${IOS_DEVELOPER_ROOT}/SDKs/*") + if(IOS_SDK_LISTS) + list(SORT IOS_SDK_LISTS) + list(REVERSE IOS_SDK_LISTS) + list(GET IOS_SDK_LISTS 0 IOS_SDK_ROOT) + else(IOS_SDK_LISTS) + message(FATAL_ERROR "No iOS SDK's found in default search path ${IOS_DEVELOPER_ROOT}." + " Please manually set IOS_SDK_ROOT or install the iOS SDK.") + endif(IOS_SDK_LISTS) +endif() +if(EXISTS ${IOS_SDK_ROOT}) + set(IOS_SDK_ROOT ${IOS_SDK_ROOT} CACHE PATH "Location of the selected iOS SDK") + message(STATUS "iOS toolchain: ${IOS_SDK_ROOT}") +else() + message(FATAL_ERROR "Invalid IOS_SDK_ROOT: ${IOS_SDK_ROOT} does not exist.") +endif() + +# Set the sysroot default to the most recent SDK +set(CMAKE_OSX_SYSROOT ${IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS support") + +# Get version of iOS SDK +execute_process(COMMAND xcodebuild -sdk ${CMAKE_OSX_SYSROOT} -version SDKVersion + OUTPUT_VARIABLE IOS_SDK_VERSION + RESULT_VARIABLE IOS_SDK_VERSION_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) +if(${IOS_SDK_VERSION_RESULT}) + string(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" IOS_SDK_VERSION "${IOS_SDK_ROOT}") +endif() +if(NOT IOS_SDK_VERSION) + message(WARNING "Cannot get SDK's version.") + set(IOS_SDK_VERSION 1) +endif() +set(CMAKE_SYSTEM_VERSION ${IOS_SDK_VERSION}) + +# Find the C & C++ compilers for the specified SDK. +if(NOT CMAKE_C_COMPILER) + # Default to use clang + execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang + OUTPUT_VARIABLE IOS_C_COMPILER + RESULT_VARIABLE IOS_C_COMPILER_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + if(${IOS_C_COMPILER_RESULT}) + get_filename_component(IOS_C_COMPILER clang PROGRAM) + endif() +else(NOT CMAKE_C_COMPILER) + # User can set it in cmake command + get_filename_component(IOS_C_COMPILER ${CMAKE_C_COMPILER} PROGRAM) +endif(NOT CMAKE_C_COMPILER) +if(NOT EXISTS ${IOS_C_COMPILER}) + message(FATAL_ERROR "Cannot find C compiler: ${IOS_C_COMPILER}") +endif() + +if(NOT CMAKE_CXX_COMPILER) + # Default to use clang++ + execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang++ + OUTPUT_VARIABLE IOS_CXX_COMPILER + RESULT_VARIABLE IOS_CXX_COMPILER_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + if(${IOS_CXX_COMPILER_RESULT}) + get_filename_component(IOS_CXX_COMPILER clang++ PROGRAM) + endif() +else(NOT CMAKE_CXX_COMPILER) + # User can set it in cmake command + get_filename_component(IOS_CXX_COMPILER ${CMAKE_CXX_COMPILER} PROGRAM) +endif(NOT CMAKE_CXX_COMPILER) +if(NOT EXISTS ${IOS_CXX_COMPILER}) + message(FATAL_ERROR "Cannot find CXX compiler: ${IOS_CXX_COMPILER}") +endif() + +set(CMAKE_C_COMPILER ${IOS_C_COMPILER} CACHE PATH "C compiler" FORCE) +set(CMAKE_CXX_COMPILER ${IOS_CXX_COMPILER} CACHE PATH "CXX compiler" FORCE) + +set(CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG "-compatibility_version ") +set(CMAKE_C_OSX_CURRENT_VERSION_FLAG "-current_version ") +set(CMAKE_CXX_OSX_COMPATIBILITY_VERSION_FLAG "${CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG}") +set(CMAKE_CXX_OSX_CURRENT_VERSION_FLAG "${CMAKE_C_OSX_CURRENT_VERSION_FLAG}") + +# Set iOS specific C/C++ flags +if(IOS_PLATFORM STREQUAL "OS") + if(XCODE_VERSION VERSION_LESS "7.0") + set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-mios-version-min=${IOS_DEPLOYMENT_TARGET}") + else() + # Xcode 7.0+ uses flags we can build directly from XCODE_IOS_PLATFORM. + set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-m${XCODE_IOS_PLATFORM}-version-min=${IOS_DEPLOYMENT_TARGET}") + endif() +else() + set(XCODE_IOS_FLATFORM_VERSION_FLAGS "-mios-simulator-version-min=${IOS_DEPLOYMENT_TARGET}") +endif() + +if(IOS_ENABLE_BITCODE) + set(XCODE_IOS_BITCODE_FLAGS "${IOS_COMPILER_FLAGS} -fembed-bitcode") +else() + set(XCODE_IOS_BITCODE_FLAGS "") +endif() + +set(IOS_COMPILER_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} ${XCODE_IOS_BITCODE_FLAGS}") + +# Hidden visibilty is required for cxx on iOS +set(CMAKE_C_FLAGS "${IOS_COMPILER_FLAGS} ${CMAKE_C_FLAGS}" CACHE STRING "C flags") +set(CMAKE_CXX_FLAGS "${IOS_COMPILER_FLAGS} -fvisibility-inlines-hidden ${CMAKE_CXX_FLAGS}" CACHE STRING "CXX flags") + +set(IOS_LINK_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} -Wl,-search_paths_first") + +if(IOS_USE_VECLIB_FOR_BLAS) + # Find vecLib for iOS + set(VECLIB_SEARCH_DIRS + ${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks + ${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Frameworks + ) + find_path(VECLIB_INC_DIR vecLib.h PATHS ${VECLIB_SEARCH_DIRS}/vecLib.framework/Headers) + + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args(vecLib DEFAULT_MSG VECLIB_INC_DIR) + + if(VECLIB_FOUND) + if(VECLIB_INC_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*") + set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework vecLib") + message(STATUS "Found standalone vecLib.framework") + else() + set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework Accelerate") + message(STATUS "Found vecLib as part of Accelerate.framework") + endif() + + endif() +endif() + +set(CMAKE_C_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_C_LINK_FLAGS}") +set(CMAKE_CXX_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_CXX_LINK_FLAGS}") + +set(CMAKE_PLATFORM_HAS_INSTALLNAME 1) +if(NOT IOS_ENABLE_BITCODE) + set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib -headerpad_max_install_names") + set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle -headerpad_max_install_names") +else() + set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib") + set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle") +endif() +set(CMAKE_SHARED_MODULE_LOADER_C_FLAG "-Wl,-bundle_loader,") +set(CMAKE_SHARED_MODULE_LOADER_CXX_FLAG "-Wl,-bundle_loader,") +set(CMAKE_FIND_LIBRARY_SUFFIXES ".dylib" ".so" ".a") + +# hack: if a new cmake (which uses CMAKE_INSTALL_NAME_TOOL) runs on an old build tree +# (where install_name_tool was hardcoded) and where CMAKE_INSTALL_NAME_TOOL isn't in the cache +# and still cmake didn't fail in CMakeFindBinUtils.cmake (because it isn't rerun) +# hardcode CMAKE_INSTALL_NAME_TOOL here to install_name_tool, so it behaves as it did before, Alex +if(NOT DEFINED CMAKE_INSTALL_NAME_TOOL) + find_program(CMAKE_INSTALL_NAME_TOOL install_name_tool) +endif() + +# Set the find root to the iOS developer roots and to user defined paths +set(CMAKE_FIND_ROOT_PATH ${IOS_DEVELOPER_ROOT} ${IOS_SDK_ROOT} ${CMAKE_PREFIX_PATH} + CACHE string "iOS find search path root") + +# default to searching for frameworks first +set(CMAKE_FIND_FRAMEWORK FIRST) + +# set up the default search directories for frameworks +set(CMAKE_SYSTEM_FRAMEWORK_PATH + ${IOS_SDK_ROOT}/System/Library/Frameworks + ${IOS_SDK_ROOT}/System/Library/PrivateFrameworks + ${IOS_SDK_ROOT}/Developer/Library/Frameworks + ) + +# only search the iOS sdks, not the remainder of the host filesystem +set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) +set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) +set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) + +message(STATUS "iOS: Targeting iOS '${CMAKE_SYSTEM_VERSION}', " + "building for '${IOS_PLATFORM}' platform, with architecture '${CMAKE_OSX_ARCHITECTURES}'") +message(STATUS "System CMAKE_C_FLAGS: ${CMAKE_C_FLAGS}") +message(STATUS "System CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}") + +# Used in ExternalProject command +string(REPLACE ";" "\\$" EXTERNAL_IOS_ARCHITECTURES "${CMAKE_OSX_ARCHITECTURES}") +set(EXTERNAL_OPTIONAL_ARGS + -DCMAKE_OSX_SYSROOT=${CMAKE_OSX_SYSROOT} + -DCMAKE_OSX_ARCHITECTURES=${EXTERNAL_IOS_ARCHITECTURES}) + +# This little macro lets you set any XCode specific property +macro(set_xcode_property TARGET XCODE_PROPERTY XCODE_VALUE) + set_property (TARGET ${TARGET} PROPERTY XCODE_ATTRIBUTE_${XCODE_PROPERTY} ${XCODE_VALUE}) +endmacro(set_xcode_property) + +# This macro lets you find executable programs on the host system +macro(find_host_package) + set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) + set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY NEVER) + set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE NEVER) + set(IOS FALSE) + + find_package(${ARGN}) + + set(IOS TRUE) + set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM ONLY) + set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) + set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) +endmacro(find_host_package) diff --git a/cmake/cudnn.cmake b/cmake/cudnn.cmake index 69f40df51680a104c47d9335c070c570dcaff59a..2c84061ff572de4687b4d496f8ded6deee8d1011 100644 --- a/cmake/cudnn.cmake +++ b/cmake/cudnn.cmake @@ -2,7 +2,7 @@ if(NOT WITH_GPU) return() endif() -set(CUDNN_ROOT "" CACHE PATH "CUDNN ROOT") +set(CUDNN_ROOT "/usr" CACHE PATH "CUDNN ROOT") find_path(CUDNN_INCLUDE_DIR cudnn.h PATHS ${CUDNN_ROOT} ${CUDNN_ROOT}/include $ENV{CUDNN_ROOT} $ENV{CUDNN_ROOT}/include ${CUDA_TOOLKIT_INCLUDE} diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake index f7483f6be9169eb58f0148cd3a956a8c881e1fe3..96fc886a342cae38d5b804266d3af7bc909a4da2 100644 --- a/cmake/external/eigen.cmake +++ b/cmake/external/eigen.cmake @@ -8,7 +8,7 @@ ExternalProject_Add( extern_eigen3 ${EXTERNAL_PROJECT_LOG_ARGS} GIT_REPOSITORY "https://github.com/RLovelett/eigen.git" - GIT_TAG "master" + GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10 PREFIX ${EIGEN_SOURCE_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" diff --git a/cmake/external/gflags.cmake b/cmake/external/gflags.cmake index 16e5bef4cdb8d6513de51838e3c3c8398dbad60d..c819eb4d70898e48eab499c666168d78262d4240 100644 --- a/cmake/external/gflags.cmake +++ b/cmake/external/gflags.cmake @@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags) SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags) SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE) IF(WIN32) - set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) + set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) ELSE(WIN32) - set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) + set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) ENDIF(WIN32) INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR}) @@ -36,19 +36,21 @@ ExternalProject_Add( # change this back to the official Github repo once my PR is # merged. GIT_REPOSITORY "https://github.com/wangkuiyi/gflags.git" + GIT_TAG 986964c07427ecb9cdb5bd73f73ebbd40e54dadb PREFIX ${GFLAGS_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DBUILD_TESTING=OFF - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR} + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DBUILD_TESTING=OFF + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON - -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} ) ADD_LIBRARY(gflags STATIC IMPORTED GLOBAL) @@ -56,3 +58,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES}) ADD_DEPENDENCIES(gflags extern_gflags) LIST(APPEND external_project_dependencies gflags) + +IF(WITH_C_API) + INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags) + IF(ANDROID) + INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI}) + ELSE() + INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib) + ENDIF() +ENDIF() diff --git a/cmake/external/glog.cmake b/cmake/external/glog.cmake index 8a594a825abdca6a0f989b94fa42f97d6df5e10a..08bdc1e1623b0d917061c7368e9b2a8f7e9517fd 100644 --- a/cmake/external/glog.cmake +++ b/cmake/external/glog.cmake @@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog) SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE) IF(WIN32) - SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE) + SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE) ELSE(WIN32) - SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE) + SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE) ENDIF(WIN32) INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR}) @@ -31,23 +31,25 @@ ExternalProject_Add( ${EXTERNAL_PROJECT_LOG_ARGS} DEPENDS gflags GIT_REPOSITORY "https://github.com/google/glog.git" + GIT_TAG v0.3.5 PREFIX ${GLOG_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DWITH_GFLAGS=ON - CMAKE_ARGS -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags - CMAKE_ARGS -DBUILD_TESTING=OFF - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR} + -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DWITH_GFLAGS=ON + -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags + -DBUILD_TESTING=OFF + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR} -DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON - -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} ) ADD_LIBRARY(glog STATIC IMPORTED GLOBAL) @@ -56,3 +58,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags) LINK_LIBRARIES(glog gflags) LIST(APPEND external_project_dependencies glog) + +IF(WITH_C_API) + INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog) + IF(ANDROID) + INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI}) + ELSE() + INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib) + ENDIF() +ENDIF() diff --git a/cmake/external/gtest.cmake b/cmake/external/gtest.cmake index e3970073a1a0b946fa1db6642799719d7a9fcf4f..5a4aa7a5b71a4fdfd556a46037e6d1846d668fc4 100644 --- a/cmake/external/gtest.cmake +++ b/cmake/external/gtest.cmake @@ -48,18 +48,19 @@ IF(WITH_TESTING) PREFIX ${GTEST_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DBUILD_GMOCK=ON - CMAKE_ARGS -Dgtest_disable_pthreads=ON - CMAKE_ARGS -Dgtest_force_shared_crt=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR} + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DBUILD_GMOCK=ON + -Dgtest_disable_pthreads=ON + -Dgtest_force_shared_crt=ON + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON - -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} ) ADD_LIBRARY(gtest STATIC IMPORTED GLOBAL) diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index 25c6b4ef52d3f8ebff1572ae8d348be7c577c08c..5a06825beb73e85d8a55b7b578b187bee2c4340c 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -46,16 +46,20 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML") MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}") ENDIF() +SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow") +SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} -Wno-error=strict-overflow") ExternalProject_Add( ${MKLDNN_PROJECT} ${EXTERNAL_PROJECT_LOG_ARGS} DEPENDS ${MKLDNN_DEPENDS} GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" - GIT_TAG "v0.9" + GIT_TAG "v0.11" PREFIX ${MKLDNN_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT} + CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG} + CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR} -DMKLROOT:PATH=${MKLDNN_MKLROOT} ) diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake index e9fd3d4bedc983ae7c544cf289dc841cf22f9de4..20dbc32a738d982df2d3f035206279c82c8de264 100644 --- a/cmake/external/mklml.cmake +++ b/cmake/external/mklml.cmake @@ -27,8 +27,8 @@ ENDIF() INCLUDE(ExternalProject) SET(MKLML_PROJECT "extern_mklml") -SET(MKLML_VER "mklml_lnx_2018.0.20170720") -SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") +SET(MKLML_VER "mklml_lnx_2018.0.1.20171007") +SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DST_DIR "mklml") @@ -54,7 +54,8 @@ ExternalProject_Add( ${EXTERNAL_PROJECT_LOG_ARGS} PREFIX ${MKLML_SOURCE_DIR} DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR} - DOWNLOAD_COMMAND wget --no-check-certificate -qO- ${MKLML_URL} | tar xz -C ${MKLML_DOWNLOAD_DIR} + DOWNLOAD_COMMAND wget --no-check-certificate ${MKLML_URL} -c -q -O ${MKLML_VER}.tgz + && tar zxf ${MKLML_VER}.tgz DOWNLOAD_NO_PROGRESS 1 UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLML_INSTALL_ROOT} diff --git a/cmake/external/nccl.cmake b/cmake/external/nccl.cmake new file mode 100644 index 0000000000000000000000000000000000000000..fc43766efafc3d3e16f2906ce7f9a3d692c8e4ff --- /dev/null +++ b/cmake/external/nccl.cmake @@ -0,0 +1,67 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +if(NOT WITH_GPU) + return() +endif() + +include(ExternalProject) + +set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl) + +include_directories(${NCCL_SOURCE_DIR}/src/extern_nccl/src) + +if(WITH_DSO) + # If we use DSO, we do not build nccl, just download the dependencies + set(NCCL_BUILD_COMMAND "") + set(NCCL_INSTALL_COMMAND "") + set(NCCL_INSTALL_DIR "") +else() + # otherwise, we build nccl and link it. + set(NCCL_INSTALL_DIR ${THIRD_PARTY_PATH}/install/nccl) + # Note: cuda 8.0 is needed to make nccl + # When cuda is not installed on the system directory, need to set CUDA_HOME to your cuda root + set(NCCL_BUILD_COMMAND "make -j 8") + set(NCCL_INSTALL_COMMAND "make install PREFIX=${NCCL_INSTALL_DIR}") +endif() + +ExternalProject_Add( + extern_nccl + ${EXTERNAL_PROJECT_LOG_ARGS} + GIT_REPOSITORY "https://github.com/NVIDIA/nccl.git" + GIT_TAG "v1.3.4-1" + PREFIX "${NCCL_SOURCE_DIR}" + UPDATE_COMMAND "" + CONFIGURE_COMMAND "" + BUILD_COMMAND "${NCCL_BUILD_COMMAND}" + INSTALL_COMMAND "${NCCL_INSTALL_COMMAND}" + INSTALL_DIR "${NCCL_INSTALL_DIR}" + TEST_COMMAND "" +) + +if(WITH_DSO) + if(${CMAKE_VERSION} VERSION_LESS "3.3.0") + set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/lib_nccl_dummy.c) + file(WRITE ${dummyfile} "const char * dummy_nccl = \"${dummyfile}\";") + add_library(nccl STATIC ${dummyfile}) + else() + add_library(nccl INTERFACE) + endif() +else() + add_library(nccl STATIC IMPORTED GLOBAL) + set_property(TARGET nccl PROPERTY IMPORTED_LOCATION + ${NCCL_INSTALL_DIR}/lib/libnccl_static.a) +endif() + +add_dependencies(nccl extern_nccl) diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 0eeccbf7d8a1df17351c8914df6dabf005802787..05d83ad58ef8485d36829e7aeede79f625cfdc43 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -1,17 +1,21 @@ # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +IF(USE_EIGEN_FOR_BLAS) + return() +ENDIF(USE_EIGEN_FOR_BLAS) + INCLUDE(cblas) IF(NOT ${CBLAS_FOUND}) @@ -25,32 +29,50 @@ IF(NOT ${CBLAS_FOUND}) "${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}" CACHE FILEPATH "openblas library." FORCE) - SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs) + SET(OPENBLAS_CC "${CMAKE_C_COMPILER}") IF(CMAKE_CROSSCOMPILING) + SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER}) + GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY) + SET(CROSS_SUFFIX ${CROSS_SUFFIX}/) IF(ANDROID) # arm_soft_fp_abi branch of OpenBLAS to support softfp # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") - SET(TARGET "ARMV7") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") - SET(TARGET "ARMV8") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0) + ENDIF() + ELSEIF(IOS) + # FIXME(liuyiqun): support multiple architectures + SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") + SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}") + IF(CMAKE_OSX_ARCHITECTURES MATCHES "armv7") + SET(OPENBLAS_CC "${OPENBLAS_CC} -arch armv7") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) + ELSEIF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64") + SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX}) ENDIF() - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=${TARGET} ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(RPI) # use hardfp - SET(OPENBLAS_COMMIT "v0.2.19") - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0) + SET(OPENBLAS_COMMIT "v0.2.20") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0) ENDIF() ELSE() - SET(OPENBLAS_COMMIT "v0.2.19") + IF(APPLE) + SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") + ENDIF() + SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS "") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64) ENDIF() ENDIF() + SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs) + ExternalProject_Add( extern_openblas ${EXTERNAL_PROJECT_LOG_ARGS} @@ -64,6 +86,26 @@ IF(NOT ${CBLAS_FOUND}) UPDATE_COMMAND "" CONFIGURE_COMMAND "" ) + SET(CBLAS_PROVIDER openblas) + IF(WITH_C_API) + INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas) + # Because libopenblas.a is a symbolic link of another library, thus need to + # install the whole directory. + IF(ANDROID) + SET(TMP_INSTALL_DIR third_party/openblas/lib/${ANDROID_ABI}) + ELSE() + SET(TMP_INSTALL_DIR third_party/openblas/lib) + ENDIF() + INSTALL(CODE "execute_process( + COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib + destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR} + )" + ) + INSTALL(CODE "MESSAGE(STATUS \"Installing: \" + \"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\" + )" + ) + ENDIF() ENDIF(NOT ${CBLAS_FOUND}) MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}") @@ -73,7 +115,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR}) # linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas) SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c) FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") -IF(${CBLAS_PROVIDER} MATCHES MKL) +IF("${CBLAS_PROVIDER}" STREQUAL "MKLML") ADD_LIBRARY(cblas SHARED ${dummyfile}) ELSE() ADD_LIBRARY(cblas STATIC ${dummyfile}) diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake index e629d61585c2d2ff916187ee28d4fd089a5bd857..be7f6a9465970711170bd15dcecaadeaa8a55f86 100644 --- a/cmake/external/protobuf.cmake +++ b/cmake/external/protobuf.cmake @@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST) "-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}" "-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}" "-Dprotobuf_WITH_ZLIB=ON" - "-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}") + "-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}" + ${EXTERNAL_OPTIONAL_ARGS}) SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}") ENDIF() @@ -190,12 +191,12 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST) ${OPTIONAL_ARGS} -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON - -DCMAKE_BUILD_TYPE=Release + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} -DCMAKE_INSTALL_PREFIX=${PROTOBUF_INSTALL_DIR} -DCMAKE_INSTALL_LIBDIR=lib CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${PROTOBUF_INSTALL_DIR} - -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} -DCMAKE_VERBOSE_MAKEFILE:BOOL=OFF -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON ${OPTIONAL_CACHE_ARGS} @@ -223,6 +224,15 @@ IF(NOT PROTOBUF_FOUND) SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY} CACHE FILEPATH "protoc library." FORCE) + IF(WITH_C_API) + INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf) + IF(ANDROID) + INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI}) + ELSE() + INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib) + ENDIF() + ENDIF() + IF(CMAKE_CROSSCOMPILING) PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf) ELSE() diff --git a/cmake/external/pybind11.cmake b/cmake/external/pybind11.cmake index 9391c285c7544669a5b1a078b7473d7a656c1bb4..4e87dc49d8956d1fa6dec777efc5a63c6b0f79a5 100644 --- a/cmake/external/pybind11.cmake +++ b/cmake/external/pybind11.cmake @@ -1,8 +1,26 @@ -INCLUDE(ExternalProject) +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. -SET(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind) +if(NOT WITH_PYTHON) + return() +endif() + +include(ExternalProject) -INCLUDE_DIRECTORIES(${PYBIND_SOURCE_DIR}/src/extern_pybind/include) +set(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind) + +include_directories(${PYBIND_SOURCE_DIR}/src/extern_pybind/include) ExternalProject_Add( extern_pybind @@ -17,14 +35,12 @@ ExternalProject_Add( TEST_COMMAND "" ) -if (${CMAKE_VERSION} VERSION_LESS "3.3.0") +if(${CMAKE_VERSION} VERSION_LESS "3.3.0") set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/pybind_dummy.c) - file(WRITE ${dummyfile} "const char * dummy_any = \"${dummyfile}\";") + file(WRITE ${dummyfile} "const char * dummy_pybind = \"${dummyfile}\";") add_library(pybind STATIC ${dummyfile}) else() add_library(pybind INTERFACE) endif() add_dependencies(pybind extern_pybind) - -LIST(APPEND external_project_dependencies pybind) diff --git a/cmake/external/python.cmake b/cmake/external/python.cmake index 490c87d67ed79a238dd506127cd4d9855fab6626..46c68cce324f565ec9985ef1a280d6d933f88f1f 100644 --- a/cmake/external/python.cmake +++ b/cmake/external/python.cmake @@ -12,16 +12,17 @@ # See the License for the specific language governing permissions and # limitations under the License. -INCLUDE(ExternalProject) +IF(NOT WITH_PYTHON) + return() +ENDIF() + INCLUDE(python_module) FIND_PACKAGE(PythonInterp 2.7) -IF(WITH_PYTHON) - FIND_PACKAGE(PythonLibs 2.7) - # Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE. - ADD_LIBRARY(python SHARED IMPORTED GLOBAL) - SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES}) -ENDIF(WITH_PYTHON) +FIND_PACKAGE(PythonLibs 2.7) +# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE. +ADD_LIBRARY(python SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES}) SET(py_env "") IF(PYTHONINTERP_FOUND) @@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND) ENDIF() ENDIF(PYTHONINTERP_FOUND) -IF(WITH_PYTHON) - INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) - INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR}) -ELSE() - SET(PYTHON_LIBRARIES "") -ENDIF() +INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) +INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR}) diff --git a/cmake/external/swig.cmake b/cmake/external/swig.cmake index 744c766ee7b067058b2cb4aa7f7b761cbb9778d4..9db457c7b2d61228e5d5af6827c4cda11a20a463 100644 --- a/cmake/external/swig.cmake +++ b/cmake/external/swig.cmake @@ -1,17 +1,21 @@ # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +IF(NOT WITH_SWIG_PY) + return() +ENDIF() + FIND_PACKAGE(SWIG) IF(NOT SWIG_FOUND) diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake index 2d7daed9bcd5b8d854ffae6dc1ea191d154c16fe..8bd058222880b4df3b08da09c02f9fe7f1d0ee66 100644 --- a/cmake/external/warpctc.cmake +++ b/cmake/external/warpctc.cmake @@ -16,25 +16,14 @@ INCLUDE(ExternalProject) SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc) SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc) -SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" CACHE PATH "Warp-ctc Directory" FORCE) -INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) - -SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" CACHE PATH "Warp-ctc Library Directory" FORCE) - -IF(WIN32) - SET(WARPCTC_LIBRARIES - "${WARPCTC_INSTALL_DIR}/lib/warpctc.dll" CACHE FILEPATH "Warp-ctc Library" FORCE) -ELSE(WIN32) - IF(APPLE) - SET(_warpctc_SHARED_SUFFIX dylib) - ELSE(APPLE) - SET(_warpctc_SHARED_SUFFIX so) - ENDIF(APPLE) - - SET(WARPCTC_LIBRARIES - "${WARPCTC_INSTALL_DIR}/lib/libwarpctc.${_warpctc_SHARED_SUFFIX}" CACHE FILEPATH "Warp-ctc Library" FORCE) -ENDIF(WIN32) +SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" + CACHE PATH "Warp-ctc Directory" FORCE) +# Used in unit test test_WarpCTCLayer +SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" + CACHE PATH "Warp-ctc Library Directory" FORCE) +SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/lib/libwarpctc${CMAKE_SHARED_LIBRARY_SUFFIX}" + CACHE FILEPATH "Warp-ctc Library" FORCE) IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" ) SET(USE_OMP OFF) @@ -46,25 +35,30 @@ ExternalProject_Add( extern_warpctc ${EXTERNAL_PROJECT_LOG_ARGS} GIT_REPOSITORY "https://github.com/gangliao/warp-ctc.git" + GIT_TAG b63a0644654a3e0ed624c85a1767bc8193aead09 PREFIX ${WARPCTC_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR} - CMAKE_ARGS -DWITH_GPU=${WITH_GPU} - CMAKE_ARGS -DWITH_OMP=${USE_OMP} - CMAKE_ARGS -DWITH_TORCH=OFF - CMAKE_ARGS -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON - CMAKE_ARGS -DBUILD_SHARED=ON - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release - CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR} + -DWITH_GPU=${WITH_GPU} + -DWITH_OMP=${USE_OMP} + -DWITH_TORCH=OFF + -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON + -DBUILD_SHARED=ON + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + ${EXTERNAL_OPTIONAL_ARGS} + CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR} ) +MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}") +INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) + ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL) SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES}) ADD_DEPENDENCIES(warpctc extern_warpctc) diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake index 45ca5542b7dc30216b45487782f849b93c5f8fca..a98e069b7cd1654ddd5868560d0905eab6d9c692 100644 --- a/cmake/external/zlib.cmake +++ b/cmake/external/zlib.cmake @@ -1,11 +1,11 @@ # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -34,18 +34,28 @@ ExternalProject_Add( GIT_TAG "v1.2.8" PREFIX ${ZLIB_SOURCES_DIR} UPDATE_COMMAND "" - CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR} - CMAKE_ARGS -DBUILD_SHARED_LIBS=OFF - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DCMAKE_MACOSX_RPATH=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR} + -DBUILD_SHARED_LIBS=OFF + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DCMAKE_MACOSX_RPATH=ON + -DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE} + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON - -DCMAKE_BUILD_TYPE:STRING=Release + -DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE} ) LIST(APPEND external_project_dependencies zlib) + +IF(WITH_C_API) + INSTALL(DIRECTORY ${ZLIB_INCLUDE_DIR} DESTINATION third_party/zlib) + IF(ANDROID) + INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib/${ANDROID_ABI}) + ELSE() + INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib) + ENDIF() +ENDIF() diff --git a/cmake/flags.cmake b/cmake/flags.cmake index b27eb71550b68b5c27e47bf067ae0df329bbd628..4593ae6180b6d7deb61d897eb634b17ac0bb1683 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -9,13 +9,6 @@ function(CheckCompilerCXX11Flag) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8) message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.") endif() - if(NOT ANDROID) - # TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem. - # Use Debug mode instead for now. - if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9) - set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE) - endif() - endif() elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang") # cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang" # Apple Clang is a different compiler than upstream Clang which havs different version numbers. @@ -135,8 +128,10 @@ set(GPU_COMMON_FLAGS ) if (APPLE) - # On Mac OS X build fat binaries with x86_64 architectures by default. - set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) + if(NOT CMAKE_CROSSCOMPILING) + # On Mac OS X build fat binaries with x86_64 architectures by default. + set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) + endif() else() set(GPU_COMMON_FLAGS -Wall @@ -160,7 +155,7 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF) # Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc. # So, don't set these flags here. -LIST(APPEND CUDA_NVCC_FLAGS -std=c++11 --default-stream per-thread) +LIST(APPEND CUDA_NVCC_FLAGS -std=c++11) LIST(APPEND CUDA_NVCC_FLAGS --use_fast_math) if(CMAKE_BUILD_TYPE STREQUAL "Debug") diff --git a/cmake/generic.cmake b/cmake/generic.cmake index d2aab938d4636b1583062e27b73cb30f5d56b7b0..c311783aa3187678c31c27ddbbd074790ca444f3 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -106,22 +106,22 @@ function(merge_static_libs TARGET_NAME) endforeach() list(REMOVE_DUPLICATES libs_deps) - if(APPLE) # Use OSX's libtool to merge archives - # To produce a library we need at least one source file. - # It is created by add_custom_command below and will helps - # also help to track dependencies. - set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c) + # To produce a library we need at least one source file. + # It is created by add_custom_command below and will helps + # also help to track dependencies. + set(target_SRCS ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c) + if(APPLE) # Use OSX's libtool to merge archives # Make the generated dummy source file depended on all static input # libs. If input lib changes,the source file is touched # which causes the desired effect (relink). - add_custom_command(OUTPUT ${dummyfile} - COMMAND ${CMAKE_COMMAND} -E touch ${dummyfile} + add_custom_command(OUTPUT ${target_SRCS} + COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS} DEPENDS ${libs}) # Generate dummy staic lib - file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") - add_library(${TARGET_NAME} STATIC ${dummyfile}) + file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) foreach(lib ${libs}) @@ -130,11 +130,14 @@ function(merge_static_libs TARGET_NAME) endforeach() add_custom_command(TARGET ${TARGET_NAME} POST_BUILD COMMAND rm "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" - COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles}) + COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles} + ) else() # general UNIX: use "ar" to extract objects and re-add to a common lib + set(target_DIR ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}.dir) + foreach(lib ${libs}) - set(objlistfile ${lib}.objlist) # list of objects in the input library - set(objdir ${lib}.objdir) + set(objlistfile ${target_DIR}/${lib}.objlist) # list of objects in the input library + set(objdir ${target_DIR}/${lib}.objdir) add_custom_command(OUTPUT ${objdir} COMMAND ${CMAKE_COMMAND} -E make_directory ${objdir} @@ -142,31 +145,32 @@ function(merge_static_libs TARGET_NAME) add_custom_command(OUTPUT ${objlistfile} COMMAND ${CMAKE_AR} -x "$" - COMMAND ${CMAKE_AR} -t "$" > ../${objlistfile} + COMMAND ${CMAKE_AR} -t "$" > ${objlistfile} DEPENDS ${lib} ${objdir} WORKING_DIRECTORY ${objdir}) - # Empty dummy source file that goes into merged library - set(mergebase ${lib}.mergebase.c) - add_custom_command(OUTPUT ${mergebase} - COMMAND ${CMAKE_COMMAND} -E touch ${mergebase} - DEPENDS ${objlistfile}) - - list(APPEND mergebases "${mergebase}") + list(APPEND target_OBJS "${objlistfile}") endforeach() - add_library(${TARGET_NAME} STATIC ${mergebases}) + # Make the generated dummy source file depended on all static input + # libs. If input lib changes,the source file is touched + # which causes the desired effect (relink). + add_custom_command(OUTPUT ${target_SRCS} + COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS} + DEPENDS ${libs} ${target_OBJS}) + + # Generate dummy staic lib + file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) # Get the file name of the generated library - set(outlibfile "$") + set(target_LIBNAME "$") - foreach(lib ${libs}) - add_custom_command(TARGET ${TARGET_NAME} POST_BUILD - COMMAND ${CMAKE_AR} cr ${outlibfile} *.o - COMMAND ${CMAKE_RANLIB} ${outlibfile} - WORKING_DIRECTORY ${lib}.objdir) - endforeach() + add_custom_command(TARGET ${TARGET_NAME} POST_BUILD + COMMAND ${CMAKE_AR} crs ${target_LIBNAME} `find ${target_DIR} -name '*.o'` + COMMAND ${CMAKE_RANLIB} ${target_LIBNAME} + WORKING_DIRECTORY ${target_DIR}) endif() endfunction(merge_static_libs) @@ -196,7 +200,7 @@ function(cc_library TARGET_NAME) add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS}) else(cc_library_SRCS) - if (cc_library_DEPS) + if(cc_library_DEPS) merge_static_libs(${TARGET_NAME} ${cc_library_DEPS}) else() message(FATAL "Please specify source file or library in cc_library.") @@ -249,7 +253,7 @@ function(nv_library TARGET_NAME) foreach(source_file ${nv_library_SRCS}) string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file}) if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) - list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + list(APPEND nv_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) endif() endforeach() add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS}) @@ -385,13 +389,60 @@ function(go_test TARGET_NAME) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) endfunction(go_test) +# Modification of standard 'protobuf_generate_cpp()' with protobuf-lite support +# Usage: +# paddle_protobuf_generate_cpp( ) + +function(paddle_protobuf_generate_cpp SRCS HDRS) + if(NOT ARGN) + message(SEND_ERROR "Error: paddle_protobuf_generate_cpp() called without any proto files") + return() + endif() + + set(${SRCS}) + set(${HDRS}) + + if (MOBILE_INFERENCE) + set(EXTRA_FLAG "lite:") + else() + set(EXTRA_FLAG "") + endif() + + foreach(FIL ${ARGN}) + get_filename_component(ABS_FIL ${FIL} ABSOLUTE) + get_filename_component(FIL_WE ${FIL} NAME_WE) + + set(_protobuf_protoc_src "${CMAKE_CURRENT_BINARY_DIR}/${FIL_WE}.pb.cc") + set(_protobuf_protoc_hdr "${CMAKE_CURRENT_BINARY_DIR}/${FIL_WE}.pb.h") + list(APPEND ${SRCS} "${_protobuf_protoc_src}") + list(APPEND ${HDRS} "${_protobuf_protoc_hdr}") + + add_custom_command( + OUTPUT "${_protobuf_protoc_src}" + "${_protobuf_protoc_hdr}" + + COMMAND ${CMAKE_COMMAND} -E make_directory "${CMAKE_CURRENT_BINARY_DIR}" + COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} + -I${CMAKE_CURRENT_SOURCE_DIR} + --cpp_out "${EXTRA_FLAG}${CMAKE_CURRENT_BINARY_DIR}" ${ABS_FIL} + DEPENDS ${ABS_FIL} protoc + COMMENT "Running C++ protocol buffer compiler on ${FIL}" + VERBATIM ) + endforeach() + + set_source_files_properties(${${SRCS}} ${${HDRS}} PROPERTIES GENERATED TRUE) + set(${SRCS} ${${SRCS}} PARENT_SCOPE) + set(${HDRS} ${${HDRS}} PARENT_SCOPE) +endfunction() + + function(proto_library TARGET_NAME) set(oneValueArgs "") set(multiValueArgs SRCS DEPS) cmake_parse_arguments(proto_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) set(proto_srcs) set(proto_hdrs) - protobuf_generate_cpp(proto_srcs proto_hdrs ${proto_library_SRCS}) + paddle_protobuf_generate_cpp(proto_srcs proto_hdrs ${proto_library_SRCS}) cc_library(${TARGET_NAME} SRCS ${proto_srcs} DEPS ${proto_library_DEPS} protobuf) endfunction() diff --git a/cmake/simd.cmake b/cmake/simd.cmake index 46035a908b588861607a25d3a21cf34b7b6fd4b8..53c2de332ea74b06d1bd6e5bb119cad6af27ed01 100644 --- a/cmake/simd.cmake +++ b/cmake/simd.cmake @@ -1,27 +1,28 @@ # This file is use to check all support level of AVX on your machine # so that PaddlePaddle can unleash the vectorization power of muticore. -INCLUDE(CheckCXXSourceRuns) -INCLUDE(CheckCXXSourceCompiles) +include(CheckCXXSourceRuns) +include(CheckCXXSourceCompiles) -IF(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") +if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") set(MMX_FLAG "-mmmx") set(SSE2_FLAG "-msse2") set(SSE3_FLAG "-msse3") - SET(AVX_FLAG "-mavx") - SET(AVX2_FLAG "-mavx2") -ELSEIF(MSVC) + set(AVX_FLAG "-mavx") + set(AVX2_FLAG "-mavx2") +elseif(MSVC) set(MMX_FLAG "/arch:MMX") set(SSE2_FLAG "/arch:SSE2") set(SSE3_FLAG "/arch:SSE3") SET(AVX_FLAG "/arch:AVX") SET(AVX2_FLAG "/arch:AVX2") -ENDIF() +endif() set(CMAKE_REQUIRED_FLAGS_RETAINED ${CMAKE_REQUIRED_FLAGS}) # Check MMX set(CMAKE_REQUIRED_FLAGS ${MMX_FLAG}) +set(MMX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) CHECK_CXX_SOURCE_RUNS(" #include int main() @@ -32,6 +33,7 @@ int main() # Check SSE2 set(CMAKE_REQUIRED_FLAGS ${SSE2_FLAG}) +set(SSE2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) CHECK_CXX_SOURCE_RUNS(" #include int main() @@ -42,6 +44,7 @@ int main() # Check SSE3 set(CMAKE_REQUIRED_FLAGS ${SSE3_FLAG}) +set(SSE3_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) CHECK_CXX_SOURCE_RUNS(" #include int main() @@ -55,6 +58,7 @@ int main() # Check AVX set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG}) +set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) CHECK_CXX_SOURCE_RUNS(" #include int main() @@ -67,6 +71,7 @@ int main() # Check AVX 2 set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG}) +set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) CHECK_CXX_SOURCE_RUNS(" #include int main() diff --git a/cmake/system.cmake b/cmake/system.cmake index adf5e2c539740076ad1808353522c7467d765e64..396bd1a0797edea0522bb1f02349373563b7726a 100644 --- a/cmake/system.cmake +++ b/cmake/system.cmake @@ -24,11 +24,10 @@ IF(WIN32) SET(HOST_SYSTEM "win32") ELSE(WIN32) IF(APPLE) - EXEC_PROGRAM (sw_vers ARGS -productVersion OUTPUT_VARIABLE MACOSX_VERSION) - STRING(REGEX MATCH "[0-9]+.[0-9]+" VERSION "${MACOSX_VERSION}") - SET(MACOS_VERSION ${VERSION}) SET(HOST_SYSTEM "macosx") - IF(NOT DEFINED ENV{MACOSX_DEPLOYMENT_TARGET}) + EXEC_PROGRAM(sw_vers ARGS -productVersion OUTPUT_VARIABLE HOST_SYSTEM_VERSION) + STRING(REGEX MATCH "[0-9]+.[0-9]+" MACOS_VERSION "${HOST_SYSTEM_VERSION}") + IF(NOT DEFINED $ENV{MACOSX_DEPLOYMENT_TARGET}) # Set cache variable - end user may change this during ccmake or cmake-gui configure. SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING "Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.") @@ -49,6 +48,8 @@ ELSE(WIN32) ELSEIF(LINUX_ISSUE MATCHES "Fedora") SET(HOST_SYSTEM "fedora") ENDIF() + + STRING(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" HOST_SYSTEM_VERSION "${LINUX_ISSUE}") ENDIF(EXISTS "/etc/issue") IF(EXISTS "/etc/redhat-release") @@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES) MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES) -MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}") +MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}, version: ${HOST_SYSTEM_VERSION}") MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores") # configuration for cross-compiling @@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME) ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi") SET(RPI TRUE) INCLUDE(cross_compiling/raspberry_pi) + ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "iOS") + SET(IOS TRUE) + INCLUDE(cross_compiling/ios) ENDIF() ENDIF() diff --git a/cmake/util.cmake b/cmake/util.cmake index 0da4969d310368ab27b0ed65237813c07d6e59f0..117ab7f49cdf4a568cd203b2b17767643d0b2d50 100644 --- a/cmake/util.cmake +++ b/cmake/util.cmake @@ -25,7 +25,9 @@ function(target_circle_link_libraries TARGET_NAME) endif() endforeach() if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") - list(APPEND LIBS "-undefined dynamic_lookup") + if(NOT IOS_ENABLE_BITCODE) + list(APPEND LIBS "-undefined dynamic_lookup") + endif() endif() list(REVERSE libsInArgn) target_link_libraries(${TARGET_NAME} @@ -71,30 +73,52 @@ function(link_paddle_exe TARGET_NAME) generate_rdma_links() endif() - target_circle_link_libraries(${TARGET_NAME} - ARCHIVE_START - paddle_gserver - paddle_function - ARCHIVE_END - paddle_pserver - paddle_trainer_lib - paddle_network - paddle_math - paddle_utils - paddle_parameter - paddle_proto - paddle_cuda - paddle_optimizer - ${EXTERNAL_LIBS} - ${CMAKE_THREAD_LIBS_INIT} - ${CMAKE_DL_LIBS} - ${RDMA_LD_FLAGS} - ${RDMA_LIBS}) + if(MOBILE_INFERENCE) + target_circle_link_libraries(${TARGET_NAME} + ARCHIVE_START + paddle_gserver + paddle_function + ARCHIVE_END + paddle_math + paddle_utils + paddle_parameter + paddle_proto + paddle_cuda + ${EXTERNAL_LIBS} + ${CMAKE_THREAD_LIBS_INIT} + ${CMAKE_DL_LIBS} + ${RDMA_LD_FLAGS} + ${RDMA_LIBS}) + else() + target_circle_link_libraries(${TARGET_NAME} + ARCHIVE_START + paddle_gserver + paddle_function + ARCHIVE_END + paddle_pserver + paddle_trainer_lib + paddle_network + paddle_math + paddle_utils + paddle_parameter + paddle_proto + paddle_cuda + paddle_optimizer + ${EXTERNAL_LIBS} + ${CMAKE_THREAD_LIBS_INIT} + ${CMAKE_DL_LIBS} + ${RDMA_LD_FLAGS} + ${RDMA_LIBS}) + endif() if(ANDROID) target_link_libraries(${TARGET_NAME} log) endif(ANDROID) + if(WITH_MKLDNN AND WITH_MKLML AND MKLDNN_IOMP_DIR) + target_link_libraries(${TARGET_NAME} "-L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed") + endif() + add_dependencies(${TARGET_NAME} ${external_project_dependencies}) endfunction() diff --git a/doc/about/index_cn.md b/doc/about/index_cn.md deleted file mode 100644 index 3bf030004d4de8c6f3cb773c6e78c09f40878c5f..0000000000000000000000000000000000000000 --- a/doc/about/index_cn.md +++ /dev/null @@ -1,11 +0,0 @@ -关于PaddlePaddle -================ - -PaddlePaddle是一个最早由百度科学家和工程师共同研发的并行分布式深度学习平台,兼备易用性、高效性、灵活性和可扩展性,目前已被百度内部多个产品线广泛使用。 -PaddlePaddle目前已经开放源码, 但是远未完善,我们希望能在这个基础上不断的改进、扩展和延伸。 -同时我们希望广大开发者积极提供反馈和贡献源代码,建立一个活跃的开源社区。 - -致谢 --------- - -在此,特别感谢PaddlePaddle的[所有贡献者](https://github.com/PaddlePaddle/Paddle/graphs/contributors)。 diff --git a/doc/about/index_en.rst b/doc/about/index_en.rst deleted file mode 100644 index 065c430cdea802ed3c9f487cd00255b85a5598a5..0000000000000000000000000000000000000000 --- a/doc/about/index_en.rst +++ /dev/null @@ -1,14 +0,0 @@ -ABOUT -======= - -PaddlPaddle is an easy-to-use, efficient, flexible and scalable deep learning platform, -which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu. - -PaddlePaddle is now open source but far from complete, which is intended to be built upon, improved, scaled, and extended. -We hope to build an active open source community both by providing feedback and by actively contributing to the source code. - - -Credits --------- - -We owe many thanks to `all contributors and developers `_ of PaddlePaddle! diff --git a/doc/api/v1/index_cn.rst b/doc/api/v1/index_cn.rst index 3718cd73a2003b8ef6c406a9bd51dc68e76402dc..cf146dc088e3905a751ff55c26fd82ef0ba02c89 100644 --- a/doc/api/v1/index_cn.rst +++ b/doc/api/v1/index_cn.rst @@ -21,7 +21,7 @@ Model Config API trainer_config_helpers/optimizers.rst trainer_config_helpers/data_sources.rst trainer_config_helpers/layers.rst - trainer_config_helpers/activations.rst + trainer_config_helpers/activations.rst trainer_config_helpers/poolings.rst trainer_config_helpers/networks.rst trainer_config_helpers/evaluators.rst diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index 3b2ee37628da636117a43d945dd7d339a3d63a33..203506d7ab84e5a5be2232b077eac2d433a99766 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -262,6 +262,11 @@ seq_concat .. autoclass:: paddle.v2.layer.seq_concat :noindex: +seq_slice +--------- +.. autoclass:: paddle.v2.layer.seq_slice + :noindex: + kmax_sequence_score ------------------- .. autoclass:: paddle.v2.layer.kmax_sequence_score @@ -345,6 +350,11 @@ clip .. autoclass:: paddle.v2.layer.clip :noindex: +resize +------ +.. autoclass:: paddle.v2.layer.resize + :noindex: + slope_intercept --------------- .. autoclass:: paddle.v2.layer.slope_intercept @@ -367,6 +377,11 @@ trans .. autoclass:: paddle.v2.layer.trans :noindex: +scale_shift +----------- +.. autoclass:: paddle.v2.layer.scale_shift + :noindex: + Sampling Layers =============== @@ -414,9 +429,14 @@ multi_binary_label_cross_entropy_cost .. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost :noindex: -huber_cost ----------- -.. autoclass:: paddle.v2.layer.huber_cost +huber_regression_cost +------------------------- +.. autoclass:: paddle.v2.layer.huber_regression_cost + :noindex: + +huber_classification_cost +------------------------- +.. autoclass:: paddle.v2.layer.huber_classification_cost :noindex: lambda_cost @@ -424,9 +444,9 @@ lambda_cost .. autoclass:: paddle.v2.layer.lambda_cost :noindex: -mse_cost +square_error_cost -------- -.. autoclass:: paddle.v2.layer.mse_cost +.. autoclass:: paddle.v2.layer.square_error_cost :noindex: rank_cost diff --git a/doc/api/v2/config/networks.rst b/doc/api/v2/config/networks.rst index 6e813ab1a820d068ea3e54cad6178f1cf928eadc..048379cf01f4aec5e73e2fe3ddfa728f3c17a5d1 100644 --- a/doc/api/v2/config/networks.rst +++ b/doc/api/v2/config/networks.rst @@ -125,3 +125,8 @@ simple_attention :members: simple_attention :noindex: +dot_product_attention +--------------------- +.. automodule:: paddle.v2.networks + :members: dot_product_attention + :noindex: diff --git a/doc/api/v2/data.rst b/doc/api/v2/data.rst index fef87c4fbdb452771ecdb361c6eeae5b32bcee14..b56c7332cc284649c7e04328e51a7faa78593a39 100644 --- a/doc/api/v2/data.rst +++ b/doc/api/v2/data.rst @@ -2,112 +2,9 @@ Data Reader Interface and DataSets ================================== +.. toctree:: + :maxdepth: 1 -DataTypes -========= - -.. automodule:: paddle.v2.data_type - :members: - :noindex: - -DataFeeder -========== - -.. automodule:: paddle.v2.data_feeder - :members: - :noindex: - -Reader -====== - -.. automodule:: paddle.v2.reader - :members: - :noindex: - -.. automodule:: paddle.v2.reader.creator - :members: - :noindex: - -minibatch -========= - -.. automodule:: paddle.v2.minibatch - :members: - :noindex: - -Dataset -======= - -.. automodule:: paddle.v2.dataset - :members: - :noindex: - -mnist -+++++ - -.. automodule:: paddle.v2.dataset.mnist - :members: - :noindex: - -cifar -+++++ - -.. automodule:: paddle.v2.dataset.cifar - :members: - :noindex: - -conll05 -+++++++ - -.. automodule:: paddle.v2.dataset.conll05 - :members: get_dict,get_embedding,test - :noindex: - -imdb -++++ - -.. automodule:: paddle.v2.dataset.imdb - :members: - :noindex: - -imikolov -++++++++ - -.. automodule:: paddle.v2.dataset.imikolov - :members: - :noindex: - -movielens -+++++++++ - -.. automodule:: paddle.v2.dataset.movielens - :members: - :noindex: - -.. autoclass:: paddle.v2.dataset.movielens.MovieInfo - :noindex: - -.. autoclass:: paddle.v2.dataset.movielens.UserInfo - :noindex: - -sentiment -+++++++++ - -.. automodule:: paddle.v2.dataset.sentiment - :members: - :noindex: - -uci_housing -+++++++++++ - -.. automodule:: paddle.v2.dataset.uci_housing - :members: - :noindex: - -wmt14 -+++++ - -.. automodule:: paddle.v2.dataset.wmt14 - :members: - :noindex: - + data/data_reader.rst + data/image.rst + data/dataset.rst diff --git a/doc/api/v2/data/data_reader.rst b/doc/api/v2/data/data_reader.rst new file mode 100644 index 0000000000000000000000000000000000000000..2ccfec9c284877a7576e9751526b169a4ac78d8e --- /dev/null +++ b/doc/api/v2/data/data_reader.rst @@ -0,0 +1,36 @@ +===================== +Data Reader Interface +===================== + + +DataTypes +========= + +.. automodule:: paddle.v2.data_type + :members: + :noindex: + +DataFeeder +========== + +.. automodule:: paddle.v2.data_feeder + :members: + :noindex: + +Reader +====== + +.. automodule:: paddle.v2.reader + :members: + :noindex: + +.. automodule:: paddle.v2.reader.creator + :members: + :noindex: + +minibatch +========= + +.. automodule:: paddle.v2.minibatch + :members: + :noindex: diff --git a/doc/api/v2/data/dataset.rst b/doc/api/v2/data/dataset.rst new file mode 100644 index 0000000000000000000000000000000000000000..6a8ecc5bb1d855e0ded3719943ab3adb810de365 --- /dev/null +++ b/doc/api/v2/data/dataset.rst @@ -0,0 +1,75 @@ +Dataset +======= + +.. automodule:: paddle.v2.dataset + :members: + :noindex: + +mnist ++++++ + +.. automodule:: paddle.v2.dataset.mnist + :members: + :noindex: + +cifar ++++++ + +.. automodule:: paddle.v2.dataset.cifar + :members: + :noindex: + +conll05 ++++++++ + +.. automodule:: paddle.v2.dataset.conll05 + :members: get_dict,get_embedding,test + :noindex: + +imdb +++++ + +.. automodule:: paddle.v2.dataset.imdb + :members: + :noindex: + +imikolov +++++++++ + +.. automodule:: paddle.v2.dataset.imikolov + :members: + :noindex: + +movielens ++++++++++ + +.. automodule:: paddle.v2.dataset.movielens + :members: + :noindex: + +.. autoclass:: paddle.v2.dataset.movielens.MovieInfo + :noindex: + +.. autoclass:: paddle.v2.dataset.movielens.UserInfo + :noindex: + +sentiment ++++++++++ + +.. automodule:: paddle.v2.dataset.sentiment + :members: + :noindex: + +uci_housing ++++++++++++ + +.. automodule:: paddle.v2.dataset.uci_housing + :members: + :noindex: + +wmt14 ++++++ + +.. automodule:: paddle.v2.dataset.wmt14 + :members: + :noindex: diff --git a/doc/api/v2/data/image.rst b/doc/api/v2/data/image.rst new file mode 100644 index 0000000000000000000000000000000000000000..97651ffa6be56cf3ecaca2caca38a353fa5c1f49 --- /dev/null +++ b/doc/api/v2/data/image.rst @@ -0,0 +1,5 @@ +Image Interface +=============== + +.. automodule:: paddle.v2.image + :members: diff --git a/doc/design/api.md b/doc/design/api.md index 8185d2af0ea264a2e7b4e28b9ed05279e4a22014..e6a4638d9100d9b07c3ee6b92b530a17eae1c162 100644 --- a/doc/design/api.md +++ b/doc/design/api.md @@ -3,7 +3,7 @@ ## Ingredients As our design principle is starting from the essence: how could we -allow users to express and solve their problems at neural networks. +allow users to express and solve their problems as neural networks. Some essential concepts that our API have to provide include: 1. A *topology* is an expression of *layers*. @@ -233,7 +233,7 @@ paddle.dist_train(model, num_parameter_servers=15) ``` -The pseudo code if `paddle.dist_train` is as follows: +The pseudo code of `paddle.dist_train` is as follows: ```python def dist_train(topology, parameters, trainer, reader, ...): diff --git a/doc/design/auto_gradient_check.md b/doc/design/auto_gradient_check.md index 1f4d4ec16f7c395005e610751d95c10f5f3adf52..f9991541bc51c6e13ffce4e9cec60f73dc800121 100644 --- a/doc/design/auto_gradient_check.md +++ b/doc/design/auto_gradient_check.md @@ -1,17 +1,17 @@ ## Auto Gradient Checker Design ## Backgraound: -- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right: - - 1. you should get the right backpropagation formula according to the forward computation. - - 2. you should implement it right in CPP. - - 3. it's difficult to prepare test data. +- Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right: + 1. you should get the right backpropagation formula according to the forward computation. + 2. you should implement it right in CPP. + 3. it's difficult to prepare test data. -- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: - - 1. numeric gradient checker only need forward operator. - - 2. user only need to prepare the input data for forward Operator. +- Auto gradient checking gets a numerical gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: + 1. numerical gradient checker only need forward operator. + 2. user only need to prepare the input data for forward Operator. ## Mathematical Theory -The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful. +The following two document from Stanford has a detailed explanation of how to get numerical gradient and why it's useful. - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) @@ -20,7 +20,7 @@ The following two document from stanford has a detailed explanation of how to ge ## Numeric Gradient Implementation ### Python Interface ```python -def get_numeric_gradient(op, +def get_numerical_gradient(op, input_values, output_name, input_to_check, @@ -30,13 +30,13 @@ def get_numeric_gradient(op, Get Numeric Gradient for an operator's input. :param op: C++ operator instance, could be an network - :param input_values: The input variables. Should be an dictionary, key is - variable name. Value is numpy array. + :param input_values: The input variables. Should be an dictionary, whose key is + variable name, and value is numpy array. :param output_name: The final output variable name. - :param input_to_check: The input variable need to get gradient. + :param input_to_check: The input variable with respect to which to compute the gradient. :param delta: The perturbation value for numeric gradient method. The smaller delta is, the more accurate result will get. But if that delta is - too small, it could occur numerical stability problem. + too small, it will suffer from numerical stability problem. :param local_scope: The local scope used for get_numeric_gradient. :return: The gradient array in numpy format. """ @@ -45,28 +45,28 @@ def get_numeric_gradient(op, ### Explaination: - Why need `output_name` - - One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate. + - An Operator may have multiple Output, one can get independent gradient from each Output. So caller should specify the name of the output variable. - Why need `input_to_check` - - One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. + - One operator may have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. ### Core Algorithm Implementation ```python - # we only compute gradient of one element each time. - # we use a for loop to compute the gradient of every element. + # we only compute gradient of one element a time. + # we use a for loop to compute the gradient of each element. for i in xrange(tensor_size): - # get one input element throw it's index i. + # get one input element by its index i. origin = tensor_to_check.get_float_element(i) - # add delta to it, run op and then get the sum of the result tensor. + # add delta to it, run op and then get the new value of the result tensor. x_pos = origin + delta tensor_to_check.set_float_element(i, x_pos) y_pos = get_output() - # plus delta to this element, run op and get the sum of the result tensor. + # plus delta to this element, run op and get the new value of the result tensor. x_neg = origin - delta tensor_to_check.set_float_element(i, x_neg) y_neg = get_output() @@ -85,15 +85,15 @@ def get_numeric_gradient(op, Each Operator Kernel has three kinds of Gradient: -- 1. Numeric Gradient -- 2. CPU Operator Gradient -- 3. GPU Operator Gradient(if supported) +1. Numerical gradient +2. CPU kernel gradient +3. GPU kernel gradient (if supported) -Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value. +The numerical gradient only relies on forward Operator. So we use the numerical gradient as the reference value. And the gradient checking is performed in the following three steps: -- 1. calculate the numeric gradient. -- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient. -- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU) +1. calculate the numerical gradient +2. calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient +3. calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient (if supported) #### Python Interface @@ -110,8 +110,8 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as :param forward_op: used to create backward_op :param input_vars: numpy value of input variable. The following computation will use these variables. - :param inputs_to_check: inputs var names that should check gradient. - :param output_name: output name that used to + :param inputs_to_check: the input variable with respect to which to compute the gradient. + :param output_name: The final output variable name. :param max_relative_error: The relative tolerance parameter. :param no_grad_set: used when create backward ops :param only_cpu: only compute and check gradient on cpu kernel. @@ -120,24 +120,24 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as ``` ### How to check if two numpy array is close enough? -if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative +if `abs_numerical_grad` is nearly zero, then use abs error for numerical_grad ```python -numeric_grad = ... +numerical_grad = ... operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) -abs_numeric_grad = numpy.abs(numeric_grad) -# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative +abs_numerical_grad = numpy.abs(numerical_grad) +# if abs_numerical_grad is nearly zero, then use abs error for numeric_grad, not relative # error. -abs_numeric_grad[abs_numeric_grad < 1e-3] = 1 +abs_numerical_grad[abs_numerical_grad < 1e-3] = 1 -diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad +diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad max_diff = numpy.max(diff_mat) ``` #### Notes: -1,The Input data for auto gradient checker should be reasonable to avoid numeric problem. +The Input data for auto gradient checker should be reasonable to avoid numerical stability problem. #### Refs: diff --git a/doc/design/block.md b/doc/design/block.md new file mode 100644 index 0000000000000000000000000000000000000000..4066122c0e8dfa33776796c3d205ba5aec9e0f52 --- /dev/null +++ b/doc/design/block.md @@ -0,0 +1,336 @@ +# Design Doc: Block and Scope + +## The Representation of Computation + +Both deep learning systems and programming languages help users describe computation procedures. These systems use various representations of computation: + +- Caffe, Torch, and Paddle: sequences of layers. +- TensorFlow, Caffe2, Mxnet: graph of operators. +- PaddlePaddle: nested blocks, like C++ and Java programs. + +## Block in Programming Languages and Deep Learning + +In programming languages, a block is a pair of curly braces that includes local variables definitions and a sequence of instructions or operators. + +Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning: + +| programming languages | PaddlePaddle | +|-----------------------|-----------------------| +| for, while loop | RNN, WhileOp | +| if, if-else, switch | IfElseOp, SwitchOp | +| sequential execution | a sequence of layers | + +A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes. + +## Stack Frames and the Scope Hierarchy + +The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs: + +| programming languages | PaddlePaddle | +|-----------------------|---------------------------------| +| stack | scope hierarchy | +| stack frame | scope | +| push at entering block| push at entering block | +| pop at leaving block | destroy when minibatch completes| + +1. In traditional programs: + + - When the execution enters the left curly brace of a block, the runtime pushes a frame into the stack, where it realizes local variables. + - After the execution leaves the right curly brace, the runtime pops the frame. + - The maximum number of frames in the stack is the maximum depth of nested blocks. + +1. In PaddlePaddle + + - When the execution enters a block, PaddlePaddle adds a new scope, where it realizes variables. + - PaddlePaddle doesn't pop a scope after the execution of the block because variables therein are used by the backward pass. So it has a stack forest known as a *scope hierarchy*. + - The height of the highest tree is the maximum depth of nested blocks. + - After the processing of a minibatch, PaddlePaddle destroys the scope hierarchy. + +## Use Blocks in C++ and PaddlePaddle Programs + +Let us consolidate the discussion by presenting some examples. + +### Blocks with `if-else` and `IfElseOp` + +The following C++ programs shows how blocks are used with the `if-else` structure: + +```c++ +namespace pd = paddle; + +int x = 10; +int y = 1; +int z = 10; +bool cond = false; +int o1, o2; +if (cond) { + int z = x + y; + o1 = z; + o2 = pd::layer::softmax(z); +} else { + int d = pd::layer::fc(z); + o1 = d; + o2 = d+1; +} + +``` + +An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator](./if_else_op.md) is as follows: + +```python +import paddle as pd + +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] + +ie = pd.ifelse() +with ie.true_block(): + d = pd.layer.add_scalar(x, y) + ie.output(d, pd.layer.softmax(d)) +with ie.false_block(): + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) +``` + +In both examples, the left branch computes `x+y` and `softmax(x+y)`, the right branch computes `fc(x)` and `x+1` . + +The difference is that variables in the C++ program contain scalar values, whereas those in the PaddlePaddle programs are mini-batches of instances. + + +### Blocks with `for` and `RNNOp` + +The following RNN model in PaddlePaddle from the [RNN design doc](./rnn.md) : + +```python +x = sequence([10, 20, 30]) # shape=[None, 1] +m = var(0) # shape=[1] +W = var(0.314, param=true) # shape=[1] +U = var(0.375, param=true) # shape=[1] + +rnn = pd.rnn() +with rnn.step(): + h = rnn.memory(init = m) + h_prev = rnn.previous_memory(h) + a = layer.fc(W, x) + b = layer.fc(U, h_prev) + s = pd.add(a, b) + act = pd.sigmoid(s) + rnn.update_memory(h, act) + rnn.output(a, b) +o1, o2 = rnn() +``` +has its equivalent C++ program as follows + +```c++ +int* x = {10, 20, 30}; +int* m = {0}; +int* W = {0.314}; +int* U = {0.375}; + +int mem[sizeof(x) / sizeof(x[0]) + 1]; +int o1[sizeof(x) / sizeof(x[0]) + 1]; +int o2[sizeof(x) / sizeof(x[0]) + 1]; +for (int i = 1; i <= sizeof(x)/sizeof(x[0]); ++i) { + int x = x[i-1]; + if (i == 1) mem[0] = m; + int a = W * x; + int b = Y * mem[i-1]; + int s = fc_out + hidden_out; + int act = sigmoid(sum); + mem[i] = act; + o1[i] = act; + o2[i] = hidden_out; +} +``` + +## Compilation and Execution + +Like TensorFlow, a PaddlePaddle program is written in Python. The first part describes a neural network as a protobuf message, and the rest executes the message for training or inference. + +The generation of this protobuf message is similar to how a compiler generates a binary executable file. The execution of the message is similar to how the OS executes the binary file. + +## The "Binary Executable File Format" + +The definition of the protobuf message is as follows: + +```protobuf +message BlockDesc { + repeated VarDesc vars = 1; + repeated OpDesc ops = 2; +} +``` + +The step net in above RNN example would look like + +``` +BlockDesc { + vars = { + VarDesc {...} // x + VarDesc {...} // h + VarDesc {...} // fc_out + VarDesc {...} // hidden_out + VarDesc {...} // sum + VarDesc {...} // act + } + ops = { + OpDesc {...} // matmul + OpDesc {...} // add_two + OpDesc {...} // sigmoid + } +}; +``` + +Also, the RNN operator in above example is serialized into a protobuf message of type `OpDesc` and would look like: + +``` +OpDesc { + inputs = {0} // the index of x in vars of BlockDesc above + outputs = {5, 3} // indices of act and hidden_out in vars of BlockDesc above + attrs { + "states" : {1} // the index of h + "step_net" : + } +}; +``` + +This `OpDesc` value is in the `ops` field of the `BlockDesc` value representing the global block. + + +## The Compilation of Blocks + +During the generation of the Protobuf message, the Block should store VarDesc (the Protobuf message which describes Variable) and OpDesc (the Protobuf message which describes Operator). + +VarDesc in a block should have its name scope to avoid local variables affect parent block's name scope. +Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that stored in parent block. For example: + +```python +a = pd.Variable(shape=[20, 20]) +b = pd.fc(a, params=["fc.w", "fc.b"]) + +rnn = pd.create_rnn() +with rnn.stepnet(): + x = a.as_step_input() + # reuse fc's parameter + fc_without_b = pd.get_variable("fc.w") + rnn.output(fc_without_b) + +out = rnn() +``` +The method `pd.get_variable` can help retrieve a Variable by the name. The Variable may be stored in a parent block, but might be retrieved in a child block, so block should have a variable scope that supports inheritance. + +In compiler design, the symbol table is a data structure created and maintained by compilers to store information about the occurrence of various entities such as variable names, function names, classes, etc. + +To store the definition of variables and operators, we define a C++ class `SymbolTable`, like the one used in compilers. + +`SymbolTable` can do the following: + +- store the definitions (some names and attributes) of variables and operators, +- verify if a variable was declared, +- make it possible to implement type checking (offer Protobuf message pointers to `InferShape` handlers). + + +```c++ +// Information in SymbolTable is enough to trace the dependency graph. So maybe +// the Eval() interface takes a SymbolTable is enough. +class SymbolTable { + public: + SymbolTable(SymbolTable* parent) : parent_(parent) {} + + OpDesc* NewOp(const string& name=""); + + // TODO determine whether name is generated by python or C++. + // Currently assume that a unique name will be generated by C++ if the + // argument name is left default. + VarDesc* Var(const string& name=""); + + // find a VarDesc by name, if recursive is true, find parent's SymbolTable + // recursively. + // this interface is introduced to support InferShape, find protobuf messages + // of variables and operators, pass pointers into InferShape. + // + // NOTE maybe some C++ classes such as VarDescBuilder and OpDescBuilder should + // be proposed and embedded into pybind to enable python operation on C++ pointers. + VarDesc* FindVar(const string& name, bool recursive=true); + + OpDesc* FindOp(const string& name); + + BlockDesc Compile() const; + + private: + SymbolTable* parent_; + + map ops_; + map vars_; +}; +``` + +After all the description of variables and operators is added into SymbolTable, +the block has enough information to run. + +The `Block` class takes a `BlockDesc` as input, and provides `Run` and `InferShape` functions. + + +```c++ +namespace { + +class Block : OperatorBase { +public: + Block(const BlockDesc& desc) desc_(desc) {} + + void InferShape(const framework::Scope& scope) const override { + if (!symbols_ready_) { + CreateVariables(scope); + CreateOperators(); + } + // should run InferShape first. + for (auto& op : runtime_table_.ops()) { + op->InferShape(scope); + } + } + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override { + PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first."); + for (auto& op : runtime_table_.ops()) { + op->Run(scope, dev_ctx); + } + } + + void CreateVariables(const framework::Scope& scope); + void CreateOperators(); + + // some other necessary interfaces of NetOp are listed below + // ... + +private: + BlockDesc desc_; + bool symbols_ready_{false}; +}; +``` + +## The Execution of Blocks + +Block inherits from OperatorBase, which has a Run method. +Block's Run method will run its operators sequentially. + +There is another important interface called `Eval`, which takes some arguments called targets and generates a minimal graph which treats targets as the end points and creates a new Block. After `Run`, `Eval` will get the latest value and return the targets. + +The definition of Eval is as follows: + +```c++ +// clean a block description by targets using the corresponding dependency graph. +// return a new BlockDesc with minimal number of operators. +// NOTE: The return type is not a Block but the block's description so that this can be distributed +// to a cluster. +BlockDesc Prune(const BlockDesc& desc, vector targets); + +void Block::Eval(const vector& targets, + const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) { + BlockDesc min_desc = Prune(desc_, targets); + Block min_block(min_desc); + min_block.Run(scope, dev_ctx); +} +``` diff --git a/doc/design/cluster_train/README.md b/doc/design/cluster_train/README.md index 74961f80050c6b2723889b51416a2e8048174b00..177a5f5d54bd924fab34795219ce1f7b270c8e25 100644 --- a/doc/design/cluster_train/README.md +++ b/doc/design/cluster_train/README.md @@ -54,17 +54,18 @@ The life cycle of a single task is illustrated below: 1. When a new pass of training starts, all tasks will be placed in the todo queue. -1. The master server will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion. -1. The trainer will work on its tasks and tell the master server once a task is completed. The master server will dispatch a new task to that trainer. -1. If a task timeout. the master server will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded. +1. Upon trainer requests for new task, the master server will dispatch a task from todo queue to it, put the task in the pending queue and wait for completion. +1. The trainer will work on its task and tell the master server once the task is completed and ask for new task. The master server will dispatch a new task to that trainer. +1. If a task fails for any reason in trainer, or takes longer than a specific period of time, the master server will move the task back to the todo queue. The timeout count for that task will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, then it will be discarded. 1. The master server will move completed task to the done queue. When the todo queue is empty, the master server will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero. ### Trainer Process The trainer process will: -- Receive tasks from the master. -- Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers. +- Request tasks from the master. +- Work on the tasks +- Upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers. ### Parameter Server Process @@ -119,8 +120,8 @@ When the master is started by the Kubernetes, it executes the following steps at 1. Grabs a unique *master* lock in etcd, which prevents concurrent master instantiations. 1. Recovers the task queues from etcd if they already exist, otherwise, the master will create them. -1. Watches the trainer prefix keys `/trainer/` on etcd to find the live trainers. -1. Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update. +1. Write its ip address to */master/addr* so that trainers can discover it. +1. Listens to trainers' request of task, dispatch one upon request, and updates task queue using an etcd transaction to ensure lock is held during the update. When the master server process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes. @@ -128,13 +129,11 @@ When the master server process is dead for any reason, Kubernetes will restart i When the trainer is started by the Kubernetes, it executes the following steps at startup: -1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count. -1. Generates a unique ID, and sets key `/trainer/` with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline. -1. Waits for tasks from the master to start training. +1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count */ps_desired*. +1. Finds and watches */master/addr* to get master's address. +1. Requests for tasks from the master to start training. -If trainer's etcd lease expires, it will try set key `/trainer/` again so that the master server can discover the trainer again. - -When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from the TODO queue and go on training. +When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from master and go on training. ### Parameter Server Process diff --git a/doc/design/cluster_train/src/paddle-etcd.graffle b/doc/design/cluster_train/src/paddle-etcd.graffle index 56681ae5bbe11849116d621b066a6317e003e4ca..f973dc9b9dbf72e9bc31e2d32822916cd281f8d9 100644 Binary files a/doc/design/cluster_train/src/paddle-etcd.graffle and b/doc/design/cluster_train/src/paddle-etcd.graffle differ diff --git a/doc/design/cluster_train/src/paddle-etcd.png b/doc/design/cluster_train/src/paddle-etcd.png index 4f9c9762b3a8c089dd5e9b2c07cb9dfc78296a21..57981ceb4b94f0f7d6dfa63f3d28c0402bf9cc31 100644 Binary files a/doc/design/cluster_train/src/paddle-etcd.png and b/doc/design/cluster_train/src/paddle-etcd.png differ diff --git a/doc/design/cluster_train/src/trainer.graffle b/doc/design/cluster_train/src/trainer.graffle index 42384a3f059966e22e22f5fa4295cc9ead5cef83..43415ed8cf61a5acfa34f8e56b9577f338dbf254 100644 Binary files a/doc/design/cluster_train/src/trainer.graffle and b/doc/design/cluster_train/src/trainer.graffle differ diff --git a/doc/design/dcgan.png b/doc/design/dcgan.png new file mode 100644 index 0000000000000000000000000000000000000000..15e8e290a111ff43900934341365cb4360d87d28 Binary files /dev/null and b/doc/design/dcgan.png differ diff --git a/doc/design/executor.md b/doc/design/executor.md new file mode 100644 index 0000000000000000000000000000000000000000..b5fb6c5c3c1da3c112ce63878322083dd5c42b70 --- /dev/null +++ b/doc/design/executor.md @@ -0,0 +1,23 @@ +# Executor Design Doc + +## Motivation + +We use executor to do the runtime evaluation of a `ProgramDesc`. + +## Overview + +An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instance, which is persistent throughout different runs. + +### What does executor do? + +It evaluates all the operators in the `block_id`th block of a `ProgramDesc`. + +### What does executor NOT do? + +It does not do runtime optimization, meaning intelligently parse the dependency of each op a choose which one to be run and in which order they should be run. + +It does not do graph partitioning, meaning dividing the `ProgramDesc` into several small pieces and executing them on different devices. + +## Implementation + +`Executor` evaluates a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then run all the operators in sequence. [[code]](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc) diff --git a/doc/design/float16.md b/doc/design/float16.md new file mode 100644 index 0000000000000000000000000000000000000000..078801ba2ed969d26dd31d5ec4ed268686cf7016 --- /dev/null +++ b/doc/design/float16.md @@ -0,0 +1,60 @@ +# Design Doc: float16 + +## Why float16 +Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range. + +When high precision computation is not required, using float16 data type could potentially + +- reduce storage space, memory bandwidth, and power usages; +- increase the chance of data fitting into a smaller cache of lower latency; +- provide arithmetic speed up if supported by hardware. + +## Survey of current float16 support +A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info. + +The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier. + +### Compiler +- nvcc supports `__half` data type after CUDA 7.5. +- `__fp16` or `float16_t` is supported as storage type for gcc >= 6.1 and clang >= 3.4. +- `__fp16` or `float16_t` is supported as arithmetic type for gcc >= 7.1 and clang >= 3.9. + +### Hardware +- `__half` is supported on GPU with compute capability >= 5.3. +- `__fp16` is supported as storage type for ARMv7-A, ARMv8-A, and above. +- `__fp16` is supported as arithmetic type after ARMv8.2-A (currently, the only microarchitecture implementing ARMv8.2-A is ARM Cortex-A75, which is announced in May 2017. There seems to be no application processors currently available on market that adopts this architecture. It is reported that Qualcomm Snapdragon 845 uses Cortex-A75 design and will be available in mobile devices in early 2018). + +### Libraries +- [Eigen](https://github.com/RLovelett/eigen) >= 3.3 supports float16 calculation on both GPU and CPU using the `Eigen::half` class. It is mostly useful for Nvidia GPUs because of the overloaded arithmetic operators using cuda intrinsics. It falls back to using software emulation on CPU for calculation and there is no special treatment to ARM processors. +- [ARM compute library](https://github.com/ARM-software/ComputeLibrary) >= 17.02.01 supports NEON FP16 kernels (requires ARMv8.2-A CPU). + + +## Implementation +The float16 class holds a 16-bit `uint16_t` data internally. +``` +struct float16 { + uint16_t x; +}; +``` + +float16 supports the following features: + - constructors / assignment operators that take input from primitive data types including bool, integers of various length, float, and double. + - constructors / assignment operators that take input from `__half` on cuda, `float16_t` on ARM, and `Eigen::half` on Eigen. + - conversion operators to primitive data types and half precision data types on cuda, ARM and Eigen. + - overloaded arithmetic operators for cuda, arm, and non-arm cpu, respectively. These operators will take advantage of the cuda and ARM intrinsics on the corresponding hardware. + +To support the above features, two fundamental conversion functions are provided: +``` +float16 float_to_half_rn(float f); // convert to half precision in round-to-nearest-even mode +float half_to_float(float16 h); +``` +which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion. + +## To do +After float16 class is available, some of the future items are below: + +- Update pybind/tensor_py.h to bind c++ float16 with numpy float16. + +- Modify `GetKernelType()` method in `framework/operator.h` to make it compatible with float16. + +- Create a type-casting operator that can convert the data type in tensor between float16 and other types. diff --git a/doc/design/functions_operators_layers.md b/doc/design/functions_operators_layers.md new file mode 100644 index 0000000000000000000000000000000000000000..984b59f4c6971dfb6f46dfe342f2751f392c0e88 --- /dev/null +++ b/doc/design/functions_operators_layers.md @@ -0,0 +1,100 @@ +# Design Doc: Functions, Operators, and Layers + +In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator. + +Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation. + +In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions: + +```c++ +template T add(T x, T y) { return x + y; } +template T mul(T x, T y) { return x * y; } +``` + +Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation + +```c++ +#define MAKE_FUNCTION_OPERATOR(mul); +``` + +generates + +```c++ +template class mulOp : public OperatorBase {...}; +REGISTER_OP(mulOp, "mul"); +``` + +so that in Python we can create operator mul by: + +```python +X1 = Var() +X2 = Var() +Y = Var() +paddle.cpp.create_operator("mul", input=[X1, X2], output=Y) +``` + +Also, at the same time, we can compose a coarse level C++ operator class by composing functions `mul` and `add`: + +```c++ +template +class FCOp : public OperatorBase { + public: + void Run(...) { + add(mul(Input("X"), Input("W")), Input("b"); + } +}; +REGISTER_OP(FCOp, "fc"); +``` + +We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than `paddle.cpp.create_operator`. This higher level operator API should be compatible with the layer API. + +Let's explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we'd like to have Python functions `mul` and `add` defined in module `operator`: + +```python +def operator.mul(X1, X2): + O = Var() + paddle.cpp.create_operator("mul", input={X1, Y1}, output=O) + return O + +def operator.add(X1, X2): + O = Var() + paddle.cpp.create_operator("add", input={X1, X2}, output=O) + return O +``` + +Above code snippets are automatically generated. Given them, users can define + +```python +def layer.fc(X): + W = Var() + b = Var() + return operator.add(operator.mul(X, W), b) +``` + +If we don't have `operator.mul` and `operator.add`, the definiton of `layer.fc` would be complicated: + +```python +def layer.fc(X): + W = Var() + b = Var() + O1 = Var() + paddle.cpp.create_operator("mul", input=[X, W], output=O1) + O2 = Var() + paddle.cpp.create_operator("add", input=[O1, b], output=O2) + return O2 +``` + +We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example: + + +| C++ functions/functors | mul | add | | | +|------------------------|--------------|--------------|-------------|----------| +| C++ operator class | mulOp | addOp | FCOp | | +| Python binding | operator.mul | operator.add | operator.fc | | +| Python function | | | | layer.fc | + + +This is how we differentiate layer and operators in PaddlePaddle: + +- those defined in C++ and have a lightweighted Python wrapper in module `operators` are operators; whereas +- those who don't have C++ implementations but a Python implementation that compose C++ operators are known as layers. diff --git a/doc/design/gan_api.md b/doc/design/gan_api.md new file mode 100644 index 0000000000000000000000000000000000000000..fb41df8615f73d9fd4c32995eab265833eac1a55 --- /dev/null +++ b/doc/design/gan_api.md @@ -0,0 +1,253 @@ +# Design for GAN + +GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas. + +It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth. + +In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation. + +

+
+Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run. +

+ +The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563. + +

+
+Figure 2. Photo borrowed from the original DC-GAN paper. +

+ +## The Conditional-GAN might be a class. +This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure: + +- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API: + +- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well. + +- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen. +Returns a generated image. + +- discriminator(image): +Given an image, decide if it is from a real source or a fake one. +Returns a 0/1 binary label. + +- build_model(self): +build the whole GAN model, define training loss for both generator and discrimator. + +## Discussion on Engine Functions required to build GAN +- Trace the tensor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly) +- Different optimizers responsible for optimizing different loss. + +To be more detailed, we introduce our design of DCGAN as following: + +### Class member Function: Initializer +- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth. +- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G. +```python +class DCGAN(object): + def __init__(self, y_dim=None): + + # hyper parameters + self.y_dim = y_dim # conditional gan or not + self.batch_size = 100 + self.z_dim = z_dim # input noise dimension + + # define parameters of discriminators + self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer()) + self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) + self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.D_W2 = pd.Varialble(np.random.rand(128, 1)) + self.D_b2 = pd.Variable(np.zeros(128)) + self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2] + + # define parameters of generators + self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) + self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer()) + self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data + self.G_W2 = pd.Varialble(np.random.rand(128, 1)) + self.G_b2 = pd.Variable(np.zeros(128)) + self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2] +``` + +### Class member Function: Generator +- Given a noisy input z, returns a fake image. +- Concatenation, batch-norm, FC operations required; +- Deconv layer required, which is missing now... +```python +class DCGAN(object): + def generator(self, z, y = None): + # input z: the random noise + # input y: input data label (optional) + # output G_im: generated fake images + + if not self.y_dim: + z = pd.layer.concat(1, [z, y]) + + G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0) + G_h0_bn = pd.layer.batch_norm(G_h0) + G_h0_relu = pd.layer.relu(G_h0_bn) + + G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1) + G_h1_bn = pd.layer.batch_norm(G_h1) + G_h1_relu = pd.layer.relu(G_h1_bn) + + G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2)) + G_im = pd.layer.tanh(G_im) + return G_im +``` + +### Class member function: Discriminator +- Given a noisy input z, returns a fake image. +- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required; +```python +class DCGAN(object): + def discriminator(self, image): + # input image: either generated images or real ones + # output D_h2: binary logit of the label + + D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0) + D_h0_bn = pd.layer.batchnorm(h0) + D_h0_relu = pd.layer.lrelu(h0_bn) + + D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1) + D_h1_bn = pd.layer.batchnorm(D_h1) + D_h1_relu = pd.layer.lrelu(D_h1_bn) + + D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2) + return D_h2 +``` + +### Class member function: Build the model +- Define data readers as placeholders to hold the data; +- Build generator and discriminators; +- Define two training losses for discriminator and generator, respectively. +If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this: +```python +class DCGAN(object): + def build_model(self): + if self.y_dim: + self.y = pd.data(pd.float32, [self.batch_size, self.y_dim]) + self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + self.z = pd.data(tf.float32, [None, self.z_size]) + + # step 1: generate images by generator, classify real/fake images with discriminator + if self.y_dim: # if conditional GAN, includes label + self.G = self.generator(self.z, self.y) + self.D_t = self.discriminator(self.images) + # generated fake images + self.sampled = self.sampler(self.z, self.y) + self.D_f = self.discriminator(self.G) + else: # original version of GAN + self.G = self.generator(self.z) + self.D_t = self.discriminator(self.images) + # generate fake images + self.sampled = self.sampler(self.z) + self.D_f = self.discriminator(self.images) + + # step 2: define the two losses + self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size)) + self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size)) + self.d_loss = self.d_loss_real + self.d_loss_fake + + self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie)) +``` + +If we do not have dependency engine but blocks, the module building our GAN model will be like this: +```python +class DCGAN(object): + def build_model(self, default_block): + # input data in the default block + if self.y_dim: + self.y = pd.data(pd.float32, [self.batch_size, self.y_dim]) + self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + # self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size]) + self.z = pd.data(tf.float32, [None, self.z_size]) + + # step 1: generate images by generator, classify real/fake images with discriminator + with pd.default_block().g_block(): + if self.y_dim: # if conditional GAN, includes label + self.G = self.generator(self.z, self.y) + self.D_g = self.discriminator(self.G, self.y) + else: # original version of GAN + self.G = self.generator(self.z) + self.D_g = self.discriminator(self.G, self.y) + self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie)) + + with pd.default_block().d_block(): + if self.y_dim: # if conditional GAN, includes label + self.D_t = self.discriminator(self.images, self.y) + self.D_f = self.discriminator(self.G, self.y) + else: # original version of GAN + self.D_t = self.discriminator(self.images) + self.D_f = self.discriminator(self.G) + + # step 2: define the two losses + self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size)) + self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size)) + self.d_loss = self.d_loss_real + self.d_loss_fake +``` +Some small confusion and problems with this design: +- D\_g and D\_f are actually the same thing, but has to be written twice; i.e., if we want to run two sub-graphs conceptually, the same codes have to be written twice if they are shared by the graph. +- Requires ability to create a block anytime, rather than in if-else or rnn only; + +## Main function for the demo: +Generally, the user of GAN just need to the following things: +- Define an object as DCGAN class; +- Build the DCGAN model; +- Specify two optimizers for two different losses with respect to different parameters. +```python +# pd for short, should be more concise. +from paddle.v2 as pd +import numpy as np +import logging + +if __name__ == "__main__": + # dcgan class in the default graph/block + # if we use dependency engine as tensorflow + # the codes, will be slightly different like: + # dcgan = DCGAN() + # dcgan.build_model() + with pd.block() as def_block: + dcgan = DCGAN() + dcgan.build_model(def_block) + + # load mnist data + data_X, data_y = self.load_mnist() + + # Two subgraphs required!!! + with pd.block().d_block(): + d_optim = pd.train.Adam(lr = .001, beta= .1) + d_step = d_optim.minimize(dcgan.d_loss, dcgan.theta_D) + with pd.block.g_block(): + g_optim = pd.train.Adam(lr = .001, beta= .1) + g_step = pd.minimize(dcgan.g_loss, dcgan.theta_G) + + # executor + sess = pd.executor() + + # training + for epoch in xrange(10000): + for batch_id in range(N / batch_size): + idx = ... + # sample a batch + batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size] + # sample z + batch_z = np.random.uniform(-1., 1., [batch_size, z_dim]) + + if batch_id % 2 == 0: + sess.run(d_step, + feed_dict = {dcgan.images: batch_im, + dcgan.y: batch_label, + dcgan.z: batch_z}) + else: + sess.run(g_step, + feed_dict = {dcgan.z: batch_z}) +``` + +# More thinking about dependency engine v.s. block design: +- What if we just want to run an intermediate result? Do we need to run the whole block/graph? +- Should we call eval() to get the fake images in the first stage? And then train the discriminator in the second stage? diff --git a/doc/design/graph.md b/doc/design/graph.md new file mode 100644 index 0000000000000000000000000000000000000000..7519a65df835a39fe14f6ef45530afff170191ff --- /dev/null +++ b/doc/design/graph.md @@ -0,0 +1,70 @@ +# Design Doc: Computations as a Graph + +A primary goal of the refactorization of PaddlePaddle is a more flexible representation of deep learning computation, in particular, a graph of operators and variables, instead of sequences of layers as before. + +This document explains that the construction of a graph as three steps: + +- construct the forward part +- construct the backward part +- construct the optimization part + +## The Construction of a Graph + +Let us take the problem of image classification as a simple example. The application program that trains the model looks like: + +```python +x = layer.data("images") +l = layer.data("label") +y = layer.fc(x) +cost = layer.mse(y, l) +optimize(cost) +train(cost, reader=mnist.train()) +``` + +### Forward Part + +The first four lines of above program build the forward part of the graph. + +![](images/graph_construction_example_forward_only.png) + +In particular, the first line `x = layer.data("images")` creates variable x and a Feed operator that copies a column from the minibatch to x. `y = layer.fc(x)` creates not only the FC operator and output variable y, but also two parameters, W and b, and the initialization operators. + +Initialization operators are kind of "run-once" operators -- the `Run` method increments a class data member counter so to run at most once. By doing so, a parameter wouldn't be initialized repeatedly, say, in every minibatch. + +In this example, all operators are created as `OpDesc` protobuf messages, and all variables are `VarDesc`. These protobuf messages are saved in a `BlockDesc` protobuf message. + +### Backward Part + +The fifth line `optimize(cost)` calls two functions, `ConstructBackwardGraph` and `ConstructOptimizationGraph`. + +`ConstructBackwardGraph` traverses the forward graph in the `BlockDesc` protobuf message and builds the backward part. + +![](images/graph_construction_example_forward_backward.png) + +According to the chain rule of gradient computation, `ConstructBackwardGraph` would + +1. create a gradient operator G for each operator F, +1. make all inputs, outputs, and outputs' gradient of F as inputs of G, +1. create gradients for all inputs of F, except for those who don't have gradients, like x and l, and +1. make all these gradients as outputs of G. + +### Optimization Part + +For each parameter, like W and b created by `layer.fc`, marked as double circles in above graphs, `ConstructOptimizationGraph` creates an optimization operator to apply its gradient. Here results in the complete graph: + +![](images/graph_construction_example_all.png) + +## Block and Graph + +The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block](https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block. + +A Block keeps operators in an array `BlockDesc::ops` + +```protobuf +message BlockDesc { + repeated OpDesc ops = 1; + repeated VarDesc vars = 2; +} +``` + +in the order that they appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators. diff --git a/doc/design/graph_survey.md b/doc/design/graph_survey.md new file mode 100644 index 0000000000000000000000000000000000000000..6c6db08f463ae0a2b94fc4546f123a1d7c151870 --- /dev/null +++ b/doc/design/graph_survey.md @@ -0,0 +1,232 @@ +## Survey on Graph + +Neural network framework often provides symbolic API for users to write network topology conveniently. This doc manily focus on symbolic API in most popular neural network frameworks, and try to find out how to parse symbolic configuration to a portable file, such as protobuf or json. + +### Mxnet + +The core concept of symbolic API is `Symbol`. Mxnet implements `Symbol` class in C++, and export to Python using C-API. Please refer to the comments in Mxnet: + + +`Symbol` is help class used to represent the operator node in Graph. +`Symbol` acts as an interface for building graphs from different components like Variable, Functor and Group. `Symbol` is also exported to python front-end (while Graph is not) to enable quick test and deployment. Conceptually, symbol is the final operation of a graph and thus including all the information required (the graph) to evaluate its output value. + + +A simple network topology wrote by Symbol is as follows: + +```python +def get_symbol(num_classes=10, **kwargs): + data = mx.symbol.Variable('data') + data = mx.symbol.Flatten(data=data) + fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) + act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") + fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) + act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") + fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes) + mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') + return mlp +``` + + + +Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own NodeAttr. There is a op field in NodeAttr class, when a Symbol represents Variable(often input data), the op field is null. + +Symbol contains a data member, std::vector outputs, and NodeEntry cantains a poniter to Node. We can follow the Node pointer to get all the Graph. + +And Symbol can be saved to a Json file. + +Here is a detailed example: + +``` +>>> import mxnet as mx +>>> data = mx.symbol.Variable('data') +>>> print data.debug_str() +Variable:data + +>>> data = mx.symbol.Flatten(data=data) +>>> print data.debug_str() +Symbol Outputs: + output[0]=flatten0(0) +Variable:data +-------------------- +Op:Flatten, Name=flatten0 +Inputs: + arg[0]=data(0) version=0 + +>>> fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) +>>> print fc1.debug_str() +Symbol Outputs: + output[0]=fc1(0) +Variable:data +-------------------- +Op:Flatten, Name=flatten0 +Inputs: + arg[0]=data(0) version=0 +Variable:fc1_weight +Variable:fc1_bias +-------------------- +Op:FullyConnected, Name=fc1 +Inputs: + arg[0]=flatten0(0) + arg[1]=fc1_weight(0) version=0 + arg[2]=fc1_bias(0) version=0 +Attrs: + num_hidden=128 + +``` + + +### TensorFlow + + +The core concept of symbolic API is `Tensor`. Tensorflow defines `Tensor` in Python. Please refer to the comments in TensorFlow: + +A `Tensor` is a symbolic handle to one of the outputs of an `Operation`. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow [Session](https://www.tensorflow.org/api_docs/python/tf/Session). + +A simple example is as follows: + +```python + # Build a dataflow graph. + c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) + d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) + e = tf.matmul(c, d) + + # Construct a `Session` to execute the graph. + sess = tf.Session() + + # Execute the graph and store the value that `e` represents in `result`. + result = sess.run(e) +``` + + +The main method of `Tensor` is as follows: + + +```python +@property +def op(self): + """The `Operation` that produces this tensor as an output.""" + return self._op + +@property +def dtype(self): + """The `DType` of elements in this tensor.""" + return self._dtype + +@property +def graph(self): + """The `Graph` that contains this tensor.""" + return self._op.graph + +@property +def name(self): + """The string name of this tensor.""" + if not self._op.name: + raise ValueError("Operation was not named: %s" % self._op) + return "%s:%d" % (self._op.name, self._value_index) + +@property +def device(self): + """The name of the device on which this tensor will be produced, or None.""" + return self._op.device +``` + + +Tensor can be taken as target to run by session. Tensor contains all the information of Graph, and tracks data dependency. + + +Here is a detailed example: + + +``` +>>> import tensorflow as tf +>>> c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) +>>> print c.graph + +>>> d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) +>>> print d.graph + +>>> e = tf.matmul(c, d) +>>> print e.graph + +``` + +### Dynet + + +The core concept of symbolic API is `Expression`, and Dynet defines `Expression` class in C++. + + +A simple example is as follows: + +```cpp +ComputationGraph cg; +Expression W = parameter(cg, pW); + +Expression in = input(cg, xs[i]); +Expression label = input(cg, ys[i]); +Expression pred = W * in; +Expression loss = square(pred - label); +``` + +The input data and parameter are also represented by Expression. Every basci Expression corresponds to a Node. And input data is also a Node. + +Expression has a data member ComputationGraph, and ComputationGraph will be modified in users' configuring process. Expression can be a running target, beacuse Expression contains all dependency. + + +Here is a detailed example: + +write topology in C++ + +``` +ComputationGraph cg; +Expression W = parameter(cg, pW); +cg.print_graphviz(); + +Expression pred = W * xs[i]; +cg.print_graphviz(); + +Expression loss = square(pred - ys[i]); +cg.print_graphviz(); +``` + +compile and print + +``` +# first print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; +} +# second print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; + N1 [label="v1 = v0 * -0.98"]; + N0 -> N1; +} +# third print +digraph G { + rankdir=LR; + nodesep=.05; + N0 [label="v0 = parameters({1}) @ 0x7ffe4de00110"]; + N1 [label="v1 = v0 * -0.98"]; + N0 -> N1; + N2 [label="v2 = -1.88387 - v1"]; + N1 -> N2; + N3 [label="v3 = -v2"]; + N2 -> N3; + N4 [label="v4 = square(v3)"]; + N3 -> N4; +} +``` + +### Conclusion + + +Actually, Symbol/Tensor/Expression in Mxnet/TensorFlow/Dynet are the same level concepts. We use a unified name Expression here, this level concept has following features: + +- Users wirte topoloy with symbolic API, and all return value is Expression, including input data and parameter. +- Expression corresponds with a global Graph, and Expression can also be composed. +- Expression tracks all dependency and can be taken as a run target diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md new file mode 100644 index 0000000000000000000000000000000000000000..26d140f06db4ecefa86be015eaa731ffddc6910c --- /dev/null +++ b/doc/design/if_else_op.md @@ -0,0 +1,51 @@ +# The `IfElse` Operator + +PaddlePaddle's `IfElse` operator differs from TensorFlow's: + +- the TensorFlow version takes a scalar boolean value as the condition so that the whole mini-batch goes to either the true or the false branch, whereas +- the PaddlePaddle version takes a vector of boolean value as the condition, and instances corresponding to true values go to the true branch, those corresponding to false values go to the false branch. + +## Example + +The following PaddlePaddle program shows the usage of the IfElse operator: + +```python +import paddle as pd + +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] + +ie = pd.ifelse() +with ie.true_block(): + d = pd.layer.add(x, y) + ie.output(d, pd.layer.softmax(d)) +with ie.false_block(): + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) +``` + +A challenge to implement the `IfElse` operator is to infer those variables to be split, or, say, to identify the variable of the mini-batch or those derived from the mini-batch. + +An equivalent C++ program is as follows: + +```c++ +namespace pd = paddle; + +int x = 10; +int y = 1; +int z = 10; +bool cond = false; +int o1, o2; +if (cond) { + int d = x + y; + o1 = z; + o2 = pd::layer::softmax(z); +} else { + int d = pd::layer::fc(z); + o1 = d; + o2 = d+1; +} +``` diff --git a/doc/design/images/asgd.gif b/doc/design/images/asgd.gif new file mode 100644 index 0000000000000000000000000000000000000000..4a0da7bf6df9326a2aab1638b77c5455c18b8c4e Binary files /dev/null and b/doc/design/images/asgd.gif differ diff --git a/doc/design/images/feed_forward.png b/doc/design/images/feed_forward.png new file mode 100644 index 0000000000000000000000000000000000000000..d312371a04c26aa6cd196e0bd1f51becb425180b Binary files /dev/null and b/doc/design/images/feed_forward.png differ diff --git a/doc/design/images/feed_forward_regularized.png b/doc/design/images/feed_forward_regularized.png new file mode 100644 index 0000000000000000000000000000000000000000..677e99bfd9f8e72ed9fe4b27127af2ced202f447 Binary files /dev/null and b/doc/design/images/feed_forward_regularized.png differ diff --git a/doc/design/images/graph_construction_example.bash b/doc/design/images/graph_construction_example.bash new file mode 100755 index 0000000000000000000000000000000000000000..35e6997abd17588e17a82d448918fc1b3bd7220e --- /dev/null +++ b/doc/design/images/graph_construction_example.bash @@ -0,0 +1,11 @@ +cat ./graph_construction_example.dot | \ + sed 's/color=red/color=red, style=invis/g' | \ + sed 's/color=green/color=green, style=invis/g' | \ + dot -Tpng > graph_construction_example_forward_only.png + +cat ./graph_construction_example.dot | \ + sed 's/color=green/color=green, style=invis/g' | \ + dot -Tpng > graph_construction_example_forward_backward.png + +cat ./graph_construction_example.dot | \ + dot -Tpng > graph_construction_example_all.png diff --git a/doc/design/images/graph_construction_example.dot b/doc/design/images/graph_construction_example.dot new file mode 100644 index 0000000000000000000000000000000000000000..e115f9844bae6ad24f638c8ed4749cea8aff06a9 --- /dev/null +++ b/doc/design/images/graph_construction_example.dot @@ -0,0 +1,68 @@ +digraph ImageClassificationGraph { + ///////// The forward part ///////// + FeedX [label="Feed", color=blue, shape=box]; + FeedY [label="Feed", color=blue, shape=box]; + InitW [label="Init", color=blue, shape=diamond]; + Initb [label="Init", color=blue, shape=diamond]; + FC [label="FC", color=blue, shape=box]; + MSE [label="MSE", color=blue, shape=box]; + + x [label="x", color=blue, shape=oval]; + l [label="l", color=blue, shape=oval]; + y [label="y", color=blue, shape=oval]; + W [label="W", color=blue, shape=doublecircle]; + b [label="b", color=blue, shape=doublecircle]; + cost [label="cost", color=blue, shape=oval]; + + FeedX -> x -> FC -> y -> MSE -> cost [color=blue]; + FeedY -> l [color=blue]; + InitW -> W [color=blue]; + Initb -> b [color=blue]; + W -> FC [color=blue]; + b -> FC [color=blue]; + l -> MSE [color=blue]; + + ////////// The backward part ///////// + MSE_Grad [label="MSE_grad", color=red, shape=box]; + FC_Grad [label="FC_grad", color=red, shape=box]; + + d_cost [label="d cost", color=red, shape=oval]; + d_y [label="d y", color=red, shape=oval]; + d_b [label="d b", color=red, shape=oval]; + d_W [label="d W", color=red, shape=oval]; + + cost -> MSE_Grad [color=red]; + d_cost -> MSE_Grad [color=red]; + l -> MSE_Grad [color=red]; + y -> MSE_Grad -> d_y [color=red]; + + x -> FC_Grad [color=red]; + y -> FC_Grad [color=red]; + d_y -> FC_Grad [color=red]; + W -> FC_Grad -> d_W [color=red]; + b -> FC_Grad -> d_b [color=red]; + + ////////// The optimizaiton part ////////// + + OPT_W [label="SGD", color=green, shape=box]; + OPT_b [label="SGD", color=green, shape=box]; + + W -> OPT_W [color=green]; + b -> OPT_b [color=green]; + d_W -> OPT_W -> W [color=green]; + d_b -> OPT_b -> b [color=green]; + + ////////// Groupings ////////// + + subgraph clusterMSE { + style=invis; + MSE; + MSE_Grad; + } + + subgraph clusterFC { + style=invis; + FC; + FC_Grad; + } +} diff --git a/doc/design/images/graph_construction_example_all.png b/doc/design/images/graph_construction_example_all.png new file mode 100644 index 0000000000000000000000000000000000000000..261611a5721f9aa97874f7e6d897fe48cf667db2 Binary files /dev/null and b/doc/design/images/graph_construction_example_all.png differ diff --git a/doc/design/images/graph_construction_example_forward_backward.png b/doc/design/images/graph_construction_example_forward_backward.png new file mode 100644 index 0000000000000000000000000000000000000000..4c69687f4a6a181138f3df72ce5e8aa48487b5be Binary files /dev/null and b/doc/design/images/graph_construction_example_forward_backward.png differ diff --git a/doc/design/images/graph_construction_example_forward_only.png b/doc/design/images/graph_construction_example_forward_only.png new file mode 100644 index 0000000000000000000000000000000000000000..e668c16e0cac73acb4e5dc2b1827557ae77126b4 Binary files /dev/null and b/doc/design/images/graph_construction_example_forward_only.png differ diff --git a/doc/design/images/l1_regularization.png b/doc/design/images/l1_regularization.png new file mode 100644 index 0000000000000000000000000000000000000000..e1b9c7a44f94dc027598a98da93ddb8133190972 Binary files /dev/null and b/doc/design/images/l1_regularization.png differ diff --git a/doc/design/images/l2_regularization.png b/doc/design/images/l2_regularization.png new file mode 100644 index 0000000000000000000000000000000000000000..d5c2fcbc2ccae75ad083162e5a2dceb0210be298 Binary files /dev/null and b/doc/design/images/l2_regularization.png differ diff --git a/doc/design/images/loss_equation.png b/doc/design/images/loss_equation.png new file mode 100644 index 0000000000000000000000000000000000000000..14212ec8d36c803de96bde8a9a4b5591bd20434e Binary files /dev/null and b/doc/design/images/loss_equation.png differ diff --git a/doc/design/images/theta_star.gif b/doc/design/images/theta_star.gif new file mode 100644 index 0000000000000000000000000000000000000000..dd24d33e124396be3fc410c9b12f33148f64efe2 Binary files /dev/null and b/doc/design/images/theta_star.gif differ diff --git a/doc/design/infer_var_type.md b/doc/design/infer_var_type.md new file mode 100644 index 0000000000000000000000000000000000000000..d9d5397becba2ef1806d9341cd49cd9aabbf4a6a --- /dev/null +++ b/doc/design/infer_var_type.md @@ -0,0 +1,78 @@ +# Design Doc: InferVarType + +## The Problem Posed + +The variable in our design can hold variant types. Such as `LoDTensor` and `SelectedRows`. An operator should be able to inference the variable types of its output. + +For example, a `lookup table` operator takes two `LoDTensor`; one is a float tensor as the embedding table, the other is an int tensor as word ID. The gradient operator of `lookup table` will generate a `SelectedRows` as its output. A `sum` operator can take both `LoDTensor` and `SelectedRows` as its inputs and will generate a `LoDTensor` if any of its inputs is `LoDTensor`, otherwise, the `sum` operator will generate `SelectedRows` as its output. + +The variable type will be constant at runtime. Every variable's type can either be set by the user (input data and parameter) or be inferred by the operator in compile time. + +## Proposed Solution + +The `InferVarType` is a compile-time function which is registered to each operator. The inferface of that function is: + + +```c++ +using InferVarTypeFN = std::function< + void (const OpDescBind& /*op_desc*/, BlockDescBind* /*block*/)>; +``` + +It takes an operator description as its input and will write the output variable type and store them in block description. + +The `InferVarTypeFN` will be registered in `OpInfo`, to replace `infer_var_type_` field. The `OpInfo` should be + +```cpp +struct OpInfo { + InferVarTypeFN infer_var_type_; + ... +}; +``` + +The default `InferVarType` will set output type as `LoDTensor`. It can be done by `GetInferVarType()`. + +```cpp +void DefaultInferVarType(const OpDescBind& op_desc, BlockDescBind* block) { + // set the output type of variable as `LoDTensor`. + // ... +} + +struct OpInfo { + InferVarTypeFN infer_var_type_; + InferVarTypeFN GetInferVarType() const { + if (infer_var_type_) { + return infer_var_type_; + } else { + return DefaultInferVarType; + } + } +}; +``` + +## Register InferVarType + +We provide a thin base class for registering an `InferVarTypeFN`. To use a base class will ease the implementation of registry since we can detect the registry entry is an `InferVarTypeFN` or not. + +```cpp +class VarTypeInferer { +public: + virtual void operator()(const OpDescBind& op_desc, BlockDescBind* block) const = 0; +} +``` + +Operator developers can write the specialize `VarTypeInferer` as follow. + +```cpp +class SpecialVarTypeInferer : public VarTypeInferer { +public: + virtual void operator()(const OpDescBind& op_desc, BlockDescBind* block) const { + // .. own logic + } +} +``` + +Then user can register the `InferVarType` just like `GradOpDescMaker` and `OpInfoMaker`. + +``` +REGISTER_OPERATOR(some_op, OpType, SpecialVarTypeInferer, ...); +``` diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkldnn/README.MD index e956994431fbb43438c56dcd96ad8313cf516090..fe8da907d9d45a2164031430ac5b7a3d5523967a 100644 --- a/doc/design/mkldnn/README.MD +++ b/doc/design/mkldnn/README.MD @@ -101,6 +101,7 @@ if use_mkldnn 5. 在**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue`和`mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。 6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。 7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 +8. 关于MKLDNN参数的保存。由于MKLDNN参数的格式与PaddlePaddle原有的格式存在不一样的情况,所以需要在保存参数时同时保存该格式信息。目前准备扩展[Header](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/parameter/Parameter.h#L247)里面的`int32_t version`。这个值不管是在v1还是在v2里面,一直保存的是0,所以可以充分利用这个信息,定义一个枚举处理所有MKLDNN的参数格式,从而`MKLDNNLayer`就可以从输入的参数中获取需要的格式信息。 ## References diff --git a/doc/design/model_format.md b/doc/design/model_format.md new file mode 100644 index 0000000000000000000000000000000000000000..e29129fddf775939c9f7a8b49d850d523e6e5a45 --- /dev/null +++ b/doc/design/model_format.md @@ -0,0 +1,36 @@ +# Design Doc: Model Format + +## Motivation + +A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code. + +As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters. + +## Implementation + +The topology is saved as a plain text in a detailed self-contain protobuf file. + +The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task. + +As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is, + +The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format. + +|field name | type | description | +| --- | --- | --- | +| version | uint32_t | Version of saved file. Always 0 now. | +| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. | +| tensor desc | void* | TensorDesc protobuf binary message | +| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` | +| lod_level | uint64_t | Level of LoD | +| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. | +| data of lod[0] | uint64_t* | [Optional] lod[0].data() | +| ... | ... | ... | + + + +## Summary + +- We introduce a model format. +- The model represented by its forward-pass computation procedure is saved in a **ProgramDesc** protobuf message. +- A bunch of specified format binary tensors describe the **parameters**. diff --git a/doc/design/ops/images/2_level_rnn.dot b/doc/design/ops/images/2_level_rnn.dot new file mode 100644 index 0000000000000000000000000000000000000000..a498e882a3d85a33d44dbad7474fa2a340e33976 --- /dev/null +++ b/doc/design/ops/images/2_level_rnn.dot @@ -0,0 +1,56 @@ +digraph G { + + rnn [label="1-th level RNN" shape=box] + + subgraph cluster0 { + label = "time step 0" + + sent0 [label="sentence"] + sent1 [label="sentence"] + + rnn1 [label="2-th level RNN" shape=box] + + sent0 -> rnn1 + sent1 -> rnn1 + } + + subgraph cluster1 { + label = "time step 1" + + sent2 [label="sentence"] + sent3 [label="sentence"] + + rnn2 [label="2-th level RNN" shape=box] + + sent2 -> rnn2 + sent3 -> rnn2 + } + + subgraph cluster2 { + label = "time step 2" + + sent4 [label="sentence"] + sent5 [label="sentence"] + + rnn3 [label="2-th level RNN" shape=box] + + sent4 -> rnn3 + sent5 -> rnn3 + } + + + para0 [label="paragraph info 0"] + para1 [label="paragraph info 1"] + para2 [label="paragraph info 2"] + + rnn1 -> para0 + rnn2 -> para1 + rnn3 -> para2 + + para0 -> rnn + para1 -> rnn + para2 -> rnn + + chapter [label="chapter info"] + rnn -> chapter +} diff --git a/doc/design/ops/images/2_level_rnn.png b/doc/design/ops/images/2_level_rnn.png new file mode 100644 index 0000000000000000000000000000000000000000..0537a75beb175c0c284717421f7aa908da2a5038 Binary files /dev/null and b/doc/design/ops/images/2_level_rnn.png differ diff --git a/doc/design/ops/images/LOD-and-shape-changes-during-decoding.jpg b/doc/design/ops/images/LOD-and-shape-changes-during-decoding.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8b0d90f7b9d8184b314b0ee4e521f53eb5f1b455 Binary files /dev/null and b/doc/design/ops/images/LOD-and-shape-changes-during-decoding.jpg differ diff --git a/doc/design/ops/images/rnn.dot b/doc/design/ops/images/rnn.dot new file mode 100644 index 0000000000000000000000000000000000000000..c1141cd9c981bb3cbf50d8bf7a6ed210280d79a5 --- /dev/null +++ b/doc/design/ops/images/rnn.dot @@ -0,0 +1,87 @@ +digraph G { + label = "simple RNN implementation" + + ranksep=2; + + //graph [nodesep=1, ranksep=1]; + + node[nodesep=1] + + subgraph cluster0 { + label = "global scope" + rankdir = TB + W + boot_memory + input + output + } + + subgraph cluster1 { + label = "step-scope 0" + rankdir = TB + memory0[label="memory"] + prememory0[label="pre-memory"] + step_input0[label="step input"] + step_output0[label="step output"] + } + + subgraph cluster2 { + label = "step-scope 1" + rankdir = TB + memory1[label="memory"] + prememory1[label="pre-memory"] + step_input1[label="step input"] + step_output1[label="step output"] + } + + subgraph cluster3 { + label = "step-scope 2" + rankdir = TB + memory2[label="memory"] + prememory2[label="pre-memory"] + step_input2[label="step input"] + step_output2[label="step output"] + } + + stepnet [shape=box] + stepnet0 [shape=box, style=dashed] + stepnet1 [shape=box, style=dashed] + stepnet2 [shape=box, style=dashed] + + + edge[color=blue] + boot_memory -> prememory0 [label="init" color="blue"] + memory0 -> prememory1 [label="copy/reference" color="blue"] + memory1 -> prememory2 [label="copy/reference" color="blue"] + + edge[color=black] + W -> stepnet0[constraint=false, style=dashed] + W -> stepnet1[constraint=false, style=dashed] + W -> stepnet2[constraint=false, style=dashed] + + memory0 -> stepnet0[style=dashed] + prememory0 -> stepnet0 -> step_output0[style=dashed] + + memory1 -> stepnet1[style=dashed] + prememory1 -> stepnet1 -> step_output1[style=dashed] + + memory2 -> stepnet2[style=dashed] + prememory2 -> stepnet2 -> step_output2[style=dashed] + + input -> step_input0 + input -> step_input1 + input -> step_input2 + + step_input0 -> stepnet0 [style=dashed] + step_input1 -> stepnet1[style=dashed] + step_input2 -> stepnet2[style=dashed] + + step_output0 -> output + step_output1 -> output + step_output2 -> output + + stepnet0 -> stepnet[style=dashed] + stepnet1 -> stepnet[style=dashed] + stepnet2 -> stepnet[style=dashed] + +} diff --git a/doc/design/ops/images/rnn.jpg b/doc/design/ops/images/rnn.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9867e404cf959df0dce6ded5222b466c788fb840 Binary files /dev/null and b/doc/design/ops/images/rnn.jpg differ diff --git a/doc/design/ops/images/rnn.png b/doc/design/ops/images/rnn.png new file mode 100644 index 0000000000000000000000000000000000000000..e139e373fe8396782044cfd936fdde624f8c66fe Binary files /dev/null and b/doc/design/ops/images/rnn.png differ diff --git a/doc/design/ops/images/rnn_2level_data.dot b/doc/design/ops/images/rnn_2level_data.dot new file mode 100644 index 0000000000000000000000000000000000000000..1d85ae2617a915ad0ad8288d848b607cc37ad297 --- /dev/null +++ b/doc/design/ops/images/rnn_2level_data.dot @@ -0,0 +1,75 @@ +digraph G { + chapter [label="chapter"] + + subgraph cluster0 { + label = "paragraph 0" + + top_rnn0[label="top rnn step 0" shape=box] + + p0 [label="paragraph 0"] + p1 [label="paragraph 1"] + } + + subgraph cluster1{ + label = "paragraph 1" + + top_rnn1[label="top rnn step 1" shape=box] + + p2 [label="paragraph 0"] + p3 [label="paragraph 1"] + } + + subgraph cluster_p0 { + label = "sentence 0" + + low_rnn0 [label="low rnn step 0" shape=box] + s00 [label="sentence 0"] + s01 [label="sentence 1"] + + low_rnn0 -> s00 + low_rnn0 -> s01 + } + + subgraph cluster_p1 { + label = "sentence 1" + low_rnn1 [label="low rnn step 1" shape=box] + s10 [label="sentence 0"] + s11 [label="sentence 1"] + low_rnn1 -> s10 + low_rnn1 -> s11 + } + + subgraph cluster_p2 { + label = "sentence 1" + low_rnn2 [label="low rnn step 0" shape=box] + s20 [label="sentence 0"] + s21 [label="sentence 1"] + low_rnn2 -> s20 + low_rnn2 -> s21 + } + + subgraph cluster_p3 { + label = "sentence 1" + low_rnn3 [label="low rnn step 1" shape=box] + s30 [label="sentence 0"] + s31 [label="sentence 1"] + low_rnn3 -> s30 + low_rnn3 -> s31 + } + + + chapter -> top_rnn0 + chapter -> top_rnn1 + + top_rnn0 -> p0 + top_rnn0 -> p1 + top_rnn1 -> p2 + top_rnn1 -> p3 + + + p0 -> low_rnn0 + p1 -> low_rnn1 + p2 -> low_rnn2 + p3 -> low_rnn3 + +} diff --git a/doc/design/ops/images/rnn_2level_data.png b/doc/design/ops/images/rnn_2level_data.png new file mode 100644 index 0000000000000000000000000000000000000000..4be81b2430717a6a506342a09fc26899568574c6 Binary files /dev/null and b/doc/design/ops/images/rnn_2level_data.png differ diff --git a/doc/design/ops/rnn.md b/doc/design/ops/rnn.md new file mode 100644 index 0000000000000000000000000000000000000000..a78eea7d45e9e9553d153170aa31da55ec6e8289 --- /dev/null +++ b/doc/design/ops/rnn.md @@ -0,0 +1,153 @@ +# RNNOp design + +This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator. + +## RNN Algorithm Implementation + +

+ +

+ +The above diagram shows an RNN unrolled into a full network. + +There are several important concepts: + +- *step-net*: the sub-graph to run at each step, +- *memory*, $h_t$, the state of the current step, +- *ex-memory*, $h_{t-1}$, the state of the previous step, +- *initial memory value*, the ex-memory of the first step. + +### Step-scope + +There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step. + +

+
+Figure 2 the RNN's data flow +

+ +Please be aware that all steps run the same step-net. Each step + +1. creates the step-scope, +2. realizes local variables, including step-outputs, in the step-scope, and +3. runs the step-net, which could use these variables. + +The RNN operator will compose its output from step outputs in step scopes. + +### Memory and Ex-memory + +Let's give more details about memory and ex-memory via a simply example: + +$$ +h_t = U h_{t-1} + W x_t +$$, + +where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively. + +In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step, +or copy the value of the previous memory value to the current ex-memory variable. + +### Usage in Python + +For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md). + +We can define an RNN's step-net using Block: + +```python +import paddle as pd + +X = some_op() # x is some operator's output, and is a LoDTensor +a = some_op() + +# declare parameters +W = pd.Variable(shape=[20, 30]) +U = pd.Variable(shape=[20, 30]) + +rnn = pd.create_rnn_op(output_num=1) +with rnn.stepnet(): + x = rnn.add_input(X) + # declare a memory (rnn's step) + h = rnn.add_memory(init=a) + # h.pre_state() means previous memory of rnn + new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state())) + # update current memory + h.update(new_state) + # indicate that h variables in all step scopes should be merged + rnn.add_outputs(h) + +out = rnn() +``` + +Python API functions in above example: + +- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs. +- `rnn.add_memory` creates a variable used as the memory. +- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output. + +### Nested RNN and LoDTensor + +An RNN whose step-net includes other RNN operators is known as an *nested RNN*. + +For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences. + +The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text. + +

+ +

+ +```python +import paddle as pd + +W = pd.Variable(shape=[20, 30]) +U = pd.Variable(shape=[20, 30]) + +W0 = pd.Variable(shape=[20, 30]) +U0 = pd.Variable(shape=[20, 30]) + +# a is output of some op +a = some_op() + +# chapter_data is a set of 128-dim word vectors +# the first level of LoD is sentence +# the second level of LoD is chapter +chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2) + +def lower_level_rnn(paragraph): + ''' + x: the input + ''' + rnn = pd.create_rnn_op(output_num=1) + with rnn.stepnet(): + sentence = rnn.add_input(paragraph, level=0) + h = rnn.add_memory(shape=[20, 30]) + h.update( + pd.matmul(W, sentence) + pd.matmul(U, h.pre_state())) + # get the last state as sentence's info + rnn.add_outputs(h) + return rnn + +top_level_rnn = pd.create_rnn_op(output_num=1) +with top_level_rnn.stepnet(): + paragraph_data = rnn.add_input(chapter_data, level=1) + low_rnn = lower_level_rnn(paragraph_data) + paragraph_out = low_rnn() + + h = rnn.add_memory(init=a) + h.update( + pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state())) + top_level_rnn.add_outputs(h) + +# just output the last step +chapter_out = top_level_rnn(output_all_steps=False) +``` + +in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences. + +By default, the `RNNOp` will concatenate the outputs from all the time steps, +if the `output_all_steps` set to False, it will only output the final time step. + + +

+ +

diff --git a/doc/design/ops/sequence_decoder.md b/doc/design/ops/sequence_decoder.md new file mode 100644 index 0000000000000000000000000000000000000000..9007aae7a8355ed06c6720a921351f81b859c1fe --- /dev/null +++ b/doc/design/ops/sequence_decoder.md @@ -0,0 +1,245 @@ +# Design: Sequence Decoder Generating LoDTensors +In tasks such as machine translation and image to text, +a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences. + +This documentation describes how to implement the sequence decoder as an operator. + +## Beam Search based Decoder +The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences, +it is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set. + +In the old version of PaddlePaddle, a C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search, +due to the complexity, the implementation relays on a lot of special data structures, +quite trivial and hard to be customized by users. + +There are a lot of heuristic tricks in the sequence generation tasks, +so the flexibility of sequence decoder is very important to users. + +During PaddlePaddle's refactoring work, +some new concept is proposed such as [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support sequence usage, +and they can help to make the implementation of beam search based sequence decoder **more transparent and modular** . + +For example, the RNN sates, candidates IDs and probabilities of beam search can be represented as `LoDTensors`; +the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated. + +## Changing LoD's absolute offset to relative offsets +The current `LoDTensor` is designed to store levels of variable-length sequences, +it stores several arrays of integers each represents a level. + +The integers in each level represents the begin and end (not inclusive) offset of a sequence **in the underlying tensor**, +let's call this format the **absolute-offset LoD** for clear. + +The relative-offset LoD can fast retrieve any sequence but fails to represent empty sequences, for example, a two-level LoD is as follows +```python +[[0, 3, 9] + [0, 2, 3, 3, 3, 9]] +``` +The first level tells that there are two sequences: +- the first's offset is `[0, 3)` +- the second's offset is `[3, 9)` + +while on the second level, there are several empty sequences that both begin and end at `3`. +It is impossible to tell how many empty second-level sequences exist in the first-level sequences. + +There are many scenarios that relay on empty sequence representation, +such as machine translation or image to text, one instance has no translations or the empty candidate set for a prefix. + +So let's introduce another format of LoD, +it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD. + +For example, to represent the same sequences of the above data + +```python +[[0, 3, 6] + [0, 2, 3, 3, 3, 9]] +``` + +the first level represents that there are two sequences, +their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`. + +The second level is the same with the relative offset example because the lower level is a tensor. +It is easy to find out the second sequence in the first-level LoD has two empty sequences. + +The following demos are based on relative-offset LoD. + +## Usage in a simple machine translation model +Let's start from a simple machine translation model that is simplified from [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a simple blueprint of what a sequence decoder can do and how to use it. + +The model has an encoder that learns the semantic vector from a sequence, +and a decoder which uses the sequence decoder to generate new sentences. + +**Encoder** +```python +import paddle as pd + +dict_size = 8000 +source_dict_size = dict_size +target_dict_size = dict_size +word_vector_dim = 128 +encoder_dim = 128 +decoder_dim = 128 +beam_size = 5 +max_length = 120 + +# encoder +src_word_id = pd.data( + name='source_language_word', + type=pd.data.integer_value_sequence(source_dict_dim)) +src_embedding = pd.embedding(size=source_dict_size, size=word_vector_dim) + +src_word_vec = pd.lookup(src_embedding, src_word_id) + +encoder_out_seq = pd.gru(input=src_word_vec, size=encoder_dim) + +encoder_ctx = pd.last_seq(encoder_out_seq) +# encoder_ctx_proj is the learned semantic vector +encoder_ctx_proj = pd.fc( + encoder_ctx, size=decoder_dim, act=pd.activation.Tanh(), bias=None) +``` + +**Decoder** + +```python +def generate(): + decoder = pd.while_loop() + with decoder.step(): + decoder_mem = decoder.memory(init=encoder_ctx) # mark the memory + generated_ids = decoder.memory() # TODO init to batch_size s + generated_scores = decoder.memory() # TODO init to batch_size 1s or 0s + + target_word = pd.lookup(trg_embedding, gendrated_ids) + # expand encoder_ctx's batch to fit target_word's lod + # for example + # decoder_mem.lod is + # [[0 1 3], + # [0 1 3 6]] + # its tensor content is [a1 a2 a3 a4 a5] + # which means there are 2 sentences to translate + # - the first sentence has 1 translation prefixes, the offsets are [0, 1) + # - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6) + # the target_word.lod is + # [[0, 1, 6] + # [0, 2, 4, 7, 9 12]] + # which means 2 sentences to translate, each has 1 and 5 prefixes + # the first prefix has 2 candidates + # the following has 2, 3, 2, 3 candidates + # the encoder_ctx_expanded's content will be + # [a1 a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a5] + encoder_ctx_expanded = pd.lod_expand(encoder_ctx, target_word) + decoder_input = pd.fc( + act=pd.activation.Linear(), + input=[target_word, encoder_ctx], + size=3 * decoder_dim) + gru_out, cur_mem = pd.gru_step( + decoder_input, mem=decoder_mem, size=decoder_dim) + scores = pd.fc( + gru_out, + size=trg_dic_size, + bias=None, + act=pd.activation.Softmax()) + # K is an config + topk_scores, topk_ids = pd.top_k(scores, K) + topk_generated_scores = pd.add_scalar(topk_scores, generated_scores) + + selected_ids, selected_generation_scores = decoder.beam_search( + topk_ids, topk_generated_scores) + + # update the states + decoder_mem.update(cur_mem) # tells how to update state + generated_ids.update(selected_ids) + generated_scores.update(selected_generation_scores) + + decoder.output(selected_ids) + decoder.output(selected_generation_scores) + +translation_ids, translation_scores = decoder() +``` +The `decoder.beam_search` is a operator that given the candidates and the scores of translations including the candidates, +return the result of the beam search algorithm. + +In this way, users can customize anything on the inputs or outputs of beam search, for example, two ways to prune some translation prefixes + +1. meke the correspondind elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate. +2. remove some specific candidate in `selected_ids` +3. get the final `translation_ids`, remove the translation sequence in it. + +The implementation of sequence decoder can reuse the C++ class [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30), +so the python syntax is quite similar to a [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop). + +Both of them are two-level `LoDTensors` + +- the first level represents `batch_size` of (source) sentences; +- the second level represents the candidate ID sets for translation prefix. + +for example, 3 source sentences to translate, and has 2, 3, 1 candidates. + +Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape, +a `lod_expand` operator is used to expand the LoD of the previous state to fit the current state. + +For example, the previous state + +* LoD is `[0, 1, 3][0, 2, 5, 6]` +* content of tensor is `a1 a2 b1 b2 b3 c1` + +the current state stored in `encoder_ctx_expanded` + +* LoD is `[0, 2, 7][0 3 5 8 9 11 11]` +* the content is + - a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates) + - a2 a2 + - b1 b1 b1 + - b2 + - b3 b3 + - None (c1 has 0 candidates, so c1 is dropped) + +Benefit from the relative offset LoD, empty candidate set can be represented naturally. + +the status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor, the corresponding syntax is + +```python +decoder.output(selected_ids) +decoder.output(selected_generation_scores) +``` + +the `selected_ids` is the candidate ids for the prefixes, +it will be `Packed` by `TensorArray` to a two-level `LoDTensor`, +the first level represents the source sequences, +the second level represents generated sequences. + +Pack the `selected_scores` will get a `LoDTensor` that stores scores of each candidate of translations. + +Pack the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation. + +## LoD and shape changes during decoding +

+ +

+ +According the image above, the only phrase to change LoD is beam search. + +## Beam search design +The beam search algorthm will be implemented as one method of the sequence decoder, it has 3 inputs + +1. `topk_ids`, top K candidate ids for each prefix. +2. `topk_scores`, the corresponding scores for `topk_ids` +3. `generated_scores`, the score of the prefixes. + +All of the are LoDTensors, so that the sequence affilication is clear. +Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix. + +It will return three variables + +1. `selected_ids`, the final candidate beam search function selected for the next step. +2. `selected_scores`, the scores for the candidates. +3. `generated_scores`, the updated scores for each prefixes (with the new candidates appended). + +## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray` +The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors, +and they exist in each time step, +so it is natural to store them in arrays. + +Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors, +the results of beam search are better to store in a `TensorArray`. + +The `Pack` and `UnPack` in `TensorArray` are used to package tensors in the array to a `LoDTensor` or split the `LoDTensor` to an array of tensors. +It needs some extensions to support pack or unpack an array of `LoDTensors`. diff --git a/doc/design/optimizer.md b/doc/design/optimizer.md new file mode 100644 index 0000000000000000000000000000000000000000..202b4b65103c0b7c536a9cb466c4120ce134d8c3 --- /dev/null +++ b/doc/design/optimizer.md @@ -0,0 +1,91 @@ +## Optimizer Design + +### The Problem + +A PaddlePaddle program, or a block, is a sequence of operators operating variables. A training program needs to do three kinds of works: + +1. the forward pass, which computes intermediate results and the cost(s), +1. the backward pass, which derives gradients from intermediate results and costs, and +1. the optimization pass, which update model parameters to optimize the cost(s). + +These works rely on three kinds of operators: + +1. forward operators, +1. gradient operators, and +1. optimization operators. + +It's true that users should be able to create all these operators manually by calling some low-level API, but it would be much more convenient if they could only describe the forward pass and let PaddlePaddle create the backward and optimization operators automatically. + +In this design, we propose a high-level API that automatically derives the optimisation pass and operators from the forward pass. + + +### High-level Python API to describe the training process + +1. User write code to describe the network: + + ```python + images = layer.data("images") + labels = layer.data("labels") + w1 = pd.var("w1") + b1 = pd.var("b1") + hidden = layer.fc(images, w=w1, b=b1) + cost = layer.mse(hidden, labels) + ``` + + The above code snippet will create forward operators in [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md). + + +2. Users create a certain kind of Optimizer with some argument. + + ```python + optimizer = AdagradOptimizer(learing_rate=0.001) + ``` + +3. Users use the optimizer to `minimize` a certain `cost` through updating parameters in parameter_list. + + ```python + opt_op_list = optimizer.minimize(cost, parameter_list=[w1, b1]) + ``` + The above code snippet will create gradient and optimization operators in Block. The return value of `minimize()` is list of optimization operators that will be run by session. + +4. Users use Session/Executor to run this opt_op_list as target to do training. + + ```python + sess.run(target= opt_op_list, ...) + ``` + +#### Optimizer Python interface: + +```python +class Optimizer(object): + """Optimizer Base class. + + """ + + def __init__(self): + pass + + def create_optimization_pass(self, parameters_and_grads): + """Add optimization operators to update gradients to variables. + + Args: + parameters_and_grads: a list of (variable, gradient) pair to update. + + Returns: + optmization_op_list: a list of optimization operator that will update parameter using gradient. + """ + return None + + def minimize(self, loss, parameter_list): + """Add operations to minimize `loss` by updating `parameter_list`. + + This method combines interface `append_backward_ops()` and + `create_optimization_pass()` into one. + """ + params_grads = self.create_backward_pass(loss, parameter_list) + update_ops = self.create_optimization_pass(params_grads) + return update_ops + +``` + +Users can inherit the Optimizer above to create their own Optimizer with some special logic, such as AdagradOptimizer. diff --git a/doc/design/parameter_average.md b/doc/design/parameter_average.md new file mode 100644 index 0000000000000000000000000000000000000000..2c4edee9fe31d502ea62b9fe5c8757c0a4c5e79f --- /dev/null +++ b/doc/design/parameter_average.md @@ -0,0 +1,72 @@ +# Averaging Parameter in PaddlePaddle + +## Why Averaging +In a large scale machine learning setup where the size of the training data is huge, it could take us a large number of iterations over the training data before we can achieve the optimal values of parameters of our model. Looking at the problem setup, it is desirable if we can obtain the optimal values of parameters by going through the data in as few passes as we can. + +Polyak and Juditsky (1992) showed that the test performance of simple average of parameters obtained by Stochastic Gradient Descent (SGD) is as good as that of parameter values that are obtained by training the model over and over again, over the training dataset. + +Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for
. The averaging is done as follows: + +
+ +We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above. + +### How to perform Parameter Averaging in PaddlePaddle + +Parameter Averaging in PaddlePaddle works in the following way during training : +1. It will take in an instance of a normal optimizer as an input, e.g. RMSPropOptimizer +2. The optimizer itself is responsible for updating the parameters. +3. The ParameterAverageOptimizer maintains a separate copy of the parameters for itself: + 1. In concept, the values of this copy are the average of the values of the parameters in the most recent N batches. + 2. However, saving all the N instances of the parameters in memory is not feasible. + 3. Therefore, an approximation algorithm is used. + +Hence, overall we have have two copies of the parameters: one for the optimizer itself, and one for the ParameterAverageOptimizer. The former should be used in back propagation, while the latter should be used during testing and should be saved. + +During the testing/ saving the model phase, we perform the following steps: +1. Perform the delayed operations. +2. Save current values of the parameters to a temporary variable. +3. Replace the values of the parameters with the averaged values. +4. Perform testing and/or save the parameters. +5. Restore the values of the parameters once done. + +### How to implement Averaging of Parameter in PaddlePaddle + +We can add the ParameterAverageOptimizer op to the graph through Python API. Using this approach, we manually add this op to the graph and direct the output of the optimizer op to this op during training. + + **Advantages**: + - Allows for greater flexibility to the users of PaddlePaddle. Using this approach, the users can plug different optimizers into ParameterAverageOptimizer by passing in the optimizer to the op. + - Makes it easy for the users to customize and extend the framework. + + **Disadvantages**: + - Implementation requires re-writing the averaging methodology in Python. + +### Low-Level implementation + +In the new design, we propose to create a new operation for averaging parameter updates (ParameterAverageOptimizer). For now, we can add an op that takes in the following as input: +- the optimizer +- the window_size to keep the updates + +The ParameterAverageOptimizer op can be like any other operator with its own CPU/GPU implementation either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement the kernel using Eigen following the abstraction pattern implemented for [Operators](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.h). We also want to support the case when the Trainer/Optimizer runs on the GPU while ParameterAverageOptimizer runs on a CPU. + +The idea of building an op for averaging is in sync with the refactored PaddlePaddle philosophy of using operators to represent any computation unit. The way the op will be added to the computation graph will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API. + +### Python API implementation for ParameterAverageOptimizer + +Based on Polyak and Juditsky (1992), we can generalize the averaging of updates to any optimizer. The input to the op would be the following: +- Any optimizer (RMSProp , AdaGrad etc.) +- A window size. The op keeps accumulating updated parameter values over a window of N batches and takes an average. Move the averaged value to a buffer when window is full to avoid loss of precision. + +Using the ParameterAverageOptimizer op, any user can add the operation to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support averaging. As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since ParameterAverageOptimizer will be an operator, it makes sense to create it in the layer functions. +We will have a wrapper written in Python that will support the functionality and implement the actual core computation in C++ core as we have done for other [Optimizers](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/rmsprop_op.cc) + +#### Creation of the ParameterAverageOptimizer operator +There are two ways for creating the ParameterAverageOptimizer op: +1. We create the op immediately while building the computation graph. +2. We add the op in a lazy manner, just before the backward pass, similar to the way the optimization ops are added. + +The proposal is to add the op immediately while building the computation graph. + +#### High-level API + +In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide parameter average functionality in layer functions. diff --git a/doc/design/parameters_in_cpp.md b/doc/design/parameters_in_cpp.md index b6f99bc7d9d6fafacb0a4bcff806b65d9aef98cc..a7ac3f17c44ca94a669a8f1e283b291bceb42317 100644 --- a/doc/design/parameters_in_cpp.md +++ b/doc/design/parameters_in_cpp.md @@ -1,19 +1,19 @@ # Design Doc: The C++ Class `Parameters` -`Parameters` is a concept we designed in Paddle V2 API. `Parameters` is a container of parameters, and make Paddle can shared parameter between topologies. We described usages of `Parameter` in [api.md](./api.md). +`Parameters` is a concept we designed in PaddlePaddle V2 API. `Parameters` is a container of parameters, which makes PaddlePaddle capable of sharing parameter between topologies. We described usages of `Parameter` in [api.md](./api.md). -We used Python to implement Parameters when designing V2 API before. There are several defects for current implementation: +We used Python to implement Parameters when designing V2 API before. There are several defects for the current implementation: * We just use `memcpy` to share Parameters between topologies, but this is very inefficient. -* We did not implement share Parameters while training. We just trigger `memcpy` when start training. +* We did not support sharing Parameters while training. We just trigger `memcpy` when start training. -It is necessary that we implement Parameters in CPP side. However, it could be a code refactoring for Paddle, because Paddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current Paddle implementation, there are three concepts associated with `Parameters`: +It is necessary that we implement Parameters in CPP side. However, it could result a code refactoring for PaddlePaddle, because PaddlePaddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current PaddlePaddle implementation, there are three concepts associated with `Parameters`: 1. `paddle::Parameter`. A `Parameters` is a container for `paddle::Parameter`. It is evident that we should use `paddle::Parameter` when developing `Parameters`. However, the `Parameter` class contains many functions and does not have a clear interface. It contains `create/store Parameter`, `serialize/deserialize`, `optimize(i.e SGD)`, `randomize/zero`. When we developing `Parameters`, we only use `create/store Parameter` functionality. -We should extract functionalities of Parameter into many classes to clean Paddle CPP implementation. +We should extract functionalities of Parameter into many classes to clean PaddlePaddle CPP implementation. 2. `paddle::GradientMachine` and its sub-classes, e.g., `paddle::MultiGradientMachine`, `paddle::NeuralNetwork`. We should pass `Parameters` to `paddle::GradientMachine` when `forward/backward` to avoid `memcpy` between topologies. @@ -24,7 +24,7 @@ Also, we should handle multi-GPU/CPU training, because `forward` and `backward` So `Parameters` should be used by `paddle::ParameterUpdater`, and `paddle::ParameterUpdater` should optimize `Parameters` (by SGD). -The step by step approach for implementation Parameters in Paddle C++ core is listed below. Each step should be a PR and could be merged into Paddle one by one. +The step by step approach for implementation Parameters in PaddlePaddle C++ core is listed below. Each step should be a PR and could be merged into PaddlePaddle one by one. 1. Clean `paddle::Parameter` interface. Extract the functionalities of `paddle::Parameter` to prepare for the implementation of Parameters. diff --git a/doc/design/program.md b/doc/design/program.md new file mode 100644 index 0000000000000000000000000000000000000000..bd2456787c4e336d357a65255a8274a7c9e465cc --- /dev/null +++ b/doc/design/program.md @@ -0,0 +1,139 @@ +# Design Doc: PaddlePaddle Programs + +## Compile and Execution + +A PaddlePaddle program consists of two parts -- the first generates a `ProgramDesc` protobuf message that describes the program, and the second runs this message using a C++ class `Executor`. + +A simple example PaddlePaddle program can be found in [graph.md](./graph.md): + +```python +x = layer.data("images") +l = layer.data("label") +y = layer.fc(x) +cost = layer.mse(y, l) +optimize(cost) +train(cost, reader=mnist.train()) +``` + +The first five lines of the following PaddlePaddle program generates, or, compiles, the `ProgramDesc` message. The last line runs it. + +## Programs and Blocks + +The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program. + +- program: some nested blocks +- [block](./block.md): + - some local variable definitions, and + - a sequence of operators + +The concept of block comes from usual programs. For example, the following C++ program has three blocks: + +```c++ +int main() { // block 0 + int i = 0; + if (i < 10) { // block 1 + for (int j = 0; j < 10; j++) { // block 2 + } + } + return 0; +} +``` + +The following PaddlePaddle program has three blocks: + +```python +import paddle as pd // block 0 + +x = minibatch([10, 20, 30]) # shape=[None, 1] +y = var(1) # shape=[1], value=1 +z = minibatch([10, 20, 30]) # shape=[None, 1] +cond = larger_than(x, 15) # [false, true, true] + +ie = pd.ifelse() +with ie.true_block(): // block 1 + d = pd.layer.add_scalar(x, y) + ie.output(d, pd.layer.softmax(d)) +with ie.false_block(): // block 2 + d = pd.layer.fc(z) + ie.output(d, d+1) +o1, o2 = ie(cond) +``` + +## `BlockDesc` and `ProgramDesc` + +All protobuf messages are defined in `framework.proto`. + +`BlockDesc` is straight-forward -- it includes local variable definitions, `vars`, and a sequence of operators, `ops`. + +```protobuf +message BlockDesc { + required int32 parent = 1; + repeated VarDesc vars = 2; + repeated OpDesc ops = 3; +} +``` + +The parent ID indicates the parent block so that operators in a block can refer to variables defined locally and also those defined in their ancestor blocks. + +All hierarchical blocks in a program are flattened and stored in an array. The block ID is the index of the block in this array. + +```protobuf +message ProgramDesc { + repeated BlockDesc blocks = 1; +} +``` + + +### Global Block + +The global block is the first one in the above array. + +## Operators that Use Blocks + +In the above example, the operator `IfElseOp` has two blocks -- the true branch and the false branch. + +The definition of `OpDesc` shows that an operator could have some attributes: + +```protobuf +message OpDesc { + AttrDesc attrs = 1; + ... +} +``` + +and an attribute could be of type block, which is, in fact, a block ID as described above: + +``` +message AttrDesc { + required string name = 1; + + enum AttrType { + INT = 1, + STRING = 2, + ... + BLOCK = ... + } + required AttrType type = 2; + + optional int32 block = 10; // when type == BLOCK + ... +} +``` + +## InferShape + +With this design, the InferShape function should take the following parameters: + +```c++ +void InferShape(int current_block, + int current_operator, + ProgramDesc* program // might change VarDesc values. + ) { + ... +} +``` + +where + +- `current_block` indices into `ProgramDesc::blocks`, +- `current_operator` indices into `BlockDesc::ops`. diff --git a/doc/design/prune.md b/doc/design/prune.md new file mode 100644 index 0000000000000000000000000000000000000000..4a5cf10c79a554779137f0cce5494fdd96ef6b7a --- /dev/null +++ b/doc/design/prune.md @@ -0,0 +1,63 @@ +# Prune + +## Motivation + +We want to support running inference, training and checkpointing in one `ProgramDesc`. We implement +`void Prune(const ProgramDesc* input, ProgramDesc* output)` function, which takes a `ProgramDesc` +and generate a pruned `ProgramDesc`. + +## Challenge + +Pruning need to support both variables and operators being evaluation targets. Consider the following +different situations. + +```python +# Case 1: run foward pass. +cost_np = session.run(target=cost) +# Case 2: run backward passing. +opts_np, _ = session.run(target=[cost, opt]) +# Case 3: run checkpointing +_ = session.run(target=checkpoint) +``` + +## Solution + +To support evaluation of operators, we add `is_target` field in the `OpDesc`. + +```c++ +message OpDesc { + required string type = 3; + repeated Var inputs = 1; + repeated Var outputs = 2; + repeated Attr attrs = 4; + optional bool is_target = 5 [ default = false ]; +}; +``` + +To support evaluation of variables, we add [fetch_op](https://github.com/PaddlePaddle/Paddle/pull/4599). +For each variable in the `target`, we insert a `fetch_op` into the `ProgramDesc` with `variable` being +`fetch_op`'s input. Then we also set `fetch_op` is a target. + +### Algorithm + +If an operator needs to be run, it must fall into one of the following cases: + +1. It is the target. +2. It is depended by some other ops, meaning its output is some other op's input. + +The first case can be checked by `op_desc.is_traget()` . The second case can be implement as + +```c++ +bool HasDependentVar(const OpDesc& op_desc, const std::set& dependent_vars) { + for (auto& var : op_desc.outputs()) { + for (auto& argu : var.arguments()) { + if (dependent_vars.count(argu) != 0) { + return true; + } + } + } + return false; +} +``` + +Then the whole algorithm can be implemented as the following [code](https://github.com/tonyyang-svail/Paddle/blob/prune_impl/paddle/framework/prune.cc). diff --git a/doc/design/python_api.md b/doc/design/python_api.md new file mode 100644 index 0000000000000000000000000000000000000000..cb5fdc765b7126fc66a1c8978d4b96c0dc5a9f2c --- /dev/null +++ b/doc/design/python_api.md @@ -0,0 +1,284 @@ +# Design Doc: Python API + +Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program. + +| Python classes | Protobuf messages | +| --- | --- | +| Program | ProgramDesc | +| Block | BlockDesc | +| Operator | OpDesc | +| Variable | VarDesc | + +Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages. + +## Core Concepts + +### Program + +A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s. The `BlockDesc`s in a `ProgramDesc` can have a tree-like hierarchical structure. However, the `ProgramDesc` onlys stores a flattened array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array. For example, operators in the step block of an RNN operator need to be able to access variables in its ancestor blocks. + +Whenever we create a block, we need to set its parent block to the current block, hence the Python class `Program` needs to maintain a data member `current_block`. + +```python +class Program(objects): + def __init__(self): + self.desc = core.NewProgram() # a C++ ProgramDesc pointer. + self.blocks = vector() + self.blocks.append(Block(self, -1)) # the global block + self.current_block = 0 # initialized to the global block + + def global_block(): + return self.blocks[0] + + def current_block(): + return self.get_block(self.current_block) + + def rollback(): + self.current_block = self.current_block().parent_idx + + def create_block(): + new_block_idx = len(self.block) + self.blocks.append(Block(self, self.current_block)) + self.current_block = new_block_idx + return current_block() +``` + +`Program` is an accessor to the protobuf message `ProgramDesc`, which is created in C++ space, because the InferShape function is in C++, which manipulates `VarDesc` messages, which are in turn members of `BlockDesc`, which is a member of `ProgramDesc`. + +`Program` creates the first block as the global block in its constructor. All parameters and their initializer operators are in the global block. + +### Block + +A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md) includes + +1. a map from variable names to an instance of the Python `Variable` class, and +1. a list of `Operator` instances. + +```python +class Block(objects): + def __init__(self, program, parent_idx): + self.desc = core.NewBlock(program.desc) + self.program = program + self.vars = map() + self.ops = vector() + self.parent_idx = parent_idx + + def create_var(self, ...): + return Variable(self, ...) + + def _create_global_var(self, ...): + program.global_block().create_var(...) + + def create_parameter(self, name, ...): + # Parameter is a subclass of variable. See Parameter section for details. + self.vars[name] = Parameter(self._create_global_var(...), ...) + return self.vars[name] + + def append_operator(self, ...): + self.ops.append(Operator(self, ...)) + + def prepend_operator(self, ...): # Parameter's ctor prepands initialize operators. + self.ops.prepend(Operator(self, ...)) +``` + +`create_parameter` is necessary because parameters are global variables, defined in the global block, but can be created in some sub-blocks. For example, an FC layer in the step block of an RNN operator. + +`prepend_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block. + +### Operator + +The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer the output shapes from the input shapes. + +```python +class Operator(object): + def __init__(self, + block, # Block + type, # string + inputs, # dict + outputs,# dict + attrs # dict + ): + self.desc = core.NewOpDesc(block.desc, type, inputs, outputs, attrs) + core.infer_shape(self.desc, inputs, outputs) + + def type(self): + return self.desc.type() +``` + +`Operator` creates the `OpDesc` message in C++ space, so that it can call the `InferShape` function, which is in C++. + +### Variable + +Operators take Variables as its inputs and outputs. + +```python +class Variable(object): + def __init__(self, + block=None, # Block + name=None, # string + shape, # tuple + dtype="float32", # string + lod_level=None # int + ): + if name is None: + name = unique_name_generator() + self.name = name + self.block = block + self.desc = core.NewVarDesc(block.desc, name, shape, lod_level) + self.writer = None +``` + +Please be aware of `self.writer`, that tracks operator who creates the variable. It possible that there are more than one operators who write a variable, but in Python space, each write to a variable is represented by a Variable class. This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**. + +### Parameter + +A parameter is a global variable with an initializer (or load) operator. + +```python +class Parameter(Variable): + def __init__(self, + block=None, # Block + name=None, # string + shape, # tuple + dtype="float32", # string + lod_level=None # int + trainable, # bool + initialize_op_attrs, + optimize_op_attrs): + super(Parameter, self).__init__(block, name, shape, dtype, lod_level) + self.trainable = trainable + self.optimize_op_attrs = optimize_op_attrs + block.prepend(Operator(block, # Block + initialize_op_attrs['type'], # string + None, # no inputs + self, # output is the parameter + initialize_op_attrs) +``` + +When users create a parameter, they can call + +```python +program.create_parameter( + ..., + init_attr={ + type: "uniform_random", + min: -1.0, + max: 1.0, + }) +) +``` + +In above example, `init_attr.type` names an initialize operator. It can also name the load operator + +```python +init_attr={ + type: "load", + filename: "something.numpy", +} +``` + +`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message. + +## Layer Function + +A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers. + +Layer functions take `Variable` and configuration parameters as its input and return the output variable(s). + +For example, `FullyConnected` take one or more variable as its input. The input could be input data or another layer's output. There are many configuration options for a `FullyConnected` layer, such as layer size, activation, parameter names, initialization strategies of parameters, and so on. The `FullyConnected` layer will return an output variable. + + +### Necessity for reusing code between layer functions + +There are a lot of code that can be reused. Such as + +* Give the default value of configuration. e.g., default initialize strategy for parameters is uniform random with `min = -1.0`, `max = 1.0`. and default initialize strategy for bias is to fill zero. +* Append the activation operator. +* Create a temporary variable. +* Create parameter. +* Generate a unique name. +* Add a bias. +* ... + +A mechanism to reuse code between layer functions is necessary. It will be around [150 lines of code](https://github.com/PaddlePaddle/Paddle/pull/4724/files#diff-823b27e07e93914ada859232ae23f846R12) if we write a `FullyConnected` layer without any helper functions. + + + +### Comparision between global functions and helper class + +The `FullyConnected` layer will be as follow when we provide global functions: + +```python +def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None): + if name is None: + name = unique_name("fc") + input = multiple_input(input) + param_attr = default_param_attr(param_attr) + param_attr = multiple_param_attr(param_attr, len(input)) + + # mul + mul_results = [] + for ipt, attr in zip(input, param_attr): + shape = ipt.shape[1:] + [size] + w = g_program.global_block().create_parameter(shape, ipt.dtype, name, attr) + tmp = create_tmp_var(name) + g_program.current_block().append_op("mul", {ipt, w}, {tmp}) + mul_results.append(tmp) + + # add sum + ... + # add bias + ... + # add activation + ... + return out +``` + +We can provide many helpers functions for layer developers. However, there are several disadvantages for global helper functions: + +1. We need a namespace for these methods, then layer developers can quickly figure out what method they can use. +2. Global functions will force layer developers to pass its parameter time by time. + +So we provide a helper class, `LayerHelper`, to share code between layer functions. The `FullyConnected` Layer will be as follow. + +```python +def fc_layer(input, size, param_attr=None, bias_attr=None, act=None, name=None): + helper = LayerHelper(locals()) # pass all parameter to LayerHelper + + mul_results = [] + for ipt, param in helper.iter_multiple_input_and_param(): + w = helper.create_parameter(shape=ipt.shape[1:] + [size], dtype = ipt.dtype) + tmp = helper.create_tmp_variable() + helper.append_op('mul', {ipt, w}, {tmp}) + mul_results.append(tmp) + + pre_bias = helper.add_sum(mul_results) + pre_activation = helper.add_bias(pre_bias) + return helper.add_activation(pre_activation) +``` + +We not only use the fewer lines of code to write `fc_layer` but also make the code clearer to understand. At the same time, layer developers can figure out what function they can invoke by typing `helper.` in a python editor. + + +### Implementation of layer helper + +We just keep all parameters of a layer function as a dictionary in layer helper as a private data member. Every method of layer helper will look up the dictionary after it is invoked. In that way, we can implement a layer helper for all layer functions even some layer does not contain some operator. For example, The `activation` is used by the FullyConnected layer or convolution layers, but a cross-entropy layer does not use it. The example code of `add_activation` are: + +```python +class LayerHelper(object): + def __init__(self, **kwargs): # kwargs is short for `keyword arguments` + self.kwargs = kwargs + + def add_activation(self, input_var): + act = self.kwargs.get("act", None) # default value is None + if act is None: # do nothing if no act + return input_var + + tmp = self.create_tmp_var(self) + self.append_op(type=act, input=input_var, output=tmp) + return tmp +``` + +## Optimizer + +[Optimizer Design Doc](./optimizer.md) diff --git a/doc/design/reader/README.md b/doc/design/reader/README.md index f21f7af520df5171798326818ecb97c3bcd14a12..320dccec3ddc7bfe6042f4e65b2518ea7b1ad24a 100644 --- a/doc/design/reader/README.md +++ b/doc/design/reader/README.md @@ -52,7 +52,7 @@ Here are valid outputs: # a mini batch of three data items, each data item is a list (single column). [([1,1,1],), ([2,2,2],), -([3,3,3],), +([3,3,3],)] ``` Please note that each item inside the list must be a tuple, below is an invalid output: diff --git a/doc/design/refactor/distributed_architecture.md b/doc/design/refactor/distributed_architecture.md new file mode 100644 index 0000000000000000000000000000000000000000..ac7e98ccf1aadbb973a4801fde842375cf63448c --- /dev/null +++ b/doc/design/refactor/distributed_architecture.md @@ -0,0 +1,222 @@ +# Design Doc: Distributed Training Architecture + +## Abstract + +PaddlePaddle v0.10.0 uses the "trainer-parameter server" +architecture. We run multiple replicated instances of trainers (runs +the same code written by the user) and parameter servers for +distributed training. This architecture served us well, but has some +limitations: + +1. Need to write special code to handle tasks which should only be run + by a single trainer. E.g., initializing model and saving model. + +2. Model parallelism is hard: need to write if-else branches conditioned + on the trainer ID to partition model onto each trainer, and manually + write the inter-model-shard communication code. + +3. The user can not directly specify the parameter update rule: need + to modify the parameter server C++ code and compile a new + binary. This adds complication for researchers: A lot of extra + effort is required. Besides, the training job submission program + may not allow running arbitrary binaries. + +This design doc discusses PaddlePaddle's new distributed training +architecture that addresses the above limitations. + +## Analysis + +We will assume the user writes the trainer program by Python, the same +analysis holds if the trainer program is written in C++. + +### Limitation 1 + +If we look at the Python code that the user writes, there are two +kinds of functionalities: + +- The training logic such as load / save model and print log. +- The neural network definition such as the definition of the data + layer, the fully connected layer, the cost function and the + optimizer. + +When we training with PaddlePaddle v0.10.0 distributedly, multiple +replicated Python instances are running on different nodes: both the +training logic and the neural network computation is replicated. + +The tasks that should only run once all belong to the training logic, +if we only replicate the neural network computation, but do **not** +replicate the training logic, the limitation could be solved. + +### Limitation 2 + +Model parallelism means running a single model on multiple nodes by +partitioning the model onto different nodes and managing the +inter-model-shard communications. + +PaddlePaddle should be able to modify the nerual network computation +definition to support model parallelism automatically. However, the +computation is only specified in Python code, and PaddlePaddle can not +modify Python code. + +Just like compiler uses a intermediate representation (IR) so that +programmer does not need to manually optimize their code in most of +the cases - the compiler will optimize the IR: + + + +We can have our own IR too: PaddlePaddle can support model parallel by +converting the IR so the user no longer need to manually do it in +Python: + + + +The IR for PaddlePaddle after refactor is called `Block`, it specifies +the computation dependency graph and the variables used in the +computation. + +### Limitation 3 + +The user can not directly specify the parameter update rule for the +parameter server because the parameter server does not use the same +computation definition as the trainer. Instead, the update rule is +baked in the parameter server. The user can not specify the update +rule in the same way of specifying the trainer computation. + +This could be fixed by making the parameter server run the same +computation definition as the trainer. For a detailed explanation, +please +see +[Design Doc: Operation Graph Based Parameter Server](./dist_train.md) + +## Distributed Training Architecture + +The new distributed training architecture can address the above +limitations. Below is the illustration: + + + +The architecture includes major components: *PaddlePaddle Python*, +*PaddlePaddle converter* and *PaddlePaddle runtime*: + +### PaddlePaddle Python + +PaddlePaddle Python is the Python library that user's Python trainer +invoke to build the neural network topology, start training, etc. + +```Python +paddle.init() +input = paddle.op.recordIO("/home/data/mnist.recordio") # file stored on the cluster +img, label = input[0], input[1] +hidden = paddle.layer.fc(input=img, size=200, act=paddle.activation.Tanh()) +prediction = paddle.layer.fc(input=img, size=10, act=paddle.activation.Softmax()) +cost = paddle.layer.classification_cost(input=prediction, label=label) +optimizer = paddle.optimizer.SGD(cost, learning_rate=0.01) +session = paddle.session.NewRemote(num_trainer=3, num_ps=2, GPU_per_trainer=1) +for i in range(1000): + _, cost_val = session.eval(targets=[cost, optimizer]) + print cost_val +``` + +The code above is a typical Python trainer code, the neural network +topology is built using helper functions such as +`paddle.layer.fc`. The training is done by calling `session.eval` +iteratively. + +#### session.eval + +As shown in the graph, `session.eval` sends the IR and the evaluation +inputs/targets to the PaddlePaddle cluster for evaluation. The +targets can be any variable in the computation graph. When the target +is the `optimizer` variable, the neural network will be optimized +once. When the target is the `cost` variable, `session.eval` returns +the cost value. + +The Python `session` is a wrapper of the C++ `Session` class. For more +information about `Session`, please +see [Design Doc: Session](./session.md). + +### PaddlePaddle Converter + +PaddlePaddle converter automatically converts the IR in the request +(IR and evaluation inputs/targets) from PaddlePaddle Python to new +partitioned IRs and dispatch the new IRs and evaluation inputs/targets +to different PaddlePaddle runtimes. Below are the steps: + +1. Add `feed` OP that feeds the eval inputs, and `fetch` OP that + fetches the eval targets to the IR. + +1. Extract a new computation (sub)graph with `feed` and `fetch` OP as + the boundary. The runtime does not need to run the OP that is not + dependent by the `fetch` OP. + +1. Optimizes the computation graph. + +1. Place the OPs in the graph onto different devices on different + PaddlePaddle runtime according to a placement algorithm and device + constraint specified by the user. + +1. Partition the graph according to runtime boundaries and add `send` / + `recv` OP pair on the runtime boundaries. + +1. Dispatch the partitioned graph to different PaddlePaddle runtimes. + +1. PaddlePaddle runtimes with the `fetch` OP reports evaluation + results back to the converter, the convert reports the evaluation + results back to the PaddlePaddle Python. + +The output IRs will be cached to optimize the conversion latency. + + +#### Placement Algorithm + +Our first implementation will only support "trainer-parameter server" +placement: the parameters, initializers, and optimizers are placed on +the PaddlePaddle runtimes with the parameter server role. And +everything else will be placed on the PaddlePaddle runtimes with the +trainer role. This has the same functionality of our +"trainer-parameter server" architecture of PaddlePaddle v0.10.0, but +is more general and flexible. + +In the future, we will implement the general placement algorithm, +which makes placements according to the input IR, and a model of +device computation time and device communication time. Model +parallelism requires the general placement algorithm. + + +### PaddlePaddle Runtime + +The PaddlePaddle runtime owns multiple devices (e.g., CPUs, GPUs) and +runs the IR. The runtime does not need to do OP placement since it's +already done by the converter. + + +### Local Training Architecture + +The local training architecture will be the same as the distributed +training architecture, the differences are everything runs locally, +and there is just one PaddlePaddle runtime: + + + + +### Training Data + +In PaddlePaddle v0.10.0, training data is typically read +with [data reader](../reader/README.md) from Python. This approach is +no longer efficient when training distributedly since the Python +process no longer runs on the same node with the trainer processes, +the Python reader will need to read from the distributed filesystem +(assuming it has the access) and send to the trainers, doubling the +network traffic. + +When doing distributed training, the user can still use Python data +reader: the training data are sent with `session.eval`. However should +be used for debugging purpose only. The users are encouraged to use +the read data OPs. + + +## References: + +[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) + +[2] [TensorFlow: A System for Large-Scale Machine Learning](https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf) diff --git a/doc/design/refactor/parameter_server.md b/doc/design/refactor/parameter_server.md new file mode 100644 index 0000000000000000000000000000000000000000..fa3c5d7990213cf2b0d236e66e592dd2699da876 --- /dev/null +++ b/doc/design/refactor/parameter_server.md @@ -0,0 +1,106 @@ +# Design Doc: Operation Graph Based Parameter Server + +## Abstract + +We propose an approach to implement the parameter server. In this +approach, there is no fundamental difference between the trainer and +the parameter server: they both run subgraphs, but subgraphs of +different purposes. + +## Background + +The previous implementations of the parameter server does not run a +subgraph. parameter initialization, optimizer computation, network +communication and checkpointing are implemented twice on both the +trainer and the parameter server. + +It would be great if we can write code once and use them on both the +trainer and the parameter server: reduces code duplication and +improves extensibility. Given that after the current refactor, we are +representing everything as a computing graph on the +trainer. Representing everything as a computing graph on the parameter +server becomes a natural extension. + +## Design + +### Graph Converter + +The *graph converter* converts the user-defined operation (OP) graph +into subgraphs to be scheduled on different nodes with the following +steps: + +1. OP placement: the OPs will be placed on different nodes according + to heuristic that minimizes estimated total computation + time. Currently we will use a simple heuristic that puts parameter + varable on parameter server workers and everything else on trainer + workers. + +1. Add communication OPs to enable the communication between nodes. + +We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*. + +Below is an example of converting the user defined graph to the +subgraphs for the trainer and the parameter server: + + + +After converting: + + + +1. The parameter variable W and it's optimizer subgraph are placed on the parameter server. +1. Operators are added to the subgraphs. + - *Send* sends data to the connected *Recv* operator. The + scheduler on the receive node will only schedule *Recv* operator + to run when the *Send* operator has ran (the *Send* OP will mark + the *Recv* OP runnable automatically). + - *Enueue* enqueues the input variable, it can block until space + become available in the queue. + - *Dequeue* outputs configurable numbers of tensors from the + queue. It will block until the queue have the required number of + tensors. + + +### Benefits + +- Model parallelism become easier to implement: it's an extension to + the trainer - parameter server approach. we already have the + communication OPs, but need to extend the graph converter's + placement functionality. + +- User-defined optimizer is easier to add - user can now express it as + a subgraph. + +- No more duplication logic inside the trainer and the parameter + server mentioned in the background section. + +### Challenges + +- It might be hard for the graph converter to cut a general graph + (without any hint for which subgraph is the optimizer). We may need + to label which subgraph inside the OP graph is the optimizer. + +- It's important to balance the parameter shards of on multiple + parameter server. If a single parameter is very big (some + word-embedding, fully connected, softmax layer), we need to + automatically partition the single parameter onto different + parameter servers when possible (only element-wise optimizer depends + on the parameter variable). + +### Discussion + +- In the "Aync SGD" figure, the "W" variable on the parameter server + could be read and wrote concurrently, what is our locking strategy? + E.g., each variable have a lock cpp method to be invoked by every + OP, or, have a lock OP. + +- Can the Enqueue OP be implemented under our current tensor design + (puts the input tensor into the queue tensor)? + +- *Dequeue* OP will have variable numbers of output (depends on the + `min_count` attribute), does our current design support it? (similar + question for the *Add* OP) + + +### References: +[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) diff --git a/doc/design/refactor/session.md b/doc/design/refactor/session.md new file mode 100644 index 0000000000000000000000000000000000000000..1d9a26683c14f54e3b5fe41675cd03b5620646b8 --- /dev/null +++ b/doc/design/refactor/session.md @@ -0,0 +1,180 @@ +# Design Doc: Session + +## Abstract + +The *session* object encapsulates the environment in which the +computation graph is executed. + +We will have the *local* session and *remote* session, they offer the +same [interface](#interface). The local session encapsulates the local +runtime environment and the remote session encapsulates the cluster +runtime environment. + +The local runtime environment contains: + +1. computation devices (i.e., CPU, GPU) handles, and +1. the [scope](../scope.md) which holds all variables. + +The remote runtime environment contains: + +1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster, + and +1. the distributed [scope](../scope.md) in a cluster which holds all + variables. + +The user can create a remote session on Paddle Cloud and evaluate the +computation graph with it. In this way, the user can control the +remote computation resource in a cluster from his local computer. + + +## Background + +The current design has an implicit global session in which +`paddle.eval()` is executed. The pain point is: + +Since the user is not able to explicitly switch between runtime +environments, the user cannot run a topology in two independent +environments. + +For example, in reinforcement learning, the user may want to have a +stale model for inference and a fresh model for training, and only +replace the stale model with the fresh model periodically. + +Furthermore, we have no concept that encapsulates a remote environment +that executes a computation graph. + +We need the session object to address above issues. + + +## Session + +A session is an object that owns the runtime environment. All +computations are executed through `session.eval()`. + + +### Interface + +```python +eval( + targets, + feed_dict=None, +) +``` + +Evaluates the target Operations or Variables in `targets`. + +- *targets*: the evaluation targets. Can be a single Operation or + Variable, or a list with the Operations or Variables as + elements. The value returned by `eval()` has the same shape as the + `target` argument. + + The PaddlePaddle program is represented by + the [ProgramDesc](../design/program.md), `eval()` will infer the + ProgramDesc from the given targets and run the PaddlePaddle + program. Please + see + [this graph](./distributed_architecture.md#local-training-architecture) for + the detailed illustration for the local session + and + [this graph](./distributed_architecture.md#distributed-training-architecture) for + the detailed illustration for the remote session. + +- *feed_dict*: a dictionary that contains the tensors which override + the edges of the computation graph. + + feed_dict not only can provide the input data, it can override any + OP's input as well: + + ```python + a = pd.constant(2.0, name="a") + b = pd.variable(name="b") + c = pd.mul(a,b) + sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0 + ``` + +```python +close() +``` + +Closes the session and releases the scope that the session owns. + + +### Create a Local Session + +```python +session( + devices=None +) +``` + +Creates a new session. One session owns one global scope, so creating +multiple sessions will create different scopes. + +- *devices*: a single `string` or a list of `string` of device names, + the corresponding devices will be the computation devices for + `eval()`. If not specified, all available devices (e.g., all GPUs) + will be used. The user doesn't need to specify the CPU device since + it will be always used. Multiple sessions can use the same device. + + +#### Example + +```Python +a = paddle.constant(1.0) +b = paddle.constant(2.0) +c = a + b +sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"]) +sess.eval(c) +sess.close() +``` + +### Create a Remote Session + +```python +create_cloud_job( + name, + num_trainer, + mem_per_trainer, + gpu_per_trainer, + cpu_per_trainer, + num_ps, + mem_per_ps, + cpu_per_ps, +) +``` + +Creates a Paddle Cloud job. Fails if the job name exists. + +```python +get_cloud_job( + name +) +``` + +Gets a Paddle Cloud job. + +```python +remote_session( + job +) +``` + +- *job*: the Paddle Cloud job. + +#### Example + +```Python +reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud +image = reader.column(0) +label = reader.column(1) +fc1 = paddle.op.fc(image, size=256, act="sigmoid") +fc2 = paddle.op.fc(fc1, size=10, act="softmax") +cost = paddle.op.cross_entropy(fc2, label) +opt = paddle.optimizer.sgd(cost) + +job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1) +sess = paddle.remote_ession(job) +for i in range(1000): + sess.eval(opt) +sess.close() +``` diff --git a/doc/design/refactor/src/compiler.graffle b/doc/design/refactor/src/compiler.graffle new file mode 100644 index 0000000000000000000000000000000000000000..8cc678fea3c820103e7ce81f7a5d625d6c1d92de Binary files /dev/null and b/doc/design/refactor/src/compiler.graffle differ diff --git a/doc/design/refactor/src/compiler.png b/doc/design/refactor/src/compiler.png new file mode 100644 index 0000000000000000000000000000000000000000..65d34f841afce9756def07dd8ecb9ca44e658bfe Binary files /dev/null and b/doc/design/refactor/src/compiler.png differ diff --git a/doc/design/refactor/src/dist-graph.graffle b/doc/design/refactor/src/dist-graph.graffle new file mode 100644 index 0000000000000000000000000000000000000000..941399c6ced8d5f65b6c595522b770c88259df4b Binary files /dev/null and b/doc/design/refactor/src/dist-graph.graffle differ diff --git a/doc/design/refactor/src/dist-graph.png b/doc/design/refactor/src/dist-graph.png new file mode 100644 index 0000000000000000000000000000000000000000..3546b09f1c2ee3e4f60f519d5e47f823f08051a7 Binary files /dev/null and b/doc/design/refactor/src/dist-graph.png differ diff --git a/doc/design/refactor/src/distributed_architecture.graffle b/doc/design/refactor/src/distributed_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..f8496e57326c38de7468eb452a7713291d57653c Binary files /dev/null and b/doc/design/refactor/src/distributed_architecture.graffle differ diff --git a/doc/design/refactor/src/distributed_architecture.png b/doc/design/refactor/src/distributed_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..410c4510c6aab301dec95e6427fe80ac24e105fe Binary files /dev/null and b/doc/design/refactor/src/distributed_architecture.png differ diff --git a/doc/design/refactor/src/local-graph.graffle b/doc/design/refactor/src/local-graph.graffle new file mode 100644 index 0000000000000000000000000000000000000000..19e509bd9af3c1e9a3f5e0f16ddd281457a339c5 Binary files /dev/null and b/doc/design/refactor/src/local-graph.graffle differ diff --git a/doc/design/refactor/src/local-graph.png b/doc/design/refactor/src/local-graph.png new file mode 100644 index 0000000000000000000000000000000000000000..ada51200f793a9bb18911e7d63cfdb3244b967d7 Binary files /dev/null and b/doc/design/refactor/src/local-graph.png differ diff --git a/doc/design/refactor/src/local_architecture.graffle b/doc/design/refactor/src/local_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..cc7783c45381f25ded0b898649322c81418ad317 Binary files /dev/null and b/doc/design/refactor/src/local_architecture.graffle differ diff --git a/doc/design/refactor/src/local_architecture.png b/doc/design/refactor/src/local_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..4b999538b7825c805292ee28b5e3256d5543bd09 Binary files /dev/null and b/doc/design/refactor/src/local_architecture.png differ diff --git a/doc/design/refactor/src/paddle-compile.graffle b/doc/design/refactor/src/paddle-compile.graffle new file mode 100644 index 0000000000000000000000000000000000000000..a6348cc3dbcaca923c6e794681b2edb85cb9f8f6 Binary files /dev/null and b/doc/design/refactor/src/paddle-compile.graffle differ diff --git a/doc/design/refactor/src/paddle-compile.png b/doc/design/refactor/src/paddle-compile.png new file mode 100644 index 0000000000000000000000000000000000000000..e0f13d551ac41afaec627a57dea79356464bf0bf Binary files /dev/null and b/doc/design/refactor/src/paddle-compile.png differ diff --git a/doc/design/refactorization.md b/doc/design/refactorization.md new file mode 100644 index 0000000000000000000000000000000000000000..f93d6155e1764386b01d2f0df3f141ab75cd55d4 --- /dev/null +++ b/doc/design/refactorization.md @@ -0,0 +1,249 @@ +# Design Doc: Refactorization Overview + +The goals of refactoring include: + +1. Making it easy for external contributors to write new elementary computation operations. +1. Making the codebase clean and readable. +1. Designing a new computation representation -- a computation graph of operators and variables. +1. Implementing auto-scalability and auto fault recoverable distributed computing with the help of computation graphs. + +## Computation Graphs + +1. PaddlePaddle represents the computation, training and inference of Deep Learning models, by computation graphs. + + 1. Please refer to [computation graphs](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md) for a concrete example. + +1. Users write Python programs to describe the graphs and run them (locally or remotely). + +1. A graph is composed of *variables* and *operators*. + +1. The description of graphs must be serializable/deserializable, so that: + + 1. It can be sent to the cloud for distributed execution, and + 1. It can be sent to clients for mobile or enterprise deployment. + +1. The Python program does two things + + 1. *Compilation* runs a Python program to generate a protobuf message representation of the graph and send it to + 1. the C++ library `libpaddle.so` for local execution, + 1. the master process of a distributed training job for training, or + 1. the server process of a Kubernetes serving job for distributed serving. + 1. *Execution* executes the graph by constructing instances of class [`Variable`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24) and [`OperatorBase`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L70), according to the protobuf message. + +## Description and Realization of Computation Graph + +At compile time, the Python program generates a protobuf message representation of the graph, or a description of the graph. + +At runtime, the C++ program realizes the graph and runs it. + +| | Representation (protobuf messages) | Realization (C++ class objects) | +|---|---|---| +|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)| +|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)| +|Block|BlockDesc|Block| + +The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`). + +## Compilation and Execution + +1. Run a Python program to describe the graph. In particular, the Python application program does the following: + + 1. Create `VarDesc` to represent local/intermediate variables, + 1. Create operators and set attributes, + 1. Validate attribute values, + 1. Infer the type and the shape of variables, + 1. Plan memory-reuse for variables, + 1. Generate the backward graph + 1. Add optimization operators to the computation graph. + 1. Optionally, split the graph for distributed training. + +1. The invocation of `train` or [`infer`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/inference.py#L108) methods in the Python program does the following: + + 1. Create a new Scope instance in the [scope hierarchy](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md) for each run of a block, + 1. realize local variables defined in the BlockDesc message in the new scope, + 1. a scope is similar to the stack frame in programming languages, + + 1. Create an instance of class `Block`, in which, + 1. realize operators in the BlockDesc message, + + 1. Run the Block by calling + 1. `Block::Eval(vector* targets)` for forward and backward computations, or + 1. `Block::Eval(vector* targets)` for optimization. + + +## Intermediate Representation (IR) + +```text +Compile Time -> IR -> Runtime +``` + +### Benefits of IR + +- Optimization + ```text + Compile Time -> IR -> Optimized IR -> Runtime + ``` +- Automatically send partitioned IR to different nodes. + - Automatic Data Parallelism + ```text + Compile Time + |-> Single GPU IR + |-> [trainer-IR-0, trainer-IR-1, pserver-IR] + |-> Node-0 (runs trainer-IR-0) + |-> Node-1 (runs trainer-IR-1) + |-> Node-2 (runs pserver-IR) + ``` + - Automatic Model Parallelism (planned for future) + +--- + +# Operator/OpWithKernel/OpKernel + +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot) + +--- + +# Operator +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot) + +* `Operator` is the fundamental building block of the user interface. + * Operator stores input/output variable names and attributes. + * The `InferShape` interface is used to infer the shape of the output variables based on the shapes of the input variables. + * Use `Run` to compute the `output` variables from the `input` variables. + +--- + +# OpWithKernel/Kernel + +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot) + +* `OpWithKernel` inherits `Operator`. +* `OpWithKernel` contains a Kernel map. + * `OpWithKernel::Run` get device's kernel, and invoke `OpKernel::Compute`. + * `OpKernelKey` is the map key. Only device place now, but may be data type later. + +--- + +# Why separate Kernel and Operator + +* Separate GPU and CPU code. + * Make Paddle capable of running without GPU. +* Make one operator (which is a user interface) and create many implementations. + * For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel. +--- + +# Libraries for Kernel development + +* `Eigen::Tensor` contains basic math and element-wise functions. + * Note that `Eigen::Tensor` has broadcast implementation. + * Limit the number of `tensor.device(dev) = ` in your code. +* `thrust::transform` and `std::transform`. + * `thrust` has the same API as C++ standard library. Using `transform`, one can quickly implement customized element-wise kernels. + * `thrust`, in addition, supports more complex APIs, like `scan`, `reduce`, `reduce_by_key`. +* Hand-writing `GPUKernel` and `CPU` code + * Do not write in header (`.h`) files. CPU Kernel should be in cpp source (`.cc`) and GPU kernels should be in cuda (`.cu`) files. (GCC cannot compile GPU code.) +--- +# Operator Registration + +## Why is registration necessary? +We need a method to build mappings between Op type names and Op classes. + +## How is registration implemented? +Maintaining a map, whose key is the type name and the value is the corresponding Op constructor. + +--- +# The Registry Map + +### `OpInfoMap` + +`op_type(string)` -> `OpInfo` + +`OpInfo`: + +- **`creator`**: The Op constructor. +- **`grad_op_type`**: The type of the gradient Op. +- **`proto`**: The Op's Protobuf, including inputs, outputs and required attributes. +- **`checker`**: Used to check attributes. + +--- +# Related Concepts + +### Op_Maker +It's constructor takes `proto` and `checker`. They are completed during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)) + +### Register Macros +```cpp +REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class) +REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) +``` + +--- +# Registration Process +1. Write an Op class and its gradient Op class, if required. +2. Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator. +3. Invoke the macro `REGISTER_OP`. This macro will + 1. Call maker class to complete `proto` and `checker` + 2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap` + +--- +# Backward Module (1/2) +### Create Backward Operator +- Mapping from forward Op to backward Op +![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png) + +--- +# Backward Module (2/2) +### Build Backward Network +- **Input**: a graph of forward operators +- **Output**: a graph of backward operators +- **Corner cases in construction** + - Shared Variables => insert an `Add` operator to combine gradients + - No Gradient => insert a `fill_zero_grad` operator + - Recursive NetOp => call `Backward` recursively + - RNN Op => recursively call `Backward` on stepnet + - RNN Op => recursively call `Backward` on stepnet + + +--- +# Scope, Variable, Tensor + +* `Tensor` is an n-dimension array with type. + * Only dims and data pointers are stored in `Tensor`. + * All operations on `Tensor` are written in `Operator` or global functions. + * Variable length Tensor design [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) +* `Variable` instances are the inputs and the outputs of an operator, not just `Tensor`. + * `step_scopes` in RNN is a variable and not a tensor. +* `Scope` is where variables are stored. + * map + * `Scope` has a hierarchical structure. The local scope can get variables from its parent scope. + +--- +# Block (in design) +## the difference between original RNNOp and Block +- As an operator is more intuitive than `RNNOp`, +- Offers a new interface `Eval(targets)` to deduce the minimal block to `Run`, +- Fits the compile-time/ runtime separation design paradigm. + - During the compilation, `SymbolTable` stores `VarDesc`s and `OpDesc`s and serialize to a `BlockDesc` + - When graph executes, a Block with `BlockDesc` is passed. It then creates `Op` and `Var` instances and then invokes `Run`. + +--- +# Milestone +- Take Paddle/books as the main line, the requirement of the models motivates framework refactoring, +- Model migration + - Framework development gives **priority support** to model migration, for example, + - the MNIST demo needs a Python interface, + - the RNN models require the framework to support `LoDTensor`. + - Determine some timelines, + - Frequently used Ops need to be migrated first, + - Different models can be migrated in parallel. +- Improve the framework at the same time +- Accept imperfection, concentrate on solving the specific problem at the right price. + +--- +# Control the migration quality +- Compare the performance of migrated models with old ones. +- Follow the google C++ style guide. +- Build the automatic workflow of generating Python/C++ documentations. + - The documentation of layers and ops should be written inside the code. + - Take the documentation quality into account when submitting pull requests. + - Preview the documentations, read and improve them from a user's perspective. diff --git a/doc/design/register_grad_op.md b/doc/design/register_grad_op.md new file mode 100644 index 0000000000000000000000000000000000000000..8d973eb53178c3e889c845144553a453e11f067c --- /dev/null +++ b/doc/design/register_grad_op.md @@ -0,0 +1,92 @@ +# Design Doc: Gradient Operators Registration + + +## The Problem Posed + +Currently, for each C++ operator class definition, a *gradient operator creator* function is registered, which takes as input a C++ operator instance and returns the corresponding gradient operator instance. + +However, we noticed two problems with the current design: + +1. As we decided to separate the *compilation* and the *execution* phases, we need to change the creator to take an `OpDesc` protobuf message in a `ProgramDesc` and inserts corresponding `OpDesc` messages into the `ProgramDesc` message. + +1. For some operators, the gradient computation can be written in terms of existing operators. For example, the gradient of *minus* operator consists of two operators -- an *identity* operator followed by a *scale* operator. Hence the registration mechanism needs to support mapping from an operator to a set of operators for the gradient computation. + +## The Current Implementation + +Instances of the C++ class `OpInfo` are stored an associative map whose key is the operator type. The `grad_op_type` indicates the associated gradient operator type. An operator can create the gradient operator by invoking `OpInfo::creator_` of the gradient operator. The pseudo code is as follows + +```cpp +struct OpInfo { + std::function creator_; + std::string grad_op_type_; + ... +}; + +map OpInfoMap; + +OperatorBase* CreateGradientOperator(const OperatorBase& op) { + return OpInfoMap.at(op.Type()).creator_(...); +} +``` + +## Proposed Solution + +The mapping relationship between an operator and its gradient operators is a function. The interface of this function is: + +```cpp +// (OpDesc) --> vector +std::function(const OpDescBind&)>; +``` + +The function takes an `OpDescBind` of the forward operator and returns one or many gradient operator descriptions. `OpDescBind` is a C++ wrapper for the protobuf message `OpDesc` for rapid manipulation of `OpDesc`. + +The `GradOpDescMaker` will be registered in `OpInfo` and will replace the `grad_op_type_` field. The `OpInfo` should look like + +```cpp +struct OpInfo { + std::function>(const OpDescBind&)> grad_op_maker_; + ... +}; +``` + +The `grad_op_maker_ ` is a `nullptr` if the operator does not have any associated gradient operators. + +We propose a base class called `GradOpDescMakerBase` to let operator developers generate `Gradient Operators` easily. The public interface of that class is + +```cpp +class GradOpDescMakerBase { +public: + GradOpDescMakerBase(const OpDescBind& ); + virtual std::vector> operator()()const = 0; +}; +``` + +We can convert `GradOpDescMakerBase` to `std::function>(const OpDescBind&)>` by + +```cpp +using GradOpMaker = ...; +std::function(const OpDescBind&)> func; +func = [] (const OpDescBind& fwd_op) { + GradOpMaker maker(fwd_op); + return maker(); +}; +``` + +We can write many helper functions since the `GradOpDescMakerBase` is a class now. The basic helper functions get the variables of `Input`, `Output`, `InputGradient` and `OutputGradient` in the forwarding operator. + +We should change register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. + +The user interface should be + +```cpp +vector MinusOpGradMaker(OpDesc) {...} +REGISTER_OPERATOR(minus, MinusOp, MinusOpProtoAndCheckerMaker, SumOpGradMaker); +// Developers can still manually implement gradient operator. +REGISTER_OPERATOR(minus_grad, MinusGradOp); +``` + +The interface of current `REGISTER_OP` macro could not be changed. In `REGISTER_OP`, it will invoke `REGISTER_OPERATOR` two times and generate GradOpDescMaker inside. + +```cpp +REGISTER_OP(minus, MinusOp, MinusOpProtoAndCheckerMaker, minus_grad, MinusGradOp); +``` diff --git a/doc/design/regularization.md b/doc/design/regularization.md new file mode 100644 index 0000000000000000000000000000000000000000..21280ac898feb4dd5e5a5d9e88d121e856850f0b --- /dev/null +++ b/doc/design/regularization.md @@ -0,0 +1,72 @@ +# Regularization in PaddlePaddle + +## Introduction to Regularization +A central problem in machine learning is how to design an algorithm that will perform well not just on the training data, but also on new data. A frequently faced problem is the problem of **overfitting**, where the model does not make reliable predictions on new unseen data. **Regularization** is the process of introducing additional information in order to prevent overfitting. This is usually done by adding extra penalties to the loss function that restricts the parameter spaces that an optimization algorithm can explore. + +### Parameter Norm Penalties +Most common regularization approaches in deep learning are based on limiting the capacity of the models by adding a parameter norm penalty to the objective function `J`. This is given as follows: + +
+ +The parameter `alpha` is a hyperparameter that weights the relative contribution of the norm penalty term, `omega`, relative to the standard objective function `J`. + +The most commonly used norm penalties are the L2 norm penalty and the L1 norm penalty. These are given as follows: + +##### L2 Regularization: +
+ +##### L1 Regularization +
+ +A much more detailed mathematical background of regularization can be found [here](http://www.deeplearningbook.org/contents/regularization.html). + +## Regularization Survey + +A detailed survey of regularization in various deep learning frameworks can be found [here](https://github.com/PaddlePaddle/Paddle/wiki/Regularization-Survey). + +## Proposal for Regularization in PaddlePaddle + +### Low-Level implementation + +In the new design, we propose to create new operations for regularization. For now, we can add 2 ops that correspond to the most frequently used regularizations: +- L2_regularization_op +- L1_regularization_op + +These ops can be like any other ops with their own CPU/GPU implementations either using Eigen or separate CPU and GPU kernels. As the initial implementation, we can implement their kernels using Eigen following the abstraction pattern implemented for [Activation Ops](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/accuracy_op.h). This abstraction pattern can make it very easy to implement new regularization schemes other than L1 and L2 norm penalties. + +The idea of building ops for regularization is in sync with the refactored Paddle philosophy of using operators to represent any computation unit. The way these ops will be added to the computation graph, will be decided by the [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) in Python API. + +### Computation Graph + +Below is an example of a really simple feed forward neural network. + +
+ +The Python API will modify this computation graph to add regularization operators. The modified computation graph will look as follows: + +
+    +### Python API implementation for Regularization + +Using the low level ops, `L2_regularization_op` and `L1_regularization_op`, any user can add regularization to their computation graphs. However, this will require a lot of lines of code and we should design Python APIs that support regularization. An example of such an API can be seen in [Keras](https://keras.io/regularizers/). As per the PaddlePaddle [Python API design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md), the layer functions are responsible for creating operators, operator parameters and variables. Since regularization is a property of parameters, it makes sense to create these in the layer functions. + +#### Creation of Regularization ops +There are two possibilities for creating the regularization ops: +1. We create these ops immediately while building the computation graph. +2. We add these ops in a lazy manner, just before the backward, similar to the way the optimization ops are added. + +The proposal is to add these ops in a lazy manner just before the backward pass. + +#### Storage of Regularization attributes + +Since we want to create the regularization ops in a lazy manner, the regularization attributes (type of regularization and weight of regularization penalty) can be stored as attributes of the [`Parameter`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/framework.py#L421) class. This is because regularization is a property of the parameters and storing regularization properties with Parameters also allows for shared parameters. + +#### High-level API + +In PaddlePaddle Python API, users will primarily rely on [layer functions](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/python_api.md#layer-function) to create neural network layers. Hence, we also need to provide regularization functionality in layer functions. The design of these APIs can be postponed for later right now. A good reference for these APIs can be found in [Keras](https://keras.io/regularizers/) and also by looking at Tensorflow in [`tf.contrib.layers`](https://www.tensorflow.org/api_guides/python/contrib.layers). + + + + + + diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 0c10e782808ca6456347ec54cb5e921162731ede..62ff8f3229bbbb5bc82e4da29259baffc30c2c87 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -1,8 +1,8 @@ -# Paddle发行规范 +# PaddlePaddle发行规范 -Paddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示Paddle版本号。 +PaddlePaddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。 -Paddle每次发新的版本,遵循以下流程: +PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` 2. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 @@ -27,14 +27,14 @@ Paddle每次发新的版本,遵循以下流程: 需要注意的是: -* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试Paddle的行为。 +* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 -# Paddle 分支规范 +# PaddlePaddle 分支规范 -Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 +PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 -* Paddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中: +* PaddlePaddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中: * `master`分支为稳定(stable branch)版本分支。每一个`master`分支的版本都是经过单元测试和回归测试的版本。 * `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试,但并没有经过回归测试。 * `release/版本号`分支为每一次Release时建立的临时分支。在这个阶段的代码正在经历回归测试。 @@ -42,18 +42,18 @@ Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branch * 其他用户的fork版本库并不需要严格遵守[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,但所有fork的版本库的所有分支都相当于特性分支。 * 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支 * 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。 - * 当功能分支开发完毕后,向Paddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 + * 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。 * BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。 -# Paddle回归测试列表 +# PaddlePaddle回归测试列表 -本列表说明Paddle发版之前需要测试的功能点。 +本列表说明PaddlePaddle发版之前需要测试的功能点。 -## Paddle Book中所有章节 +## PaddlePaddle Book中所有章节 -Paddle每次发版本首先要保证Paddle Book中所有章节功能的正确性。功能的正确性包括验证Paddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 +PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 | | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | diff --git a/doc/design/scope.md b/doc/design/scope.md index c9e0be716b606f6c7bf0373e0c6e632647e07a6f..4da76eebb74abcd26ec2b8671399e6bc4fb58574 100644 --- a/doc/design/scope.md +++ b/doc/design/scope.md @@ -17,7 +17,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`. 1. Scope only contains a map of a name to variable. - All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state(momentum) etc. + All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state (momentum) etc. 1. Variable can only be created by Scope and a variable can only be got from Scope. User cannot create or get a variable outside a scope. This is a constraints of our framework, and will keep our framework simple and clear. @@ -32,12 +32,12 @@ Scope is an association of a name to variable. All variables belong to `Scope`. 1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else. - Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be a invalid pointer when associated `Scope` is destroyed. + Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be an invalid pointer when associated `Scope` is destroyed. ```cpp class Scope { public: - Variable* NewVar(const std::string& name); + Variable* Var(const std::string& name); const Variable* FindVar(const std::string& name) const; private: @@ -50,7 +50,7 @@ class Scope { Just like [scope](https://en.wikipedia.org/wiki/Scope_(computer_science)) in programming languages, `Scope` in the neural network can also be a local scope. There are two attributes about local scope. -1. We can create local variables in a local scope. When that local scope are destroyed, all local variables should also be destroyed. +1. We can create local variables in a local scope. When that local scope is destroyed, all local variables should also be destroyed. 2. Variables in a parent scope can be retrieved from local scopes of that parent scope, i.e., when user get a variable from a scope, it will try to search this variable in current scope. If there is no such variable in the local scope, `scope` will keep searching from its parent, until the variable is found or there is no parent. ```cpp @@ -98,7 +98,7 @@ class Scope { Variable* FindVar(const std::string& name) const; // return if already contains same name variable. - Variable* NewVar(const std::string& name); + Variable* Var(const std::string& name); private: std::shared_ptr parent_; @@ -107,7 +107,7 @@ class Scope { ``` ## Only scope can create a variable -To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `NewVar` can construct `Variable`. +To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `Var` can construct `Variable`. ## When scope destroyed, all variables inside this scope should be destroyed together @@ -121,4 +121,4 @@ Also, as the parent scope is a `shared_ptr`, we can only `Create()` a scope shar ## Orthogonal interface -`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return a `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily. +`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `Var` will return an `Error` when there is a name conflict locally. Combine `FindVar` and `Var`, we can implement `Var` easily. diff --git a/doc/design/selected_rows.md b/doc/design/selected_rows.md new file mode 100644 index 0000000000000000000000000000000000000000..1a98839a957612b91b2276b58818623ecc62d1d5 --- /dev/null +++ b/doc/design/selected_rows.md @@ -0,0 +1,74 @@ +# Design Doc: Selected Rows + +`SelectedRows` is a type of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in this tensor. It is straight-forward to represent a sparse tensor by the following sparse tensor data structure: + +```cpp +class SelectedRows { + private: + vector rows_; + Tensor value_; + int height_; +}; +``` + +The field `height_` is the first dimension of `SelectedRows`. The `rows` are the indices of the non-zero rows of `SelectedRows`. The `value_` field is an N-dim tensor of shape `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`. + +Suppose that a SelectedRows-typed variable `x` has many rows, but only two of them have values -- row 73 is `[1, 2]` and row 84 is `[3, 4]`, the `SelectedRows` representation would be: + +``` +x = SelectedRow { + rows = [73, 84], + value = [[1, 2], [3,4]] +} +``` + + +## SelectedRows in Protobuf + +`SelectedRows` is a type of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time because the `rows_` and `value_` are dependent on the training data. +So we use `TensorDesc` to unify `data_type` and `dims`. A LodTensorDesc contains a `TensorDesc` and `lod_level`. The description of `SelectedRows` is a Tensor description. + +```proto +message TensorDesc { + required DataType data_type = 1; + repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] +} + +message LodTensorDesc { + required TensorDesc tensor = 1; + optional int lod_level = 2; +} + +message VarDesc { + required string name = 1; + enum VarType { + LOD_TENSOR = 0; + SELECTED_ROWS = 1; + } + required VarType type = 2; + optional LodTensorDesc lod_desc = 3; + optional TensorDesc selected_rows_desc = 4; + optional bool persistable = 5 [ default = false ]; +} +``` + +## InferShape for Selected Rows + +Just like `LoD` information, `InferShape` method will infer the output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor. + +For example, the gradient operator of `TableLookup` will always generate `SelectedRows`. Its `InferShape` method should be like following + +```cpp +void TableLookupGrad::InferShape(context) { + ... + context.SetDataType("Embedding.Grad", kSelectedRows); +} +``` + + +## Sparse Operators + +There are several operators that need to be written to support `SelectedRows`. These are: + +1. Operators which generate `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`. +2. Optimize operators which support `SelectedRows` gradient. e.g. `SGD` or `AdaGrad` for `SelectedRows`. However, there should be only one `SGD` operator. `OpWithKernel::Run` should select a suitable kernel for both `dense` tensor or `SelectedRows`. diff --git a/doc/design/simple_op_design.md b/doc/design/simple_op_design.md index 5e07c29c56d21728599195d420d3222213d77e7c..c7aeed7f9b4637e1c29d530f37b42d12500af82f 100644 --- a/doc/design/simple_op_design.md +++ b/doc/design/simple_op_design.md @@ -6,9 +6,9 @@ The Interaction between Python and C++ can be simplified as two steps: 1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time. -2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task. +2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ for finishing the Op construction task. -### Message form C++ to Python +### Message from C++ to Python We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.” @@ -147,7 +147,7 @@ class CosineOp { struct CosineOpProtoMaker : public OpProtoMaker { CosineOpProtoMaker(OpProto* proto) : OpProtoMaker(proto) { AddInput("input", "input of cosine op"); - AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0); + AddAttr("scale", "scale of cosine op", float).Default(1.0).GreaterThan(0.0); AddType("cos"); AddComment("This is cos op"); } @@ -193,7 +193,7 @@ def fc_layer(input, size, with_bias, activation): elif: # ... return act_output; -``` +``` ### Low Leval API diff --git a/doc/design/tensor_array.md b/doc/design/tensor_array.md new file mode 100644 index 0000000000000000000000000000000000000000..37e4f7b90f94fa3eb015e733999cd84c96b2239c --- /dev/null +++ b/doc/design/tensor_array.md @@ -0,0 +1,271 @@ +# Design for TensorArray +This design doc presents the necessity of a new C++ class `TensorArray`. +In addition to the very simple C++ implementation + +```c++ +class TensorArray { + public: + explicit TensorArray(const LoDTensor&); + explicit TensorArray(size_t size); + + private: + vector values_; +}; +``` + +We also need to expose it to PaddlePaddle's Python API, +because users would want to use it with our very flexible operators `WhileLoop`. +An example for a RNN based on dynamic operators is + +```python +input = pd.data(...) +num_steps = Var(12) + +TensorArray states(size=num_steps) +TensorArray step_inputs(unstack_from=input) +TensorArray step_outputs(size=num_steps) + +W = Tensor(...) +U = Tensor(...) +default_state = some_op() + +step = Var(1) + +wloop = paddle.create_whileloop(loop_vars=[step]) +with wloop.frame(): + wloop.break_if(pd.equal(step, num_steps) + pre_state = states.read(step-1, default_state) + step_input = step_inputs.read(step) + state = pd.sigmoid(pd.matmul(U, pre_state) + pd.matmul(W, step_input)) + states.write(step, state) + step_outputs.write(step, state) # output state + step.update(state+1) + +output = step_outputs.stack() +``` + +## Background +Steps are one of the core concepts of RNN. In each time step of RNN, there should be several input segments, states, and output segments; all these components act like arrays, for example, call `states[step_id]` will get the state in `step_id`th time step. + +An RNN can be implemented with the following pseudocode + +```c++ +Array states; +Array input_segments; +Array output_segments; +Parameter W, U; + +step = 1 +seq_len = 12 +while_loop { + if (step == seq_len) break; + states[step] = sigmoid(W * states[step-1] + U * input_segments[step]); + output_segments[step] = states[step] // take state as output + step++; +} +``` +According to the [RNN roadmap](https://github.com/PaddlePaddle/Paddle/issues/4561), there are several different RNNs that PaddlePaddle will eventually support. + +Currently, the basic RNN implementation supported by PaddlePaddle is the `recurrent_op` which takes tensors as input and splits them into `input_segments`. + + +Since a tensor cannot store variable-length sequences directly, PaddlePaddle implements the tensor with level of details (`LoDTensor` for short). +Segmenting the `LoDTensor` is much more complicated than splitting a tensor, that makes it necessary to refactor the `recurrent_op` with `LoDTensor` segmenting support. + +As the next step in RNN support, `dynamic_recurrent_op` should be introduced to handle inputs with variable-length sequences. + +The implementation is similar to `recurrent_op`. +The key difference is the way **the original input `LoDTensors` and outupts are split to get the `input_segments` and the `output_segments`.** + + +Though it can't be built over `recurrent_op` or `dynamic_recurrent_op` directly, +the logic behind splitting a tensor or a LoD tensor into `input_segments` remains the same. + +## Why `TensorArray` +The logic behind splitting the inputs to segments, states and outputs is similar and can be shared in a seperate module. + +The array of `states`, `input_segments` and `output_segments` would be exposed to users when writing a dynamic RNN model similar to the above pseudo codes. + +So there should be an array-like container, which can store the segments of a tensor or LoD tensor. + +**This container can store an array of tensors and provides several methods to split a tensor or a LoD tensor** . +This is where the notion of `TensorArray` comes from. + +## Introduce TensorArray to uniform all the three RNNs +TensorArray as a new concept is borrowed from TensorFlow, +it is meant to be used with dynamic iteration primitives such as `while_loop` and `map_fn`. + +This concept can be used to support our new design of dynamic operations, and help to refactor some existing variant-sentence-related layers, +such as `recurrent_op`, `RecurrentGradientMachine`. + +In [our design for dynamic RNN](https://github.com/PaddlePaddle/Paddle/pull/4401), +`TensorArray` is used to segment inputs and store states in all time steps. +By providing some methods similar to a C++ array, +the definition of some state-based dynamic models such as RNN can be more natural and highly flexible. + +## Dynamic-operations on TensorArray + +`TensorArray` will be used directly when defining dynamic models, so some operators listed below should be implemented + +```python +# several helper operators for TensorArray +def tensor_array_stack(ta, tensor): + ''' + get a tensor array `ta`, return a packed `tensor`. + ''' + pass + +def tensor_array_unstack(tensor, ta): + ''' + get a `tensor`, unstack it and get a tensor array `ta`. + ''' + pass + +def tensor_array_write(ta, index, tensor, data_shared): + ''' + get a `tensor` and a scalar tensor `index`, write `tensor` into index-th + value of the tensor array `ta`. + `data_shared` is an attribute that specifies whether to copy or reference the tensors. + ''' + pass + +def tensor_array_read(ta, index, tensor): + ''' + get a tensor array `ta`, a scalar tensor `index`, read the index-th value of + `ta` and return as the `tensor`. + ''' + pass + +def tensor_array_size(ta, tensor): + ''' + get a tensor array `ta`, return the size of `ta` and return as the scalar `tensor`. + ''' + pass +``` + +It is trivial for users to use so many low-level operators, so some helper methods should be proposed in python wrapper to make `TensorArray` easier to use, +for example + +```python +class TensorArray: + def __init__(self, name): + self.name = name + self.desc = TensorArrayDesc() + + def stack(self, name=None): + ''' + Pack the values in a `TensorArray` into a tensor with rank one higher + than each tensor in `values`. + `stack` can be used to split tensor into time steps for RNN or whileloop. + + @name: str + the name of the variable to output. + ''' + tensor = Var(name) + tensor_array_stack(self.name, tensor) + return tensor + + def unstack(self, input): + ''' + Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. + `unstack` can be used to concatenate all the time steps for RNN or whileloop. + + @input: str + the name of input tensor + ''' + tensor_array_unstack(tensor, self.name) + + def write(self, index, value, data_shared=True): + ''' + Write value into index of the TensorArray. + If `data_shared` is set to True, than the index-th value in TensorArray will + be shared with the tensor passed in. + + @index: str + name of a scalar tensor + @value: str + name of a tensor + @data_shared: bool + ''' + tensor_array_write(self.name, index, value, data_shared) + + def read(self, index, output): + ''' + Read the value at location `index` in the `TensorArray`. + + @index: str + name of a scalar tensor + @output: + name of a output variable + ''' + tensor_array_read(self.name, index, output) + + + def size(self, output): + ''' + Return the number of values. + + @output: str + name of a scalar tensor + ''' + tensor_array_size(self.name, output) +``` + +## LoDTensor-related Supports +The `RecurrentGradientMachine` in Paddle serves as a flexible RNN layer; it takes varience-length sequences as input, and output sequences too. + +Since each step of RNN can only take a tensor-represented batch of data as input, +some preprocess should be taken on the inputs such as sorting the sentences by their length in descending order and cut each word and pack to new batches. + +Such cut-like operations can be embedded into `TensorArray` as general methods called `unpack` and `pack`, +these two operations are similar to `stack` and `unstack` except that they operate on variable-length sequences formated as a LoD tensor rather than a tensor. + +Some definitions are like + +```python +def unpack(level): + ''' + Split LodTensor in some `level` and generate batches, if set `sort_by_length`, + will sort by length. + + Returns: + - a new `TensorArray`, whose values are LodTensors and represents batches + of data. + - an int32 Tensor, which stores the map from the new batch's indices to + original LoDTensor + ''' + pass + +def pack(level, indices_map): + ''' + Recover the original LoD-arranged LoDTensor with the values in a `TensorArray` + and `level` and `indices_map`. + ''' + pass +``` + +With these two methods, a varience-length sentence supported RNN can be implemented like + +```c++ +// input is the varient-length data +LodTensor sentence_input(xxx); +TensorArray ta; +Tensor indice_map; +Tensor boot_state = xxx; // to initialize rnn's first state +TensorArray::unpack(input, 1/*level*/, true/*sort_by_length*/, &ta, &indice_map); +TessorArray step_outputs; +TensorArray states; + +for (int step = 0; step = ta.size(); step++) { + auto state = states.read(step); + // rnnstep is a function which acts like a step of RNN + auto step_input = ta.read(step); + auto step_output = rnnstep(step_input, state); + step_outputs.write(step_output, true/*data_shared*/); +} + +// rnn_output is the final output of an rnn +LoDTensor rnn_output = ta.pack(ta, indice_map); +``` +the code above shows that by embedding the LoDTensor-related preprocess operations into `TensorArray`, +the implementation of a RNN that supports varient-length sentences is far more concise than `RecurrentGradientMachine` because the latter mixes all the codes together, hard to read and extend. diff --git a/doc/design/test.dot b/doc/design/test.dot new file mode 100644 index 0000000000000000000000000000000000000000..62c69b8fc8010a26a54a6ee8ef1488aad94d747a --- /dev/null +++ b/doc/design/test.dot @@ -0,0 +1,35 @@ + +digraph Test { + z -> generator -> G_img; + G_img -> discriminator -> D_f -> d_loss_f; + label0 -> d_loss_f -> d_loss; + + img -> discriminator -> D_t -> d_loss_t; + label1 -> d_loss_t -> d_loss; + + d_loss -> d_loss_t[color=red, style=dashed]; + d_loss -> d_loss_f[color=red, style=dashed]; + d_loss_t -> D_t[color=red, style=dashed]; + d_loss_f -> D_f[color=red, style=dashed]; + D_t -> discriminator[color=red, style=dashed]; + D_f -> discriminator[color=red, style=dashed]; + + D_f -> g_loss; + label2 -> g_loss; + + g_loss -> D_f[color=green, style=dashed]; + D_f -> discriminator[color=green, style=dashed]; + discriminator -> G_img[color=green, style=dashed]; + G_img -> generator[color=green, style=dashed]; + + discriminator [color=red, shape=box]; + generator [color=green, shape=box]; + z [shape=diamond]; + img [shape=diamond]; + label0 [shape=diamond]; + label1 [shape=diamond]; + label2 [shape=diamond]; + + d_loss [color=red]; + g_loss [color=green]; +} diff --git a/doc/design/test.dot.png b/doc/design/test.dot.png new file mode 100644 index 0000000000000000000000000000000000000000..4e121a40b9f7b2232d7cdda315bad15926446f55 Binary files /dev/null and b/doc/design/test.dot.png differ diff --git a/doc/design/var_desc.md b/doc/design/var_desc.md new file mode 100644 index 0000000000000000000000000000000000000000..0b2958c1b10ef6a6ce51aa75f61e15a7f2d94b3f --- /dev/null +++ b/doc/design/var_desc.md @@ -0,0 +1,69 @@ +## Background +PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime. + +PaddlePaddle use proto message to describe compile time graph because + +1. Computation graph should be able to be saved to a file. +1. In distributed training, the graph will be serialized and send to multiple workers. + +The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below. + +| |compile time|runtime| +|---|---|---| +|Data|VarDesc(proto)|Variable(cpp)| +|Operation|OpDesc(proto)|Operator(cpp)| + + +## Definition of VarDesc + +A VarDesc should have a name, and value. The are two kinds of variable type in compile time, they are `LoDTensor` and `SelectedRows`. + +```proto +message VarDesc { + required string name = 1; + enum VarType { + LOD_TENSOR = 0; + SELECTED_ROWS = 1; + } + required VarType type = 2; + optional LoDTensorDesc lod_desc = 3; + optional TensorDesc selected_rows_desc = 4; + optional bool persistable = 5 [ default = false ]; +} +``` + +## Definition of TensorDesc + +```proto +enum DataType { + BOOL = 0; + INT16 = 1; + INT32 = 2; + INT64 = 3; + FP16 = 4; + FP32 = 5; + FP64 = 6; +} + +message TensorDesc { + required DataType data_type = 1; + repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] +} +``` + +A TensorDesc describes `SelectedRows` and `LoDTensor`. For details of `SelectedRows`, please reference [`SelectedRows`](./selected_rows.md). + +## Definition of LodTensorDesc + +```proto +message LoDTensorDesc { + required TensorDesc tensor = 1; + optional int lod_level = 2; +} +``` + +A LoDTensorDesc contains a tensor and a lod_level. + +## Definition of Variable in Python + +For Variable in Python, please reference [`Python API`](./python_api.md). diff --git a/doc/faq/build_and_install/index_cn.rst b/doc/faq/build_and_install/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..f1677e216f31d79b53ac29a0afbf6fbb886a0dcd --- /dev/null +++ b/doc/faq/build_and_install/index_cn.rst @@ -0,0 +1,111 @@ +################### +编译安装与单元测试 +################### + +.. contents:: + +1. 运行Docker GPU镜像出现 "CUDA driver version is insufficient" +---------------------------------------------------------------- + +用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。 +具体的解决方法是: + +.. code-block:: bash + + $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" + $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') + $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu + +更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 + + +2. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致 +---------------------------------------------------------------- + +这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是, +用户强制指定特定的Python版本,具体操作如下: + + .. code-block:: bash + + cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR= + +用户需要指定本机上Python的路径:````, ````, ```` + +3. CMake源码编译,Paddle版本号为0.0.0 +-------------------------------------- + +如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现 + +.. code-block:: bash + + CMake Warning at cmake/version.cmake:20 (message): + Cannot add paddle version from git tag + +那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。 + +4. paddlepaddle\*.whl is not a supported wheel on this platform. +------------------------------------------------------------------------ + +出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统,并安装了python 2.7和pip 9.0.1。 + +更新 :code:`pip` 包的方法是\: + +.. code-block:: bash + + pip install --upgrade pip + +如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀, +并对比是否和正在安装的后缀一致。 + +如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` ,需要升级pip版本到最新; +如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` ,可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。 + +5. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 +------------------------------------------------------------------------------------------ +先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载: + +pip uninstall py_paddle paddle + +然后安装paddle的python环境, 在build目录下执行 + +pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl + +6. 遇到“非法指令”或者是“illegal instruction” +-------------------------------------------- + +PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。 + +7. python相关的单元测试都过不了 +-------------------------------- + +如果出现以下python相关的单元测试都过不了的情况: + +.. code-block:: bash + + 24 - test_PyDataProvider (Failed) + 26 - test_RecurrentGradientMachine (Failed) + 27 - test_NetworkCompare (Failed) + 28 - test_PyDataProvider2 (Failed) + 32 - test_Prediction (Failed) + 33 - test_Compare (Failed) + 34 - test_Trainer (Failed) + 35 - test_TrainerOnePass (Failed) + 36 - test_CompareTwoNets (Failed) + 37 - test_CompareTwoOpts (Failed) + 38 - test_CompareSparse (Failed) + 39 - test_recurrent_machine_generation (Failed) + 40 - test_PyDataProviderWrapper (Failed) + 41 - test_config_parser (Failed) + 42 - test_swig_api (Failed) + 43 - layers_test (Failed) + +并且查询PaddlePaddle单元测试的日志,提示: + +.. code-block:: bash + + paddle package is already in your PYTHONPATH. But unittest need a clean environment. + Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'. + +解决办法是: + +* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 diff --git a/doc/faq/cluster/index_cn.rst b/doc/faq/cluster/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..e59c1e1a54a0c876d1e6e89f88030de59fb9fc1a --- /dev/null +++ b/doc/faq/cluster/index_cn.rst @@ -0,0 +1,17 @@ +############### +集群训练与预测 +############### + +.. contents:: + +1. 集群多节点训练,日志中保存均为网络通信类错误 +------------------------------------------------ + +集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。 +此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查: + +* 从 :code:`train.log` , :code:`server.log` 找到最早报错的地方,查看是否是其他错误引发的报错(比如FPE,内存不足,磁盘空间不足等)。 + +* 如果发现最早的报错就是网络通信的问题,很有可能是非独占方式执行导致的端口冲突,可以联系OP,看当前MPI集群是否支持resource=full参数提交,如果支持增加此参数提交,并更换job 端口。 + +* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。 diff --git a/doc/faq/index_cn.rst b/doc/faq/index_cn.rst index 138efb566e43fa71952f057829c2afbca96cadc9..9929767cac212237b3e2c3a547ba9a3c9d5f0979 100644 --- a/doc/faq/index_cn.rst +++ b/doc/faq/index_cn.rst @@ -1,323 +1,11 @@ -#################### FAQ -#################### +==== -.. contents:: +.. toctree:: + :maxdepth: 1 -1. 如何减少内存占用 ---------------------------------- - -神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。 -PaddlePaddle的内存占用主要分为如下几个方面\: - -* DataProvider缓冲池内存(只针对内存) -* 神经元激活内存(针对内存和显存) -* 参数内存 (针对内存和显存) -* 其他内存杂项 - -其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。 - -减少DataProvider缓冲池内存 -++++++++++++++++++++++++++ - -PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即 - -.. graphviz:: - - digraph { - rankdir=LR; - 数据文件 -> 内存池 -> PaddlePaddle训练 - } - -所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这 -个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的, -那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为 - -.. literalinclude:: src/reduce_min_pool_size.py - -这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。 - -神经元激活内存 -++++++++++++++ - -神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。 -在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系, -一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含 -的时间步信息成正比。 - -所以做法可以有两种: - -* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。 -* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200, - 但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。 - -参数内存 -++++++++ - -PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。 -例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录 -文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。 - -可以考虑使用一些优化算法,例如 :code:`momentum`。 - -2. 如何加速PaddlePaddle的训练速度 ---------------------------------- - -加速PaddlePaddle训练可以考虑从以下几个方面\: - -* 减少数据载入的耗时 -* 加速训练速度 -* 利用分布式训练驾驭更多的计算资源 - -减少数据载入的耗时 -++++++++++++++++++ - -使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 -:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 - -.. literalinclude:: src/reduce_min_pool_size.py - -同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。 - - -加速训练速度 -++++++++++++ - -PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True` - -这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\: - -使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\: - -.. literalinclude:: src/word2vec_dataprovider.py - -这个任务的配置为\: - -.. literalinclude:: src/word2vec_config.py - - -利用更多的计算资源 -++++++++++++++++++ - -利用更多的计算资源可以分为一下几个方式来进行\: - -* 单机CPU训练 - - * 使用多线程训练。设置命令行参数 :code:`trainer_count`。 - -* 单机GPU训练 - - * 使用显卡训练。设置命令行参数 :code:`use_gpu`。 - * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。 - -* 多机训练 - - * 请参考 :ref:`cluster_train` 。 - - -3. 遇到“非法指令”或者是“illegal instruction” --------------------------------------------- - -PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。 - -4. 如何选择SGD算法的学习率 --------------------------- - -在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。 - -通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。 - -如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。 - - -5. 如何初始化参数 ------------------ - -默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\: - -* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)` -* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)` - -比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。 - -.. code-block:: python - - hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0), - bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0)) - -上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。 - -6. 如何共享参数 ---------------- - -PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。 - -简单的全连接网络,参数共享的配置示例为\: - -.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py - -这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 - -7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform. ------------------------------------------------------------------------- - -出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的, -而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。 -更新 :code:`pip` 包的方法是\: - -.. code-block:: bash - - pip install --upgrade pip - -8. python相关的单元测试都过不了 --------------------------------- - -如果出现以下python相关的单元测试都过不了的情况: - -.. code-block:: bash - - 24 - test_PyDataProvider (Failed) - 26 - test_RecurrentGradientMachine (Failed) - 27 - test_NetworkCompare (Failed) - 28 - test_PyDataProvider2 (Failed) - 32 - test_Prediction (Failed) - 33 - test_Compare (Failed) - 34 - test_Trainer (Failed) - 35 - test_TrainerOnePass (Failed) - 36 - test_CompareTwoNets (Failed) - 37 - test_CompareTwoOpts (Failed) - 38 - test_CompareSparse (Failed) - 39 - test_recurrent_machine_generation (Failed) - 40 - test_PyDataProviderWrapper (Failed) - 41 - test_config_parser (Failed) - 42 - test_swig_api (Failed) - 43 - layers_test (Failed) - -并且查询PaddlePaddle单元测试的日志,提示: - -.. code-block:: bash - - paddle package is already in your PYTHONPATH. But unittest need a clean environment. - Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'. - -解决办法是: - -* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 - - -9. 运行Docker GPU镜像出现 "CUDA driver version is insufficient" ----------------------------------------------------------------- - -用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。 -具体的解决方法是: - -.. code-block:: bash - - $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" - $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu - -更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 - - -10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致 ----------------------------------------------------------------- - -这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是, -用户强制指定特定的Python版本,具体操作如下: - - .. code-block:: bash - - cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR= - -用户需要指定本机上Python的路径:````, ````, ```` - -11. CMake源码编译,Paddle版本号为0.0.0 --------------------------------------- - -如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现 - -.. code-block:: bash - - CMake Warning at cmake/version.cmake:20 (message): - Cannot add paddle version from git tag - -那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。 - -12. A protocol message was rejected because it was too big ----------------------------------------------------------- - -如果在训练NLP相关模型时,出现以下错误: - -.. code-block:: bash - - [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h. - F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) - -可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似: - -.. code-block:: python - - src_dict = dict() - for line_count, line in enumerate(open(src_dict_path, "r")): - src_dict[line.strip()] = line_count - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={"src_dict": src_dict}) - -解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为: - -.. code-block:: python - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={"src_dict_path": src_dict_path}) - -完整源码可参考 `seqToseq `_ 示例。 - -13. 如何指定GPU设备 -------------------- - -例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU: - -* 方式1:通过 `CUDA_VISIBLE_DEVICES `_ 环境变量来指定特定的GPU。 - -.. code-block:: bash - - env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2 - -* 方式2:通过命令行参数 ``--gpu_id`` 指定。 - -.. code-block:: bash - - paddle train --use_gpu=true --trainer_count=2 --gpu_id=2 - - -14. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办? ------------------------------------------------------------------------- - -Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。 -主要原因包括两个方面: - -* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。 -* 模型一直不收敛,发散到了一个数值特别大的地方。 -* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 - -主要的解决办法是减小学习律或者对数据进行归一化处理。 - -15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 ------------------------------------------------------------------------- -先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载: - -pip uninstall py_paddle paddle - -然后安装paddle的python环境, 在build目录下执行 - -pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl + build_and_install/index_cn.rst + model/index_cn.rst + parameter/index_cn.rst + local/index_cn.rst + cluster/index_cn.rst diff --git a/doc/faq/local/index_cn.rst b/doc/faq/local/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..b331d9d36e6a279881c3b1a5586835e7186957fb --- /dev/null +++ b/doc/faq/local/index_cn.rst @@ -0,0 +1,213 @@ +############### +本地训练与预测 +############### + +.. contents:: + +1. 如何减少内存占用 +------------------- + +神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。 +PaddlePaddle的内存占用主要分为如下几个方面\: + +* DataProvider缓冲池内存(只针对内存) +* 神经元激活内存(针对内存和显存) +* 参数内存 (针对内存和显存) +* 其他内存杂项 + +其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。 + +减少DataProvider缓冲池内存 +++++++++++++++++++++++++++ + +PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即 + +.. graphviz:: + + digraph { + rankdir=LR; + 数据文件 -> 内存池 -> PaddlePaddle训练 + } + +所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这 +个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的, +那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为 + +.. literalinclude:: src/reduce_min_pool_size.py + +这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。 + +神经元激活内存 +++++++++++++++ + +神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。 +在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系, +一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含 +的时间步信息成正比。 + +所以做法可以有两种: + +* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。 +* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200, + 但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。 + +参数内存 +++++++++ + +PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。 +例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录 +文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。 + +可以考虑使用一些优化算法,例如 :code:`momentum`。 + +2. 如何加速训练速度 +------------------- + +加速PaddlePaddle训练可以考虑从以下几个方面\: + +* 减少数据载入的耗时 +* 加速训练速度 +* 利用分布式训练驾驭更多的计算资源 + +减少数据载入的耗时 +++++++++++++++++++ + +使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 +:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 + +.. literalinclude:: src/reduce_min_pool_size.py + +同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。 + + +加速训练速度 +++++++++++++ + +PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True` + +这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\: + +使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\: + +.. literalinclude:: src/word2vec_dataprovider.py + +这个任务的配置为\: + +.. literalinclude:: src/word2vec_config.py + + +利用更多的计算资源 +++++++++++++++++++ + +利用更多的计算资源可以分为以下几个方式来进行\: + +* 单机CPU训练 + + * 使用多线程训练。设置命令行参数 :code:`trainer_count`。 + +* 单机GPU训练 + + * 使用显卡训练。设置命令行参数 :code:`use_gpu`。 + * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。 + +* 多机训练 + + * 请参考 :ref:`cluster_train` 。 + +3. 如何指定GPU设备 +------------------ + +例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU: + +* 方式1:通过 `CUDA_VISIBLE_DEVICES `_ 环境变量来指定特定的GPU。 + +.. code-block:: bash + + env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2 + +* 方式2:通过命令行参数 ``--gpu_id`` 指定。 + +.. code-block:: bash + + paddle train --use_gpu=true --trainer_count=2 --gpu_id=2 + + +4. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办? +------------------------------------------------------------------------ + +Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。 +主要原因包括两个方面: + +* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。 +* 模型一直不收敛,发散到了一个数值特别大的地方。 +* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 + +这里有两种有效的解决方法: + +1. 设置 :code:`gradient_clipping_threshold` 参数,示例代码如下: + +.. code-block:: python + +optimizer = paddle.optimizer.RMSProp( + learning_rate=1e-3, + gradient_clipping_threshold=10.0, + regularization=paddle.optimizer.L2Regularization(rate=8e-4)) + +具体可以参考 `nmt_without_attention `_ 示例。 + +2. 设置 :code:`error_clipping_threshold` 参数,示例代码如下: + +.. code-block:: python + +decoder_inputs = paddle.layer.fc( + act=paddle.activation.Linear(), + size=decoder_size * 3, + bias_attr=False, + input=[context, current_word], + layer_attr=paddle.attr.ExtraLayerAttribute( + error_clipping_threshold=100.0)) + +完整代码可以参考示例 `machine translation `_ 。 + +两种方法的区别: + +1. 两者都是对梯度的截断,但截断时机不同,前者在 :code:`optimzier` 更新网络参数时应用;后者在激活函数反向计算时被调用; +2. 截断对象不同:前者截断可学习参数的梯度,后者截断回传给前层的梯度; + +除此之外,还可以通过减小学习率或者对数据进行归一化处理来解决这类问题。 + +5. 如何调用 infer 接口输出多个layer的预测结果 +----------------------------------------------- + +* 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下: + +.. code-block:: python + + inferer = paddle.inference.Inference(output_layer=[layer1, layer2], parameters=parameters) + +* 指定要输出的字段进行输出。以输出 :code:`value` 字段为例,代码如下: + +.. code-block:: python + + out = inferer.infer(input=data_batch, field=["value"]) + +需要注意的是: + +* 如果指定了2个layer作为输出层,实际上需要的输出结果是两个矩阵; +* 假设第一个layer的输出A是一个 N1 * M1 的矩阵,第二个 Layer 的输出B是一个 N2 * M2 的矩阵; +* paddle.v2 默认会将A和B 横向拼接,当N1 和 N2 大小不一样时,会报如下的错误: + +.. code-block:: python + + ValueError: all the input array dimensions except for the concatenation axis must match exactly + +多个层的输出矩阵的高度不一致导致拼接失败,这种情况常常发生在: + +* 同时输出序列层和非序列层; +* 多个输出层处理多个不同长度的序列; + +此时可以在调用infer接口时通过设置 :code:`flatten_result=False` , 跳过“拼接”步骤,来解决上面的问题。这时,infer接口的返回值是一个python list: + +* list 中元素的个数等于网络中输出层的个数; +* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray; +* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size; diff --git a/doc/faq/src/reduce_min_pool_size.py b/doc/faq/local/src/reduce_min_pool_size.py similarity index 100% rename from doc/faq/src/reduce_min_pool_size.py rename to doc/faq/local/src/reduce_min_pool_size.py diff --git a/doc/faq/src/word2vec_config.py b/doc/faq/local/src/word2vec_config.py similarity index 100% rename from doc/faq/src/word2vec_config.py rename to doc/faq/local/src/word2vec_config.py diff --git a/doc/faq/src/word2vec_dataprovider.py b/doc/faq/local/src/word2vec_dataprovider.py similarity index 100% rename from doc/faq/src/word2vec_dataprovider.py rename to doc/faq/local/src/word2vec_dataprovider.py diff --git a/doc/faq/model/index_cn.rst b/doc/faq/model/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..b47bbe05bdb39d1ade9434a7e54bf6ca88a91cc9 --- /dev/null +++ b/doc/faq/model/index_cn.rst @@ -0,0 +1,69 @@ +######### +模型配置 +######### + +.. contents:: + +1. 出现 :code:`Duplicated layer name` 错误怎么办 +-------------------------------------------------- + +出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer,然后将这些layer的参数 :code:`name` 设置为不同的值。 + +2. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用 +------------------------------------------------------------- + +* :code:`paddle.layer.memory` 用于获取特定layer上一时间步的输出,该layer是通过参数 :code:`name` 指定,即,:code:`paddle.layer.memory` 会关联参数 :code:`name` 取值相同的layer,并将该layer上一时间步的输出作为自身当前时间步的输出。 + +* PaddlePaddle的所有layer都有唯一的name,用户通过参数 :code:`name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer,其name由参数 :code:`memory_name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer,需要用户显式设定。 + +3. 两种使用 drop_out 的方法有何区别 +------------------------------------ + +* 在PaddlePaddle中使用dropout有两种方式 + + * 在相应layer的 :code:`layer_atter` 设置 :code:`drop_rate`,以 :code:`paddle.layer.fc` 为例,代码如下: + + .. code-block:: python + + fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5)) + + * 使用 :code:`paddle.layer.dropout`,以 :code:`paddle.layer.fc` 为例,代码如下: + + .. code-block:: python + + fc = paddle.layer.fc(input=input) + drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5) + +* :code:`paddle.layer.dropout` 实际上使用了 :code:`paddle.layer.add_to`,并在该layer里采用第一种方式设置 :code:`drop_rate` 来使用dropout的。这种方式对内存消耗较大。 + +* PaddlePaddle在激活函数里实现dropout,而不是在layer里实现。 + +* :code:`paddle.layer.lstmemory`、:code:`paddle.layer.grumemory`、:code:`paddle.layer.recurrent` 不是通过一般的方式来实现对输出的激活,所以不能采用第一种方式在这几个layer里设置 :code:`drop_rate` 来使用dropout。若要对这几个layer使用dropout,可采用第二种方式,即使用 :code:`paddle.layer.dropout`。 + +4. 不同的 recurrent layer 的区别 +---------------------------------- +以LSTM为例,在PaddlePaddle中包含以下 recurrent layer: + +* :code:`paddle.layer.lstmemory` +* :code:`paddle.networks.simple_lstm` +* :code:`paddle.networks.lstmemory_group` +* :code:`paddle.networks.bidirectional_lstm` + +按照具体实现方式可以归纳为2类: + +1. 由 recurrent_group 实现的 recurrent layer: + + * 用户在使用这一类recurrent layer时,可以访问由recurrent unit在一个时间步内计算得到的中间值(例如:hidden states, memory cells等); + * 上述的 :code:`paddle.networks.lstmemory_group` 是这一类的 recurrent layer ; + +2. 将recurrent layer作为一个整体来实现: + + * 用户在使用这一类recurrent layer,只能访问它们的输出值; + * 上述的 :code:`paddle.networks.lstmemory_group` 、 :code:`paddle.networks.simple_lstm` 和 :code:`paddle.networks.bidirectional_lstm` 属于这一类的实现; + +将recurrent layer作为一个整体来实现, 能够针对CPU和GPU的计算做更多优化, 所以相比于recurrent group的实现方式, 第二类 recurrent layer 计算效率更高。 在实际应用中,如果用户不需要访问LSTM的中间变量,而只需要获得recurrent layer计算的输出,我们建议使用第二类实现。 + +此外,关于LSTM, PaddlePaddle中还包含 :code:`paddle.networks.lstmemory_unit` 这一计算单元: + + * 不同于上述介绍的recurrent layer , :code:`paddle.networks.lstmemory_unit` 定义了LSTM单元在一个时间步内的计算过程,它并不是一个完整的recurrent layer,也不能接收序列数据作为输入; + * :code:`paddle.networks.lstmemory_unit` 只能在recurrent_group中作为step function使用; diff --git a/doc/faq/parameter/index_cn.rst b/doc/faq/parameter/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..6fa0c64413be1616a435640b0347904a49873349 --- /dev/null +++ b/doc/faq/parameter/index_cn.rst @@ -0,0 +1,201 @@ +######### +参数设置 +######### + +.. contents:: + +1. 如何选择SGD算法的学习率 +-------------------------- + +在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。 + +通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。 + +如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。 + +2. 如何设置学习率退火(learning rate annealing) +------------------------------------------------ + +在相应的优化算法里设置learning_rate_schedule及相关参数,以使用Adam算法为例,代码如下: + +.. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_decay_a=0.5, + learning_rate_decay_b=0.75, + learning_rate_schedule="poly",) + +PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedule及其对应学习率计算方式如下: + +* "constant" + + lr = learning_rate + +* "poly" + + lr = learning_rate * pow(1 + learning_rate_decay_a * num_samples_processed, -learning_rate_decay_b) + + 其中,num_samples_processed为已训练样本数,下同。 + +* "caffe_poly" + + lr = learning_rate * pow(1.0 - num_samples_processed / learning_rate_decay_a, learning_rate_decay_b) + +* "exp" + + lr = learning_rate * pow(learning_rate_decay_a, num_samples_processed / learning_rate_decay_b) + +* "discexp" + + lr = learning_rate * pow(learning_rate_decay_a, floor(num_samples_processed / learning_rate_decay_b)) + +* "linear" + + lr = max(learning_rate - learning_rate_decay_a * num_samples_processed, learning_rate_decay_b) + +* "manual" + + 这是一种按已训练样本数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下: + + .. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_schedule="manual", + learning_rate_args="1000:1.0,2000:0.9,3000:0.8",) + + 在该示例中,当已训练样本数小于等于1000时,学习率为 :code:`1e-3 * 1.0`;当已训练样本数大于1000小于等于2000时,学习率为 :code:`1e-3 * 0.9`;当已训练样本数大于2000时,学习率为 :code:`1e-3 * 0.8`。 + +* "pass_manual" + + 这是一种按已训练pass数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下: + + .. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_schedule="pass_manual", + learning_rate_args="1:1.0,2:0.9,3:0.8",) + + 在该示例中,当已训练pass数小于等于1时,学习率为 :code:`1e-3 * 1.0`;当已训练pass数大于1小于等于2时,学习率为 :code:`1e-3 * 0.9`;当已训练pass数大于2时,学习率为 :code:`1e-3 * 0.8`。 + +3. 如何初始化参数 +----------------- + +默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\: + +* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)` +* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)` + +比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。 + +.. code-block:: python + + hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0), + bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0)) + +上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。 + +4. 如何共享参数 +--------------- + +PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。 + +简单的全连接网络,参数共享的配置示例为\: + +.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py + +这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 + +5. 如何加载预训练参数 +------------------------ + +* 对加载预训练参数的层,设置其参数属性 :code:`is_static=True`,使该层的参数在训练过程中保持不变。以embedding层为例,代码如下: + +.. code-block:: python + + emb_para = paddle.attr.Param(name='emb', is_static=True) + paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) + + +* 从模型文件将预训练参数载入 :code:`numpy.array`,在创建parameters后,使用 :code:`parameters.set()` 加载预训练参数。PaddlePaddle保存的模型参数文件前16字节为头信息,用户将参数载入 :code:`numpy.array` 时须从第17字节开始。以embedding层为例,代码如下: + +.. code-block:: python + + def load_parameter(file_name, h, w): + with open(file_name, 'rb') as f: + f.read(16) # skip header. + return np.fromfile(f, dtype=np.float32).reshape(h, w) + + parameters = paddle.parameters.create(my_cost) + parameters.set('emb', load_parameter(emb_param_file, 30000, 256)) + +6. 存储的参数格式是什么,如何和明文进行相互转化 +-------------------------------------------------- + +PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。 + +将PaddlePaddle保存的模型参数还原回明文时,可以使用相应数据类型的 :code:`numpy.array` 加载具体网络参数,此时可以跳过PaddlePaddle模型参数文件的头信息。若在PaddlePaddle编译时,未指定按照double精度编译,默认情况下按照float精度计算,保存的参数也是float类型。这时在使用 :code:`numpy.array` 时,一般设置 :code:`dtype=float32` 。示例如下: + +.. code-block:: python + + def read_parameter(fname, width): + s = open(fname).read() + # skip header + vec = np.fromstring(s[16:], dtype=np.float32) + # width is the size of the corresponding layer + np.savetxt(fname + ".csv", vec.reshape(width, -1), + fmt="%.6f", delimiter=",") + + +将明文参数转化为PaddlePaddle可加载的模型参数时,首先构造头信息,再写入网络参数。下面的代码将随机生成的矩阵转化为可以被PaddlePaddle加载的模型参数。 + +.. code-block:: python + + def gen_rand_param(param_file, width, height, need_trans): + np.random.seed() + header = struct.pack("iil", 0, 4, height * width) + param = np.float32(np.random.rand(height, width)) + with open(param_file, "w") as fparam: + fparam.write(header + param.tostring()) + +7. A protocol message was rejected because it was too big +------------------------------------------------------------ + +如果在训练NLP相关模型时,出现以下错误: + +.. code-block:: bash + + [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h. + F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) + +可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似: + +.. code-block:: python + + src_dict = dict() + for line_count, line in enumerate(open(src_dict_path, "r")): + src_dict[line.strip()] = line_count + + define_py_data_sources2( + train_list, + test_list, + module="dataprovider", + obj="process", + args={"src_dict": src_dict}) + +解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为: + +.. code-block:: python + + define_py_data_sources2( + train_list, + test_list, + module="dataprovider", + obj="process", + args={"src_dict_path": src_dict_path}) + +完整源码可参考 `seqToseq `_ 示例。 + + diff --git a/doc/getstarted/basic_usage/index_cn.rst b/doc/getstarted/basic_usage/index_cn.rst index 428f58830e0b10c024f31238b7404c6df193eecd..b473944fc7fb89d3e0a0b330933f2226734bb5bd 100644 --- a/doc/getstarted/basic_usage/index_cn.rst +++ b/doc/getstarted/basic_usage/index_cn.rst @@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 # 线性计算网络层: ȳ = wx + b ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) # 计算误差函数,即 ȳ 和真实 y 之间的距离 - cost = mse_cost(input= ȳ, label=y) + cost = square_error_cost(input= ȳ, label=y) outputs(cost) @@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 - **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。 - **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。 - - **回归误差代价层**:回归误差代价层 `mse_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。 + - **回归误差代价层**:回归误差代价层 `square_error_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。 定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令: diff --git a/doc/getstarted/basic_usage/index_en.rst b/doc/getstarted/basic_usage/index_en.rst index 6775da20c2f51000f305b095d40abd27b8fa6c0e..2cc438ebbe0f97345d25354b93b4ebbd43502415 100644 --- a/doc/getstarted/basic_usage/index_en.rst +++ b/doc/getstarted/basic_usage/index_en.rst @@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi x = data_layer(name='x', size=1) y = data_layer(name='y', size=1) y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) - cost = mse_cost(input=y_predict, label=y) + cost = square_error_cost(input=y_predict, label=y) outputs(cost) Some of the most fundamental usages of PaddlePaddle are demonstrated: diff --git a/doc/getstarted/build_and_install/build_from_source_en.md b/doc/getstarted/build_and_install/build_from_source_en.md index c0608ede8e57b224dae4b3d510d704a8b0918b53..2f1461489495618718d5abaeab9cbeda9b93700f 100644 --- a/doc/getstarted/build_and_install/build_from_source_en.md +++ b/doc/getstarted/build_and_install/build_from_source_en.md @@ -68,7 +68,7 @@ As a simple example, consider the following: 1. **BLAS Dependencies(optional)** - CMake will search BLAS libraries from system. If not found, OpenBLAS will be downloaded, built and installed automatically. + CMake will search BLAS libraries from the system. If not found, OpenBLAS will be downloaded, built and installed automatically. To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`. ```bash @@ -131,9 +131,9 @@ As a simple example, consider the following: To build GPU version, you will need the following installed: 1. a CUDA-capable GPU - 2. A supported version of Linux with a gcc compiler and toolchain + 2. A supported version of Linux with a GCC compiler and toolchain 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) - 4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) + 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn) The CUDA development environment relies on tight integration with the host development environment, including the host compiler and C runtime libraries, and is therefore only supported on @@ -172,6 +172,7 @@ export PATH=/bin:$PATH # install PaddlePaddle Python modules. sudo pip install /opt/paddle/share/wheels/*.whl ``` + ## Build on Centos 7 ### Install Dependencies @@ -192,9 +193,9 @@ sudo pip install /opt/paddle/share/wheels/*.whl To build GPU version, you will need the following installed: 1. a CUDA-capable GPU - 2. A supported version of Linux with a gcc compiler and toolchain + 2. A supported version of Linux with a GCC compiler and toolchain 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) - 4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) + 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn) The CUDA development environment relies on tight integration with the host development environment, including the host compiler and C runtime libraries, and is therefore only supported on @@ -222,7 +223,7 @@ mkdir build && cd build ``` Finally, you can build and install PaddlePaddle: - + ```bash # you can add build option here, such as: cmake3 .. -DCMAKE_INSTALL_PREFIX= diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index 84e33177740ca1652efc09c8081c2519b4366906..0d34dec8e908c5e61001500725187a2233797f46 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -20,7 +20,7 @@ Docker使用入门 docker pull paddlepaddle/paddle:0.10.0 - 来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用ocker.paddlepaddle.org/paddle下载。 + 来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用docker.paddlepaddle.org/paddle下载。 - *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。 实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。 @@ -145,7 +145,7 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以 Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。 -PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Nodebook。 +PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。 如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。 我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行: diff --git a/doc/getstarted/build_and_install/index_cn.rst b/doc/getstarted/build_and_install/index_cn.rst index a24df6c518fad84a48061ecb34ee46cb312a4995..dd9923697ab85825557aa89a08870bece7c76673 100644 --- a/doc/getstarted/build_and_install/index_cn.rst +++ b/doc/getstarted/build_and_install/index_cn.rst @@ -6,14 +6,12 @@ 安装流程 ++++++++ -PaddlePaddle提供数个预编译的二进制来进行安装,包括Docker镜像,ubuntu的deb安装包等。我们推荐使用Docker镜像来部署环境,同时欢迎贡献更多的安装包。 +PaddlePaddle提供Docker镜像来部署环境。 .. toctree:: :maxdepth: 1 docker_install_cn.rst - ubuntu_install_cn.rst - 编译流程 diff --git a/doc/getstarted/build_and_install/index_en.rst b/doc/getstarted/build_and_install/index_en.rst index 1bfd4f75c0b9b82d61d28a30f03181f7be159f24..8a53588e0439df8f4d5fd529b7a20262c67d4e58 100644 --- a/doc/getstarted/build_and_install/index_en.rst +++ b/doc/getstarted/build_and_install/index_en.rst @@ -8,14 +8,13 @@ Install PaddlePaddle :maxdepth: 1 docker_install_en.rst - ubuntu_install_en.rst Build from Source ----------------- .. warning:: - Please use :code:`deb` package or :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code. + Please use :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code. .. toctree:: :maxdepth: 1 diff --git a/doc/getstarted/build_and_install/ubuntu_install_cn.rst b/doc/getstarted/build_and_install/ubuntu_install_cn.rst deleted file mode 100644 index 9e39ccb00f5d5655c30148900a3d76a22aacfc01..0000000000000000000000000000000000000000 --- a/doc/getstarted/build_and_install/ubuntu_install_cn.rst +++ /dev/null @@ -1,71 +0,0 @@ -Ubuntu部署PaddlePaddle -=================================== - -PaddlePaddle提供了ubuntu 14.04 deb安装包。 - -安装 ------- - -安装包的下载地址是\: https://github.com/PaddlePaddle/Paddle/releases - -它包含四个版本\: - -* cpu版本: 支持主流x86处理器平台, 使用了avx指令集。 - -* cpu-noavx版本:支持主流x86处理器平台,没有使用avx指令集。 - -* gpu版本:支持主流x86处理器平台,支持nvidia cuda平台,使用了avx指令集。 - -* gpu-noavx版本:支持主流x86处理器平台,支持nvidia cuda平台,没有使用avx指令集。 - -下载完相关安装包后,执行: - -.. code-block:: shell - - sudo apt-get install gdebi - gdebi paddle-*-cpu.deb - -或者: - -.. code-block:: shell - - dpkg -i paddle-*-cpu.deb - apt-get install -f - - -在 :code:`dpkg -i` 的时候如果报一些依赖未找到的错误是正常的, -在 :code:`apt-get install -f` 里会继续安装 PaddlePaddle。 - -安装完成后,可以使用命令 :code:`paddle version` 查看安装后的paddle 版本: - -.. code-block:: shell - - PaddlePaddle 0.8.0b1, compiled with - with_avx: ON - with_gpu: OFF - with_double: OFF - with_python: ON - with_rdma: OFF - with_timer: OFF - with_predict_sdk: - - -可能遇到的问题 --------------- - -libcudart.so/libcudnn.so找不到 -++++++++++++++++++++++++++++++ - -安装完成后,运行 :code:`paddle train` 报错\: - -.. code-block:: shell - - 0831 12:36:04.151525 1085 hl_dso_loader.cc:70] Check failed: nullptr != *dso_handle For Gpu version of PaddlePaddle, it couldn't find CUDA library: libcudart.so Please make sure you already specify its path.Note: for training data on Cpu using Gpu version of PaddlePaddle,you must specify libcudart.so via LD_LIBRARY_PATH. - -原因是未设置cuda运行时环境变量。 如果使用GPU版本的PaddlePaddle,请安装CUDA 7.5 和CUDNN 5到本地环境中,并设置: - -.. code-block:: shell - - export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:$LD_LIBRARY_PATH - export PATH=/usr/local/cuda/bin:$PATH - diff --git a/doc/getstarted/build_and_install/ubuntu_install_en.rst b/doc/getstarted/build_and_install/ubuntu_install_en.rst deleted file mode 100644 index ea8042085bf458be96e71017d229d88ad867695b..0000000000000000000000000000000000000000 --- a/doc/getstarted/build_and_install/ubuntu_install_en.rst +++ /dev/null @@ -1,25 +0,0 @@ -Debian Package installation guide -================================= - -PaddlePaddle supports :code:`deb` pacakge. The installation of this :code:`deb` package is tested in ubuntu 14.04, but it should be support other debian based linux, too. - -There are four versions of debian package, :code:`cpu`, :code:`gpu`, :code:`cpu-noavx`, :code:`gpu-noavx`. And :code:`noavx` version is used to support CPU which does not contain :code:`AVX` instructions. The download url of :code:`deb` package is \: https://github.com/baidu/Paddle/releases/ - - -After downloading PaddlePaddle deb packages, you can use :code:`gdebi` install. - -.. code-block:: bash - - gdebi paddle-*.deb - -If :code:`gdebi` is not installed, you can use :code:`sudo apt-get install gdebi` to install it. - -Or you can use following commands to install PaddlePaddle. - -.. code-block:: bash - - dpkg -i paddle-*.deb - apt-get install -f - -And if you use GPU version deb package, you need to install CUDA toolkit and cuDNN, and set related environment variables(such as LD_LIBRARY_PATH) first. It is normal when `dpkg -i` get errors. `apt-get install -f` will continue install paddle, and install dependences. - diff --git a/doc/getstarted/concepts/src/train.py b/doc/getstarted/concepts/src/train.py index 7e604f23de38543a00f305d508af0791193f78ba..8aceb23406a476f08639cc6223cdf730b728a705 100644 --- a/doc/getstarted/concepts/src/train.py +++ b/doc/getstarted/concepts/src/train.py @@ -8,7 +8,7 @@ paddle.init(use_gpu=False) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) -cost = paddle.layer.mse_cost(input=y_predict, label=y) +cost = paddle.layer.square_error_cost(input=y_predict, label=y) # create parameters parameters = paddle.parameters.create(cost) diff --git a/doc/getstarted/concepts/use_concepts_cn.rst b/doc/getstarted/concepts/use_concepts_cn.rst index f15b11bd780402a3ec1755900e8c648f5d2a7bc5..c243083794bb3c4659242de99b3b2715af9d7c24 100644 --- a/doc/getstarted/concepts/use_concepts_cn.rst +++ b/doc/getstarted/concepts/use_concepts_cn.rst @@ -81,9 +81,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. code-block:: bash y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) - cost = paddle.layer.mse_cost(input=y_predict, label=y) + cost = paddle.layer.square_error_cost(input=y_predict, label=y) -其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上均方误差层。 +其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上平方误差层。 最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。 @@ -147,4 +147,4 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. literalinclude:: src/train.py :linenos: -有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 \ No newline at end of file +有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 diff --git a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md b/doc/howto/cross_compiling/cross_compiling_for_android_cn.md deleted file mode 100644 index 90dc84718c9ce1374cda6022de177afeeb60279d..0000000000000000000000000000000000000000 --- a/doc/howto/cross_compiling/cross_compiling_for_android_cn.md +++ /dev/null @@ -1,75 +0,0 @@ -# 构建Android平台上的PaddlePaddle库 - -用户可通过交叉编译的方式,在用户熟悉的开发平台(Linux,Mac OS X和Windows)上编译Android平台上适用的PaddlePaddle库。 -本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 - -## 准备交叉编译环境 - -从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。Android平台上使用的C/C++交叉编译工具链为[Android NDK](https://developer.android.com/ndk/downloads/index.html?hl=zh-cn),用户可自行前往下载预编译好的版本,也可通过以下命令获取: - -```bash -wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip -unzip -q android-ndk-r14b-linux-x86_64.zip -``` - -Android NDK中包含了所有Android API级别、所有架构(arm/arm64/x86/mips)需要用到的编译工具和系统库。用户可根据自己的编译目标架构、所需支持的最低Android API级别,构建[独立工具链](https://developer.android.google.cn/ndk/guides/standalone_toolchain.html?hl=zh-cn)。 -比如: - -```bash -your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \ - --arch=arm --platform=android-21 --install-dir=your/path/to/my_standalone_toolchain -``` - -此命令将在your/path/to/my_standalone_toolchain目录生成一套编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,使用的编译器为arm-linux-androideabi-gcc (GCC) 4.9。 - -注意:**PaddlePaddle要求使用的编译工具链所支持的Andoid API级别不小于21**。 - -## 配置交叉编译参数 - -CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。 - -交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数: -- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。 -- `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。 -- `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。 - -Android平台可选配置参数: - -- `ANDROID_STANDALONE_TOOLCHAIN`,独立工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别;否则,用户需要在cmake时手动设置这些值。无默认值。 -- `ANDROID_ABI`,目标架构ABI。目前只支持`armeabi-v7a`,默认值为`armeabi-v7a`。 -- `ANDROID_NATIVE_API_LEVEL`,工具链的Android API级别。若没有显式设置,PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。 -- `ANROID_ARM_MODE`,是否使用ARM模式。可设置`ON/OFF`,默认值为`ON`。 -- `ANDROID_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`。 - -其他配置参数: - -- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 - -一种常用的cmake配置如下: - -```bash -cmake -DCMAKE_SYSTEM_NAME=Android \ - -DANDROID_STANDALONE_TOOLCHAIN=your/path/to/my_standalone_toolchain \ - -DANDROID_ABI=armeabi-v7a \ - -DANDROID_ARM_NEON=ON \ - -DANDROID_ARM_MODE=ON \ - -DCMAKE_INSTALL_PREFIX=your/path/to/install \ - -DWITH_C_API=ON \ - -DWITH_SWIG_PY=OFF \ - .. -``` - -用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 - -## 编译和安装 - -CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。 - -```bash -make -make install -``` - -注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。 - -执行完安装命令后,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Android版本的库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。 diff --git a/doc/howto/cross_compiling/cross_compiling_for_raspberry_cn.md b/doc/howto/cross_compiling/cross_compiling_for_raspberry_cn.md deleted file mode 100644 index 085b5dda1615a9af918b59870db460fcc5acdcca..0000000000000000000000000000000000000000 --- a/doc/howto/cross_compiling/cross_compiling_for_raspberry_cn.md +++ /dev/null @@ -1,65 +0,0 @@ -# 构建Raspberry Pi平台上的PaddlePaddle库 - -对于Rasspberry Pi系统,用户可通过ssh等方式登录到Raspberry Pi系统上,按照[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档所述,直接编译Raspberry Pi平台上适用的PaddlePaddle库。 - -用户也可以在自己熟悉的开发平台上,通过交叉编译的方式来编译。这篇文档将以Linux x86-64平台为例,介绍交叉编译Raspberry Pi平台上适用的PaddlePaddle的方法和步骤。 - -## 准备交叉编译环境 - -从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。用户可自行前往[github](https://github.com/raspberrypi/tools)下载Raspberry Pi平台使用的C/C++交叉编译工具链,也可通过以下命令获取: - -```bash -git clone https://github.com/raspberrypi/tools.git -``` - -该github仓库中包含若干个预编译好的、针对不同平台的编译工具。宿主机是Linux x86-64环境,则需选用`arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64`下的作为编译工具,所使用的编译器为arm-linux-gnueabihf-gcc 4.8.3。 - -注意,该编译工具链需要系统glibc支持2.14以上。 - -## 配置交叉编译参数 - -CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/raspberry_pi.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/raspberry_pi.cmake),以提供一些默认的编译器和编译参数相关配置。 - -交叉编译Raspberry Pi版本PaddlePaddle库时,有一些必须配置的参数: - -- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须配置为`RPi`。在设置`CMAKE_SYSTEM_NAME=RPi`后,PaddlePaddle的CMake系统才认为在是在交叉编译Raspberry Pi系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及目标机版OpenBLAS库。 - -Raspberry Pi平台可选配置参数: - -- `RPI_TOOLCHAIN`,编译工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动设置需要使用的交叉编译器;否则,用户需要在cmake时手动设置这些值。无默认值。 -- `RPI_ARM_NEON`,是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`。 - -其他配置参数: - -- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。 - -cmake参数如下; - -``` -cmake -DCMAKE_SYSTEM_NAME=RPi \ - -DRPI_TOOLCHAIN=your/path/to/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64 \ - -DRPI_ARM_NEON=ON \ - -DCMAKE_INSTALL_PREFIX=your/path/to/install \ - -DWITH_GPU=OFF \ - -DWITH_C_API=ON \ - -DWITH_PYTHON=OFF \ - -DWITH_SWIG_PY=OFF \ - .. -``` - -用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。 - -## 编译和安装 - -CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle。 - -```bash -make -make install -``` - -注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。 - -执行完安装命令后,由于上一步cmake配置中`WITH_C_API`设置为`ON`,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Raspberry Pi版本的库。 - -更多的编译配置见[源码编译PaddlePaddle](http://www.paddlepaddle.org/doc_cn/getstarted/build_and_install/cmake/build_from_source_cn.html)相关文档。 diff --git a/doc/howto/deep_model/rnn/rnn_config_cn.rst b/doc/howto/deep_model/rnn/rnn_config_cn.rst index 4d684cf8ad5a8082cf31fb27027119b3d3e700b6..63fa161fafed0f3a8ec8799af21304cbec62d813 100644 --- a/doc/howto/deep_model/rnn/rnn_config_cn.rst +++ b/doc/howto/deep_model/rnn/rnn_config_cn.rst @@ -21,7 +21,7 @@ wmt14数据的提供文件在 `python/paddle/v2/dataset/wmt14.py